JPH10332862A - Reactor pressure vessel and core support structure - Google Patents

Reactor pressure vessel and core support structure

Info

Publication number
JPH10332862A
JPH10332862A JP9145318A JP14531897A JPH10332862A JP H10332862 A JPH10332862 A JP H10332862A JP 9145318 A JP9145318 A JP 9145318A JP 14531897 A JP14531897 A JP 14531897A JP H10332862 A JPH10332862 A JP H10332862A
Authority
JP
Japan
Prior art keywords
steel
low
pressure vessel
support structure
reactor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9145318A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tanaka
義治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9145318A priority Critical patent/JPH10332862A/en
Publication of JPH10332862A publication Critical patent/JPH10332862A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce exposure dose by forming core support structure with high chromium low nickel steel suppressing the generation of corrosion product. SOLUTION: A reactor pressure vessel 1 fixes a core structure (shroud support) consisting of a cylinder 4, a plate 5 and legs 6 on the inner surface of a wall 1a and supports in-core structure (shroud) 2. This shroud support is formed with high chromium low nickel steel being low alloy steel of high chromium improving corrosion resistivity and low nickel with low cobalt content. This high chromium low nickel steel should be 9Cr-1Mo-0.4Ni steel. Owing to high chromium, corrosion resistivity rises, the generation of corrosion product is suppressed and corrosion product contaminated with radioactives becomes little. Also, due to Ni content of 0.4% or less, Co content becomes little, dose equivalent rate of components in the pressure vessel 1 becomes low and exposure dose of workers can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉内構造物の炉心
支持構造物に係り、特に被曝線量を低減させる材料で炉
心支持構造物を形成した原子炉圧力容器及び炉心支持構
造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core support structure for an internal structure of a reactor, and more particularly to a reactor pressure vessel and a core support structure having a core support structure formed of a material for reducing an exposure dose.

【0002】[0002]

【従来の技術】従来の原子炉圧力容器においては、図8
〜図11に示す沸騰水型原子炉圧力容器及び図12〜図
15に示す改良沸騰水型原子炉圧力容器のように、原子
炉圧力容器(以下、RPVと称す)11の内部にはシュ
ラウド2等の炉内構造物が設置され、これらを支持する
炉心支持構造物が設置されている。炉心支持構造物とし
てのシュラウドサポート14,15,16は、RPV1
1の底部に設置されいるシリンダ14、プレート15及
びレグ16により形成される。シリンダ14は、中空円
筒の形状で上端面をシュラウド2に、かつ下端面をレグ
16に溶接で接続されている。プレート15は、円環板
状でジェットポンプ3又はインターナルポンプディフュ
ーザ9を貫通するため、数個より十数個の穴が開けられ
ており、内周をシリンダ14に、外周をRPV11の壁
11a,11bの内面に溶接で接続されている。
2. Description of the Related Art In a conventional reactor pressure vessel, FIG.
A shroud 2 is provided inside a reactor pressure vessel (hereinafter referred to as RPV) 11 like the boiling water reactor pressure vessel shown in FIGS. Are installed, and a core support structure for supporting them is installed. The shroud supports 14, 15, 16 as the core support structure are RPV1
It is formed by a cylinder 14, a plate 15 and a leg 16 which are installed at the bottom of 1. The cylinder 14 has a hollow cylindrical shape and has an upper end surface connected to the shroud 2 and a lower end surface connected to the leg 16 by welding. The plate 15 is formed in an annular plate shape and penetrates through the jet pump 3 or the internal pump diffuser 9, so that more than ten or more holes are drilled. , 11b by welding.

【0003】レグ16は、冷却水の通路を確保しかつ水
流の邪魔にならないように、ジェットポンプ3の開口部
をさける位置に十数個配置されている。これはRPV1
1内部の冷却水を循環させるためである。またすみ肉溶
接により補強肉盛16aを実施している。シュラウドサ
ポート14,15,16の材料及びこれらを溶着する溶
接棒は、RPV11内の炉内構造物となるものであり、
腐食生成物を発生しない材料が要求されるとともに、比
較的高い強度が要求される。そのため、強度の低いステ
ンレス鋼は使用できず、インコネル鋼を使用している。
このインコネル鋼は耐食性をよくするため、Niを多量
(72%以上)に含有していることと、特殊な成分(N
b)を含んでいるため非常に高価である。また溶接にも
高度で特殊な技術を必要とし、かつインコネル鋼は他の
低合金鋼等と比べ材料の製造能力から大きな素材が製作
できないという問題がある。
[0003] More than ten legs 16 are arranged at positions avoiding the opening of the jet pump 3 so as to secure the passage of the cooling water and not to obstruct the water flow. This is RPV1
This is for circulating the cooling water inside 1. Further, the reinforcing overlay 16a is implemented by fillet welding. The materials of the shroud supports 14, 15, 16 and the welding rods for welding them are to be a furnace internal structure in the RPV 11,
Materials that do not generate corrosion products are required, and relatively high strength is required. Therefore, stainless steel having low strength cannot be used, and Inconel steel is used.
This Inconel steel contains a large amount of Ni (72% or more) and a special component (N
It is very expensive because it contains b). In addition, welding requires advanced and special techniques, and Inconel steel has a problem that a large material cannot be manufactured due to its material production capacity as compared with other low alloy steels and the like.

【0004】シュラウドサポートの材料は、ステンレス
鋼では強度不十分であるため、インコネル鋼を使用して
いるが非常に高価であり、材料費が高くなるとともに溶
接にも高度な技術を必要とする。またRPV本体の材料
である低合金鋼をそのまま使用する場合、腐食生成物が
発生する恐れがある等の問題点がある。
As the material of the shroud support, stainless steel is insufficient in strength. Therefore, inconel steel is used, but it is very expensive, so that the material cost is high and the welding requires advanced technology. Further, when low alloy steel, which is the material of the RPV main body, is used as it is, there is a problem that corrosion products may be generated.

【0005】これらの問題点を解決するため強度に優れ
た低合金鋼を主材料として使用し、耐食性を向上するた
め、低合金鋼の表面にステンレス鋼の肉盛溶接をする手
段があるが、以下の2つの問題がある。
[0005] In order to solve these problems, low-alloy steel having excellent strength is used as a main material, and in order to improve corrosion resistance, there is a means for overlay-welding stainless steel to the surface of the low-alloy steel. There are the following two problems.

【0006】(a)肉盛溶接の材料であるステンレス鋼
は、Niを約10%以上含んでいる。このNiを含有さ
せるためには、Ni合金鉄を原料として使う必要がある
が、このNi合金鉄はCoを含んでおり、Co含有量は
Niの含有量に比例して増減する。一方、RPV内の機
器の材料に含まれるCoは、原子炉からの中性子照射を
受けると半減期の長い60Coとなり、γ線エネルギーを
発生させる。γ線エネルギーはRPV内の表面線量当量
率を上昇させる化学成分であり、原子力プラントの作業
者の被曝線量をできるだけ低減させるため、材料中のC
o含有量をできるだけ少なくする必要がある。したがっ
てNiを多量に含むステンレス鋼はCoを多量に含有し
線量当量を増加させるという問題がある。
(A) Stainless steel, which is a material for overlay welding, contains about 10% or more of Ni. In order to contain Ni, it is necessary to use Ni alloy iron as a raw material, but this Ni alloy iron contains Co, and the Co content increases and decreases in proportion to the Ni content. On the other hand, Co contained in the material of the equipment in the RPV becomes 60 Co having a long half-life when irradiated with neutrons from a nuclear reactor, and generates γ-ray energy. Gamma ray energy is a chemical component that raises the surface dose equivalent rate in the RPV, and in order to reduce the exposure dose of nuclear plant workers as much as possible,
It is necessary to minimize the o content. Therefore, there is a problem that stainless steel containing a large amount of Ni contains a large amount of Co and increases the dose equivalent.

【0007】(b)またステンレス鋼の肉盛溶接を実施
することは、長い溶接時間を必要とし経済的に得策では
ない。
(B) Further, it is not economically advantageous to carry out the overlay welding of stainless steel, because it requires a long welding time.

【0008】[0008]

【発明が解決しようとする課題】従来の原子炉圧力容器
にあっては、炉心支持構造物の材料は、ステンレス鋼で
は強度不十分であるため、インコネル鋼を使用している
が溶接に高度な技術を必要とし、低合金鋼をそのまま使
用すると腐食生成物が発生する恐れがある等の問題点が
ある。
In the conventional reactor pressure vessel, the material of the core support structure uses inconel steel because stainless steel is insufficient in strength. It requires technology, and there is a problem that if low alloy steel is used as it is, corrosion products may be generated.

【0009】強度に優れた低合金鋼を主材料とし、耐食
性を向上するため、低合金鋼の表面にステンレス鋼の肉
盛溶接をする手段があるが、Niを多量に含有するステ
ンレス鋼はCoも多量に含有し線量当量を増加させる。
またステンレス鋼の肉盛溶接を実施することは、長い溶
接時間を必要とし経済的に得策ではないという問題点が
ある。
[0009] There is a means of welding stainless steel to the surface of the low alloy steel in order to improve the corrosion resistance by using a low alloy steel excellent in strength as a main material. Also increases the dose equivalent.
Further, there is a problem that performing the overlay welding of stainless steel requires a long welding time and is not economically advantageous.

【0010】本発明の課題は、炉心支持構造物を、高強
度,高耐食性の材料でかつCo含有量の少ない材料で形
成して腐食生成物と線量当量とを抑制し、被曝線量を低
減することのできる原子炉圧力容器及び炉心支持構造物
を提供することにある。
[0010] An object of the present invention is to form a core support structure using a material having high strength and high corrosion resistance and a low Co content, thereby suppressing corrosion products and dose equivalents, and reducing exposure dose. To provide a reactor pressure vessel and a core support structure that can be used.

【0011】[0011]

【課題を解決するための手段】前記の課題を達成するた
め、本発明に係る原子炉圧力容器は、内面に炉心支持構
造物を固設し炉心支持構造物により炉内構造物を支持し
てなる原子炉圧力容器において、炉心支持構造物は、被
曝線量を低減させるように少なくとも腐食生成物の発生
を抑制する高クロム低ニッケル鋼で形成される構成とす
る。
In order to achieve the above-mentioned object, a reactor pressure vessel according to the present invention has a core support structure fixed on an inner surface, and the core structure is supported by the core support structure. In the reactor pressure vessel of the present invention, the core supporting structure is formed of a high chromium low nickel steel that suppresses at least the generation of corrosion products so as to reduce the exposure dose.

【0012】そして高クロム低ニッケル鋼は、9Cr−
1Mo−0.4Ni鋼である構成でもよい。
The high chromium low nickel steel is 9Cr-
The structure which is 1Mo-0.4Ni steel may be sufficient.

【0013】また炉心支持構造物にあっては、前記いず
れか一つの原子炉圧力容器の内部に固設され、少なくと
もシリンダ、プレート及びレグよりなる構成とする。
[0013] The core support structure is fixed to the inside of any one of the above-mentioned reactor pressure vessels and has at least a cylinder, a plate, and a leg.

【0014】[0014]

【発明の実施の形態】本発明の一実施の形態を図1を参
照しながら説明する。図1に示すように、シリンダ4、
プレート5及びレグ6よりなる炉心支持構造物(シュラ
ウドサポート)を壁1aの内面に固設し、炉心支持構造
物4,5,6により炉内構造物2を支持してなる原子炉
圧力容器(RPV)1であって、炉心支持構造物4,
5,6は、作業者の被曝線量を低減させるように材料の
腐食により発生する腐食生成物の放射能汚染と、中性子
照射を受けて発生する線量当量との増加を抑制し、耐食
性を向上する高クロムと、Co含有量の少ない低ニッケ
ルとの低合金鋼である高クロム低ニッケル鋼により形成
される構成とする。そして高クロム低ニッケル鋼は、9
Cr−1Mo−0.4Ni鋼とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. As shown in FIG.
A reactor pressure vessel (a reactor pressure vessel) in which a core support structure (shroud support) composed of a plate 5 and legs 6 is fixed to the inner surface of the wall 1a and the core structure 2 is supported by the core support structures 4, 5, and 6 RPV) 1, the core support structure 4,
5 and 6 improve the corrosion resistance by suppressing the radioactive contamination of corrosion products generated by corrosion of materials and the increase in dose equivalent generated by neutron irradiation so as to reduce the exposure dose to workers. The high-chromium low-nickel steel, which is a low-alloy steel of high chromium and low nickel with a low Co content, is used. And high chromium low nickel steel is 9
Cr-1Mo-0.4Ni steel.

【0015】すなわちRPV1の炉内構造物であるシュ
ラウド2の下端面が中空円筒状のシリンダ4の上端面に
溶着され、シリンダ4の下端面がレグ6の上端面に溶着
され、さらに円環板状のシリンダ4のほぼ中央にプレー
ト5の内周面が溶着され、プレート5の外周面及びレグ
6の下端面の各々が溶接により、RPV1の壁1aの内
面に溶接され一体化されている。したがってシュラウド
サポート4,5,6は、シュラウド2を含む炉内構造物
の重量をRPV1の壁1aに伝えRPV1が重量を支え
ている。
That is, the lower end surface of the shroud 2 which is a furnace internal structure of the RPV 1 is welded to the upper end surface of the hollow cylindrical cylinder 4, the lower end surface of the cylinder 4 is welded to the upper end surface of the leg 6, and The inner peripheral surface of the plate 5 is welded to substantially the center of the cylinder 4, and the outer peripheral surface of the plate 5 and the lower end surface of the leg 6 are welded and integrated with the inner surface of the wall 1 a of the RPV 1 by welding. Therefore, the shroud supports 4, 5, and 6 transmit the weight of the internal structure including the shroud 2 to the wall 1a of the RPV 1, and the RPV 1 supports the weight.

【0016】このシュラウドサポートを、高Cr低Ni
鋼(高クロム低ニッケル鋼の例えば9Cr−1Mo−
0.4Ni鋼)の材料で形成することにより、高Crの
ため高耐食性となり、腐食生成物が少ないので放射能に
より汚染された腐食生成物が少なくなる。またNi含有
量が0.4%以下なのでCo含有量が非常に少なく、R
PV内の機器の線量当量率が従来より低くなり、原子力
プラントの作業者の被曝線量が低減できる。また高Cr
低Ni鋼は高価なNi含有量が少ないため材料費が安く
なる。
The shroud support is made of high Cr and low Ni.
Steel (for example, 9Cr-1Mo-
By using a material of 0.4Ni steel), high corrosion resistance is attained due to high Cr, and corrosion products contaminated by radioactivity are reduced because there are few corrosion products. In addition, since the Ni content is 0.4% or less, the Co content is very low, and R
The dose equivalent rate of the equipment in the PV becomes lower than before, and the exposure dose of the nuclear plant operator can be reduced. Also high Cr
Low Ni steel has a low expensive Ni content, so that the material cost is low.

【0017】一方、強度的には従来材料に比較して約2
0%増となり、従来と同一形状,寸法の場合に安全性が
高まる。RPVとの取り合い部のみは互いの線膨張係数
が若干異なり、熱応力が従来より17%程度増加するた
め、RPVとの取り合い部のみは強度的に従来と同等で
ある。製造に関しては、材料の製作及び材料の加工及び
溶接等はすでにボイラ等で使用されているので全く問題
はない。なおシュラウドサポートとの取り合い部の溶接
後の熱処理温度は9Cr−1Mo−0.4Ni鋼を使用
するため、従来の625℃程度が720℃程度に変わる
が、図2のE部詳細及び図3のF部詳細に示すように、
シュラウドサポート5,6側にRPVと同じ材料の溶接
肉盛8を施行することにより、従来と同じ熱処理温度で
施行できる。
On the other hand, the strength is about 2 times that of the conventional material.
0% increase, and the safety is improved when the shape and dimensions are the same as the conventional one. Only the joint with the RPV has a slightly different coefficient of linear expansion, and the thermal stress is increased by about 17% as compared with the conventional one. Therefore, only the joint with the RPV is equivalent in strength to the conventional one. Regarding the production, there is no problem at all since the production of the material and the processing and welding of the material are already used in the boiler or the like. Note that the heat treatment temperature after welding of the joint with the shroud support uses 9Cr-1Mo-0.4Ni steel, so that the conventional temperature of about 625 ° C changes to about 720 ° C. As shown in the F section details,
By performing the weld overlay 8 of the same material as that of the RPV on the shroud supports 5 and 6, it is possible to perform the same heat treatment temperature as before.

【0018】本実施の形態の作用を説明する。RPVで
の作業者の被曝線量を少なくするためにはRPV内の機
器の材料の耐食性を高め、放射能に汚染された腐食生成
物を少なくすることが肝要である。Crは耐食性を高め
る最も有効な成分であり、このCrが鋼のマトリックス
に入り耐食性を高める。図4は高Crの代表的な材料で
ある9Cr−1Mo鋼の水道水(35℃)中の腐食速度
に及ぼす流速の影響を、その他の材料である炭素鋼、
3.5Ni鋼、2.25Cr−1Mo鋼及び5Cr−
0.5Mo鋼と比較したグラフである。いずれの流速で
も9Cr−1Mo鋼は腐食速度が遅く耐食性がよい。な
お本データは水道水中のデータであるが、原子炉圧力容
器で使用される純水中では、腐食の要因であるCl等の
成分が少なく9Cr−1Mo鋼はさらに腐食しなくな
る。一方、被曝線量の軽減対策として、放射能に汚染さ
れると半減期の長い60Coとならないように、Co含有
量の少ない材料を使用することが重要である。9Cr−
1Mo鋼は、Niが0.4%以下しか含まれておらず、
インコネル鋼(Niが72%以上)及びステンレス鋼
(Niが14%)に比べて9Cr−1Mo鋼の方が原料
として使用するNi合金鉄(Co含有)が少ないため必
然的にCoが少なくなる。したがってRPV内の機器の
線量当量率が少なくなり、原子力プラントの作業者の被
曝線量を少なくすることができる。
The operation of the embodiment will be described. In order to reduce the exposure dose of the worker to the RPV, it is important to increase the corrosion resistance of the material of the equipment in the RPV and reduce the corrosion products contaminated by radioactivity. Cr is the most effective component for improving corrosion resistance, and this Cr enters the steel matrix to increase corrosion resistance. FIG. 4 shows the effect of the flow rate on the corrosion rate of 9Cr-1Mo steel, which is a typical material of high Cr, in tap water (35 ° C.).
3.5Ni steel, 2.25Cr-1Mo steel and 5Cr-
It is a graph compared with 0.5Mo steel. At any flow rate, 9Cr-1Mo steel has a low corrosion rate and good corrosion resistance. Although this data is data in tap water, in pure water used in a reactor pressure vessel, components such as Cl, which are factors of corrosion, are small, and 9Cr-1Mo steel does not corrode further. On the other hand, as a countermeasure for reducing the exposure dose, it is important to use a material having a low Co content so as not to become 60 Co having a long half-life when contaminated by radioactivity. 9Cr-
1Mo steel contains only 0.4% or less Ni,
Since 9Cr-1Mo steel uses less Ni alloy iron (containing Co) as a raw material than Inconel steel (Ni is 72% or more) and stainless steel (Ni is 14%), Co is inevitably reduced. Therefore, the dose equivalent rate of the equipment in the RPV is reduced, and the exposure dose of the nuclear plant operator can be reduced.

【0019】本発明の他の実施の形態を図5に示す。シ
リンダ及びレグ7を一つの中空円筒を形成した板又は鍛
造品より削り出し、シリンダとレグとの溶接を不要にし
品質を向上させた構成である。この構成によりさらに製
造コストを低減したものである。シュラウドサポートの
材料を高Cr低Ni鋼にすることにより、高Crのため
に高耐食性となり放射能に汚染された腐食生成物が少な
くなる。またNi含有量が低下し、Co含有量が非常に
少なくなるのでRPV内の機器の線量当量率が従来より
も低くなり、原子力プラントの作業者の被曝線量が低減
できる。また高Cr低Ni鋼は高価なNiの含有量が少
ないため材料費が低減される。
FIG. 5 shows another embodiment of the present invention. The cylinder and the leg 7 are cut out from a plate or a forged product in which one hollow cylinder is formed, so that welding of the cylinder and the leg is not required and the quality is improved. With this configuration, the manufacturing cost is further reduced. By making the material of the shroud support a high Cr low Ni steel, high corrosion resistance is achieved due to the high Cr, and the corrosion products contaminated by radioactivity are reduced. In addition, since the Ni content is reduced and the Co content is extremely reduced, the dose equivalent rate of the equipment in the RPV becomes lower than before, and the exposure dose of the nuclear plant operator can be reduced. Further, the material cost of the high Cr low Ni steel is reduced because the content of expensive Ni is small.

【0020】一方、強度的には従来材料に比較して高く
なり従来と同一形状,寸法の場合、安全性が高くなる。
RPVとの取り合い部のみは互いの線膨張係数が若干異
なり、熱応力が従来より若干増加するので、RPVとの
取り合い部のみは強度的に従来と同等である。製造に関
しては、材料の製作及び材料の加工及び溶接等はすでに
ボイラ等で使用されているので全く問題はない。なおシ
ュラウドサポートとの取り合い部の溶接後の熱処理温度
は高Cr低Ni鋼を使用するため、従来と変わるが、図
6のG部詳細及び図7のH部詳細に示すように、シュラ
ウドサポート側にRPVと同じ材料の溶接肉盛を施行す
ることにより、従来と同じ熱処理温度で施行できる。
On the other hand, the strength is higher than that of the conventional material, and when the shape and dimensions are the same as those of the conventional material, the safety is enhanced.
Only the joints with the RPV have slightly different coefficients of linear expansion, and the thermal stress slightly increases compared to the conventional art, so that only the joints with the RPV are equivalent in strength to the conventional art. Regarding the production, there is no problem at all since the production of the material and the processing and welding of the material are already used in the boiler or the like. The heat treatment temperature after welding of the joint with the shroud support is different from the conventional one because of the use of high Cr low Ni steel, but as shown in the detail of the G part in FIG. 6 and the detail of the H part in FIG. By applying a weld overlay of the same material as that of the RPV, it can be carried out at the same heat treatment temperature as before.

【0021】本発明によれば、シュラウドサポートを高
Cr低Ni鋼の材料で形成することにより、高Crのた
めに高耐食性となり、放射能により汚染された腐食生成
物が少なくなる。またNi含有量が低いため、Co含有
量が非常に少なくなりRPV内の機器の線量当量率が従
来より低くなり、原子力プラントの作業者の被曝線量が
低減できる。また高Cr低Ni鋼は高価なNiの含有量
が少ないため材料費が安くなる。
According to the present invention, by forming the shroud support from a material of high Cr and low Ni steel, high corrosion resistance is achieved due to high Cr, and corrosion products contaminated by radioactivity are reduced. In addition, since the Ni content is low, the Co content is very low, the dose equivalent rate of the equipment in the RPV becomes lower than before, and the exposure dose of the nuclear plant operator can be reduced. Further, the material cost of the high Cr low Ni steel is low because the content of expensive Ni is small.

【0022】一方、強度的には従来材料に比較して高く
なり、従来と同一形状,寸法の場合、安全性が高まる。
RPVとの取り合い部のみは互いの線膨張係数が若干異
なり、熱応力が従来より若干増加するため、RPVとの
取り合い部のみは強度的に従来と同等である。製造に関
しては、材料の製作及び材料の加工及び溶接等はすでに
ボイラ等で使用されているので全く問題はない。なおシ
ュラウドサポートとの取り合い部の溶接後の熱処理温度
は高Cr低Ni鋼を使用するため、従来と変わるが、図
2のE部詳細及び図3のF部詳細に示すように、シュラ
ウドサポート側にRPVと同じ材料の溶接肉盛を施行す
ることにより、従来と同じ熱処理温度で施行できる。
On the other hand, the strength is higher than that of the conventional material, and when the shape and dimensions are the same as the conventional material, the safety is enhanced.
Only the joints with the RPV have slightly different coefficients of linear expansion, and the thermal stress slightly increases, so that only the joints with the RPV are equivalent in strength to the conventional one. Regarding the production, there is no problem at all since the production of the material and the processing and welding of the material are already used in the boiler or the like. The heat treatment temperature after welding of the joint with the shroud support is different from the conventional one because of the use of high Cr low Ni steel. However, as shown in the details of the portion E in FIG. 2 and the details of the portion F in FIG. By applying a weld overlay of the same material as that of the RPV, it can be carried out at the same heat treatment temperature as before.

【0023】[0023]

【発明の効果】本発明によれば、炉心支持構造物を高C
r低Ni鋼で形成することにより、耐食性が向上して汚
染された腐食生成物が低減される。またNi含有量とと
もにCo含有量が少なくなって炉内構造物の線量当量が
抑制され、作業者の被曝線量を低減できる効果がある。
According to the present invention, the core support structure is provided with a high C
By being formed of r-low Ni steel, corrosion resistance is improved and contaminated corrosion products are reduced. In addition, the Co content decreases with the Ni content, so that the dose equivalent of the furnace internal structure is suppressed, and there is an effect that the exposure dose to the worker can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1のE部詳細を示す断面図である。FIG. 2 is a sectional view showing details of a portion E in FIG. 1;

【図3】図1のF部詳細を示す断面図である。FIG. 3 is a cross-sectional view showing details of a portion F in FIG. 1;

【図4】各材料の水道水中の腐食速度に及ぼす流速の影
響を示すグラフである。
FIG. 4 is a graph showing the effect of the flow rate on the corrosion rate of each material in tap water.

【図5】本発明の他の実施の形態を示す断面図である。FIG. 5 is a cross-sectional view showing another embodiment of the present invention.

【図6】図5のG部詳細を示す断面図である。FIG. 6 is a cross-sectional view showing details of a portion G in FIG. 5;

【図7】図5のH部詳細を示す断面図である。FIG. 7 is a sectional view showing details of a portion H in FIG. 5;

【図8】従来の技術を示す断面図である。FIG. 8 is a sectional view showing a conventional technique.

【図9】図8のC部詳細を示す断面図である。FIG. 9 is a sectional view showing details of a portion C in FIG. 8;

【図10】図9のD部詳細を示す断面図である。FIG. 10 is a sectional view showing details of a D part in FIG. 9;

【図11】図8の一部を示す斜視図である。FIG. 11 is a perspective view showing a part of FIG. 8;

【図12】従来の技術を示す断面図である。FIG. 12 is a cross-sectional view showing a conventional technique.

【図13】図12のA部詳細を示す断面図である。FIG. 13 is a sectional view showing details of a portion A in FIG. 12;

【図14】図13のB部詳細を示す断面図である。FIG. 14 is a sectional view showing details of a portion B in FIG. 13;

【図15】図12の一部を示す斜視図である。FIG. 15 is a perspective view showing a part of FIG. 12;

【符号の説明】[Explanation of symbols]

1,11 原子炉圧力容器 1a,11a,11b 壁 2 シュラウド 4,14 シリンダ 5,15 プレート 6,16 レグ 6a,16a 補強肉盛 7 シリンダ及びレグ 8 溶接肉盛 1,11 reactor pressure vessel 1a, 11a, 11b wall 2 shroud 4,14 cylinder 5,15 plate 6,16 leg 6a, 16a reinforcement overlay 7 cylinder and leg 8 weld overlay

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内面に炉心支持構造物を固設し該炉心支
持構造物により炉内構造物を支持してなる原子炉圧力容
器において、前記炉心支持構造物は、被曝線量を低減さ
せるように少なくとも腐食生成物の発生を抑制する高ク
ロム低ニッケル鋼で形成されることを特徴とする原子炉
圧力容器。
1. A reactor pressure vessel having a core support structure fixed on an inner surface thereof and supporting the core structure by the core support structure, wherein the core support structure reduces an exposure dose. A reactor pressure vessel formed of a high chromium low nickel steel that suppresses at least the generation of corrosion products.
【請求項2】 請求項1記載の原子炉圧力容器におい
て、高クロム低ニッケル鋼は、9Cr−1Mo−0.4
Ni鋼であることを特徴とする原子力圧力容器。
2. The reactor pressure vessel according to claim 1, wherein the high chromium low nickel steel is 9Cr-1Mo-0.4.
A nuclear pressure vessel characterized by being Ni steel.
【請求項3】 請求項1又は2記載の原子炉圧力容器の
内部に固設され、少なくともシリンダ、プレート及びレ
グよりなることを特徴とする炉心支持構造物。
3. A reactor core support structure fixed to the interior of the reactor pressure vessel according to claim 1 and comprising at least a cylinder, a plate, and a leg.
JP9145318A 1997-06-03 1997-06-03 Reactor pressure vessel and core support structure Pending JPH10332862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9145318A JPH10332862A (en) 1997-06-03 1997-06-03 Reactor pressure vessel and core support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9145318A JPH10332862A (en) 1997-06-03 1997-06-03 Reactor pressure vessel and core support structure

Publications (1)

Publication Number Publication Date
JPH10332862A true JPH10332862A (en) 1998-12-18

Family

ID=15382395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9145318A Pending JPH10332862A (en) 1997-06-03 1997-06-03 Reactor pressure vessel and core support structure

Country Status (1)

Country Link
JP (1) JPH10332862A (en)

Similar Documents

Publication Publication Date Title
EP0409405A2 (en) Nuclear fuel element, and method of forming same
JPH0372054A (en) Austenitic stainless steel excellent in neutron irradiation embrittlement resistance and its use
Gasparrini et al. Water chemistry in fusion cooling systems: borated water for DTT vacuum vessel
US5278881A (en) Fe-Cr-Mn Alloy
US6188741B1 (en) Machined stub tube in a bottom head of a boiling water reactor
EP1645356A1 (en) Welding of vessel internals with noble metal technology
JPH10332862A (en) Reactor pressure vessel and core support structure
US6128361A (en) Coating for reducing corrosion of zirconium-based alloys induced by . .beta-particle irradiation
JPS62120463A (en) Stainless steel having resistance to intergranular corrosion
US5680424A (en) PWR radial reflector
Doctor Measurement challenges associated with irradiated reactor components
JPH07209485A (en) Nuclear reactor and nuclear fusion reactor
Yang et al. Welding process and welding consumable of generation III nuclear island main equipment
EP3518250B1 (en) A structural component for a nuclear reactor, and a fuel assembly
Maziasz et al. Some Implications of Radiation-Induced Property Changes in Austenitic Stainless Steels on ITER First-Wall Design and Performance
Korostelev et al. Material science problems of applying nickel-based alloys as structure material for iter first wall and vacuum vessel
US20130294566A1 (en) Control rod drive (crd) tubes, method of manufacture, and installation thereof
JP2007232433A (en) Chimney of natural circulation type boiling water reactor
JPH02107996A (en) Welded structure of nuclear reactor pressure vessel and control rod housing
Cox et al. Fuel Material Technology Report
Stacey Jr Flux Synthesis Methods in Reactor Physics
Roberts Metallurgical improvements for enhanced stress corrosion performance of light water reactor structural materials
JPS62107048A (en) Austenitic iron alloy
Haggag et al. Effects of irradiation on strength and toughness of commercial LWR vessel cladding
Sundaram et al. Development of cladding and structural materials for thermal and fast reactor programme in India