JPS62107048A - Austenitic iron alloy - Google Patents

Austenitic iron alloy

Info

Publication number
JPS62107048A
JPS62107048A JP60245621A JP24562185A JPS62107048A JP S62107048 A JPS62107048 A JP S62107048A JP 60245621 A JP60245621 A JP 60245621A JP 24562185 A JP24562185 A JP 24562185A JP S62107048 A JPS62107048 A JP S62107048A
Authority
JP
Japan
Prior art keywords
stainless steel
formation
iron alloy
niobium
austenitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60245621A
Other languages
Japanese (ja)
Inventor
Seiji Nishimura
誠二 西村
Takatsugu Okada
岡田 孝継
Masayuki Shima
誠之 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60245621A priority Critical patent/JPS62107048A/en
Publication of JPS62107048A publication Critical patent/JPS62107048A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the resistance of a high purity austenitic stainless steel to intergranular corrosion cracking by adding a prescribed percentage of Nb as a carbon stabilizing element to the stainless steel so as to inhibit the formation of carbide on the grain boundaries. CONSTITUTION:This austenitic iron alloy consists of, by weight, <=0.02% C, 9-11% Ni, 18-20% Cr, <=2% Mn, <=0.005% P, <=0.004% S, <=0.03% Si, 0.1-0.6% Nb and the balance Fe. Since the iron alloy contains Nb, the formation of carbide on the grain boundaries is inhibited, so the resistance to intergranular corrosion cracking is improved.

Description

【発明の詳細な説明】 U発明の技術分野] 本発明は軽水炉炉内機器用材料としての高純度オーステ
ナイト系鉄基合金に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a high-purity austenitic iron-based alloy as a material for equipment in a light water reactor.

[発明の技術的背量とその問題点] オーステナイト系鉄基合金つまり、オーステナイト系ス
テンレス鋼でつくられた制御棒、炉内計装管のような原
子炉炉内機器は、高温純水という環境におかれるうえに
他の原子炉構成材料に比べて比較的高い中性子照射を受
けている。
[Technical weight of the invention and its problems] In-core reactor equipment such as control rods and in-core instrumentation tubes made of austenitic iron-based alloys, that is, austenitic stainless steel, is exposed to an environment of high-temperature pure water. In addition, they are exposed to relatively high levels of neutron irradiation compared to other reactor constituent materials.

一方a濡純水中でオーステナイト系ステンレス鋼は粒界
応力腐食割れ(IGSCC)を起こすことがある。
On the other hand, austenitic stainless steel may undergo intergranular stress corrosion cracking (IGSCC) in wet pure water.

IGSCCの主なる材料側の因子は溶接などの熱サイク
ルを受けたことによる、粒界炭化物の形成とそれに伴な
う粒界近傍におけるクロム欠乏層の形成、すなわち、溶
接鋭敏化である。しかしながら、鋭敏化が全く起っCい
ない溶体化オ−ステナイト系テンレス鋼においても、照
射を受けた場合(フルエンスで1oZ1μ/ clオー
ダー)では、未照射材料に比べて高い粒界腐食感受性及
び粒界応力腐食割れ感受性をイ:J?l−るという報告
がある。
The main material-related factors in IGSCC are the formation of grain boundary carbides and the accompanying formation of chromium-deficient layers near the grain boundaries, that is, weld sensitization due to thermal cycles such as welding. However, even in solution-treated austenitic stainless steel, which has no carbon sensitization, when irradiated (on the order of 1oZ1μ/cl at fluence), it exhibits higher intergranular corrosion susceptibility and intergranular corrosion than non-irradiated materials. Stress corrosion cracking susceptibility: J? There is a report that l-ru.

照射による材料への影響は、 ■照射によってひきおこされる照射誘起−析にJ、す、
けい素、(Si )及びリン(P)等が偏析し、粒界の
耐食性の低下、 ■照射による合金元素の拡散促進に結果ひきおこされる
相変態の促進、具体的には、粒界炭化物の形成とそれに
伴なうクロム欠乏層の形成、すなわち鋭敏化の促進、 等が考えられる。
The effects of irradiation on materials are as follows: ■Irradiation-induced analysis caused by irradiation
Silicon, (Si), phosphorus (P), etc. segregate, resulting in a decrease in grain boundary corrosion resistance; ■ Acceleration of phase transformation caused by promotion of diffusion of alloying elements by irradiation; Specifically, This is thought to be due to the formation of a chromium-deficient layer, that is, the promotion of sensitization.

高純度オーステナイト系ステンレス鋼は、上記因子が特
に不純物元素の影響を受けることに着目し、不純物元素
量を限定することにより、高照射を受けた場合でも耐粒
界腐食割れ性の優れた性能を有することを目的として開
発されたものである。
High-purity austenitic stainless steel focuses on the fact that the above factors are particularly affected by impurity elements, and by limiting the amount of impurity elements, it has excellent performance in intergranular corrosion cracking resistance even when subjected to high irradiation. It was developed for the purpose of having

しかし、最近高純度オーステナイト系ステンレス鋼でも
必ずしも所期の目的通り、耐粒界腐食割れ性が従来のオ
ーステナイト系ステンレス鋼に比べて改善されない場合
があることが明らかとなった。
However, it has recently become clear that even with high-purity austenitic stainless steel, intergranular corrosion cracking resistance may not necessarily be improved as compared to conventional austenitic stainless steel, as intended.

この原因として、 ■不純物を限定することによって照射誘起偏析によりけ
い素(Si)およびリン(P)@の偏析は防止できるも
ののクロム(CV )等の合金元素の拡散は防止しくH
ない。
The reason for this is: (1) Although the segregation of silicon (Si) and phosphorus (P) due to radiation-induced segregation can be prevented by limiting impurities, the diffusion of alloying elements such as chromium (CV) cannot be prevented.
do not have.

■炭素(C)は通常のオーステナイト系ステンレス鋼よ
り少いが存在する。
■Carbon (C) is present, although less than in normal austenitic stainless steel.

■このため、不純物を限定しても完全にCr 23C6
等の粒界炭化物の形成とそれに伴なう粒界近傍における
クロム欠乏層の形成を防止し得ない。
■For this reason, even if impurities are limited, Cr23C6
It is not possible to prevent the formation of grain boundary carbides such as grain boundary carbides and the accompanying formation of a chromium-deficient layer near the grain boundaries.

等が考えられる。etc. are possible.

[発明の目的] 本発明は上記高純度オーステナイト系ステンレス鋼の耐
粒界腐食割れ性の低下が、粒界炭化物の形成に起因して
いることに注目し、ニオブ(Nb )を炭素安定化元素
として添加することにより、粒界炭化物の形成を阻止す
ることにより、高照射領域の炉内構成材料として使用さ
れる耐粒界腐食割れ性の優れたオーステナイト系鉄基合
金ステンレス鋼を得ることを目的とするものである。
[Object of the Invention] The present invention focuses on the fact that the decrease in intergranular corrosion cracking resistance of the above-mentioned high-purity austenitic stainless steel is caused by the formation of intergranular carbides, and the present invention has focused on the fact that the decrease in intergranular corrosion cracking resistance of the above-mentioned high-purity austenitic stainless steel is caused by the formation of intergranular carbides. The purpose is to obtain an austenitic iron-based alloy stainless steel with excellent intergranular corrosion cracking resistance, which is used as a constituent material in furnaces in high irradiation areas, by preventing the formation of intergranular carbides. That is.

[発明の概要コ 本発明は、重量%で、炭素0.002%以下、ニッケル
9〜11%、クロム18.0〜20.0%、マンガン2
.0以下、リン0.005%以下、イオウ0.004以
下、けい素0.03%以下、ニオ70.1%゛〜0.6
%および残部鉄からなることを特徴とするオーステナイ
ト系鉄基合金である。
[Summary of the Invention] The present invention comprises, in weight percent, carbon 0.002% or less, nickel 9 to 11%, chromium 18.0 to 20.0%, manganese 2
.. 0 or less, phosphorus 0.005% or less, sulfur 0.004 or less, silicon 0.03% or less, niobium 70.1%~0.6
% and the balance is iron.

本発明によれば従来のオーステナイト系ステンレス鋼に
ニオブを添加することによって耐粒界腐食性のすぐれた
合金を得ることができる。
According to the present invention, an alloy with excellent intergranular corrosion resistance can be obtained by adding niobium to conventional austenitic stainless steel.

[本発明の実施例] 以下に本発明に係るオーステナイト系鉄基合金の実施例
について詳細に述べる。
[Examples of the present invention] Examples of the austenitic iron-based alloy according to the present invention will be described in detail below.

本発明においては、表に示す化学5成分(仕様値)を有
する高純度オーステナイト系ステンレス鋼にニオブ(N
b >を添加することにより、炭素を安定化し、粒界に
炭素が析出することを防止する。
In the present invention, niobium (N
By adding b>, carbon is stabilized and precipitation of carbon at grain boundaries is prevented.

このことによりクロム炭化物の形成を阻止し、鋭敏化を
抑制することができる。
This can prevent the formation of chromium carbides and suppress sensitization.

(以下余白) (重用%) しかし、ニオブ(Nb )を多聞に添加すると、材料の
加工性あるいは溶接性が低下することが知られており、
ニオブ(Nb )の添加量には上限値がある。
(Left below) (Heavy use %) However, it is known that adding too much niobium (Nb) reduces the workability or weldability of the material.
There is an upper limit to the amount of niobium (Nb) added.

第1図は本発明に係わるニオブ(Nb >を添加して(
9た)オーステナイト系鉄基合金の粒界腐食試験結果で
ある。粒界腐食試験は六価クロムを含む5規定沸騰硝酸
溶液中で行った。試験時間は12時間である。図はNb
添加Φの増加に伴う粒界割れ感受性の粒界腐食深さの関
係を示したものである。図からニオブ(Nb >を0.
1%以上添加することにより耐粒界割れ性が著しく向上
することがわかる。
Figure 1 shows the addition of niobium (Nb) according to the present invention (
9) Results of intergranular corrosion test for austenitic iron-based alloy. The intergranular corrosion test was conducted in a 5N boiling nitric acid solution containing hexavalent chromium. The test time is 12 hours. The figure is Nb
This figure shows the relationship between intergranular cracking susceptibility and intergranular corrosion depth as the addition Φ increases. From the figure, niobium (Nb > 0.
It can be seen that the intergranular cracking resistance is significantly improved by adding 1% or more.

第2図は同じステンレス鋼の高温割れ感受性試験結果で
ある。高温割れ試験開先面を上にしてTIG溶接を行い
、溶接ビード表面の割れ長さを液体浸透探傷検査法を用
いて測定し、割れ長さから割れ感受性を評価する方法を
とった。ING溶接は160A mp  17Vで行っ
た。第2図はニオブ(Nb)の添加量と溶接割れ感受性
の関係を示したものである。ニオブ(Nb >の添加量
が0.6%以下では割れが発生しないことがわかる。
Figure 2 shows the results of a hot cracking susceptibility test for the same stainless steel. Hot Cracking Test TIG welding was performed with the groove surface facing upward, and the crack length on the weld bead surface was measured using liquid penetrant testing, and cracking susceptibility was evaluated from the crack length. ING welding was performed at 160A mp 17V. FIG. 2 shows the relationship between the amount of niobium (Nb) added and the susceptibility to weld cracking. It can be seen that cracks do not occur when the amount of niobium (Nb>) added is 0.6% or less.

前述のごとくニオブ(Nb )を0.1以上添加するこ
とにより耐粒界11X食割れ性が向上し、一方、ニオブ
(Nb )添加量が0.6%以下で溶接割れが発生しな
いことがらニオブ(Nb )の添加量は0.1〜0.6
%の範囲が適切である。
As mentioned above, adding 0.1% or more of niobium (Nb) improves grain boundary 11X corrosion cracking resistance, while weld cracking does not occur when the amount of niobium (Nb) added is 0.6% or less. The amount of (Nb) added is 0.1 to 0.6
A range of % is appropriate.

つぎに本発明に係る合金を用いた制御棒アブシーパーチ
ューブについて述べる。第3図から第5図に制御棒の概
略と制御棒内のアブシーパーチューブの配置例を示す。
Next, a control rod absorber tube using the alloy according to the present invention will be described. Figures 3 to 5 show an outline of the control rod and an example of the arrangement of absieper tubes within the control rod.

なお、第4図は第3図のA−A線に沿う断面図、第5図
は第4図のブレード部分を拡大して示す断面図である。
4 is a sectional view taken along line A--A in FIG. 3, and FIG. 5 is an enlarged sectional view showing the blade portion in FIG. 4.

第3図は制御棒の斜視図を示すもので、制御棒1は横断
面十字状のタイロッド2に4枚のブレード3が取着され
ており、ブレード3には冷部孔4が設けられており、ブ
レード3の上方にはつり上げハンドル5が下方にはスピ
ードリミッタ6が接続されている。スピードリミッタ6
の下部にはa−ラフおよびカップリングソケット8が設
けられている。またブレード3内は第4図および第5図
に示したようにアブシーパーチューブ9が挿入されてお
り、アブシーパーチューブ9内には中性子吸収材として
のボロンカーバイト(84C)10が充填されている。
FIG. 3 shows a perspective view of the control rod. The control rod 1 has four blades 3 attached to a tie rod 2 having a cross-shaped cross section, and the blades 3 are provided with cold section holes 4. A lifting handle 5 is connected above the blade 3, and a speed limiter 6 is connected below. speed limiter 6
An a-rough and a coupling socket 8 are provided at the bottom of the . Furthermore, an absieper tube 9 is inserted into the blade 3 as shown in FIGS. 4 and 5, and the absieper tube 9 is filled with boron carbide (84C) 10 as a neutron absorbing material. has been done.

ざらにつり上げハンドル5にもローラ11が設けられて
いる。アブシーパーチューブ9は従来、304ステンレ
ス鋼管で形成されており、炭化ホウ素(84C)10が
封入されている。このB4C10が原子炉燃F1発生す
る中性子を吸収する動す゛を有する。従ってB4C入り
のアブシーパーチューブの集合体である制御棒を1領域
に挿入することにより原子炉の出力を制御する。
The rough lifting handle 5 is also provided with rollers 11. The absieper tube 9 is conventionally made of 304 stainless steel tube and is filled with boron carbide (84C) 10. This B4C10 has a movable element that absorbs neutrons generated by the reactor fuel F1. Therefore, the output of the nuclear reactor is controlled by inserting a control rod, which is an assembly of absieper tubes containing B4C, into one region.

この84010は前述しl;ようにわ)末でアブシーパ
ーチューブ9内に充てんされるが、中性子照射をうける
とスウェリングど呼ばれる体積増加と核変換によるヘリ
ウムの生成が認められる。これより、アブシーパーチュ
ーブ9は変形J3よび内圧をうける。一方、アブシーパ
ーチューブ9の外面は原子炉水に接しており、しかも、
3X1021μ/cイ程度の高速中性子総量を受けてい
る。上記のことよりアブシーパーチューブ9は腐食割れ
の起こり易い条件にさらされている。それ故にアブシー
パーチューブ9に本発明に係る合金を用いることによっ
て、照射加速型の腐食割れの防止がはかれる。これより
、制御棒の信頼性向上に、大幅に寄与することができる
This 84010 is filled into the abseeper tube 9 as described above, and when it is irradiated with neutrons, an increase in volume called swelling and the production of helium due to nuclear transmutation are observed. As a result, the absieper tube 9 is subjected to deformation J3 and internal pressure. On the other hand, the outer surface of the absieper tube 9 is in contact with reactor water, and
It receives a total amount of fast neutrons of about 3×1021 μ/c. As a result of the above, the absieper tube 9 is exposed to conditions where corrosion cracking is likely to occur. Therefore, by using the alloy according to the present invention for the absieper tube 9, radiation-accelerated corrosion cracking can be prevented. This can significantly contribute to improving the reliability of control rods.

上部格子板、シュラウド、ドライチューブ等地のオース
テナイトステンレス製炉内機器あるいは炉内構成材料に
ついても同様に信頼性の向上並びに寿命の延長が期待で
きる。
Similar improvement in reliability and extension of life can be expected for the austenitic stainless steel furnace equipment and furnace constituent materials such as the upper lattice plate, shroud, and dry tube.

[発明の効果] 本発明によれば沸騰水型原子炉の炉内機器及び高濃度硝
酸環境下での核燃料再処理設備などに使用することによ
って、照用環境下における機器材料の信頼性が飛躍的に
向上しもって機器の長寿命化に大幅に寄与することがで
きる。
[Effects of the Invention] According to the present invention, the reliability of equipment materials in a lighting environment can be dramatically improved by using it for in-core equipment of a boiling water reactor and nuclear fuel reprocessing equipment in a high concentration nitric acid environment. This can greatly contribute to extending the lifespan of equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る合金中のNl)の添加量に対する
六価クロームを含む沸l1ii!硝酸溶液中での粒界1
溪食試験結果を示す特性図、?A2図は同じくニオブ濃
度と溶接割れ感受性との関係を示す特性図、第3図は制
御棒を概略的に示す斜視図は第4図は第3図の八−A線
に沿う断面図、第5図は第4図のブレード部分を拡大し
て示す断面図である。 1・・・・・・・・・・・・制御棒 2・・・・・・・・・・・・タイロッド3・・・・・・
・・・・・・ブレード 4・・・・・・・・・・・・冷却孔 5・・・・・・・・・・・・つり上げハンドル6・・・
・・・・・・・・・スピードリミッタ7・・・・・・・
・・・・・ローラ 8・・・・・・・・・・・・カップリングソケット9・
・・・・・・・・・・・アブシーパーチューブ10・・
・・・・・・・・・・炭化ホウ素(84C)11・・・
・・・・・・・・・ローラ 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第3図 第4図 第5図
Figure 1 shows the amount of Nl) added in the alloy according to the present invention; Grain boundaries in nitric acid solution 1
Characteristic diagram showing the results of the eclipse test,? Figure A2 is a characteristic diagram showing the relationship between niobium concentration and weld cracking susceptibility, Figure 3 is a perspective view schematically showing the control rod, Figure 4 is a sectional view taken along line 8-A in Figure 3, FIG. 5 is an enlarged sectional view of the blade portion of FIG. 4. 1......Control rod 2...Tie rod 3...
...Blade 4...Cooling hole 5...Lifting handle 6...
......Speed limiter 7...
...Roller 8...Coupling socket 9.
・・・・・・・・・Abseaper tube 10...
・・・・・・・・・Boron carbide (84C) 11...
......Roller Applicant Toshiba Corporation Patent Attorney Satoshi Suyama - Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で、炭素0.02%以下、ニッケル9.0
〜11.0%、クロム18.0〜20.0%、マンガン
2.0%以下、リン0.005%以下、イオウ0.00
4%以下、けい素0.03%以下、ニオブ0.1%〜0
.6%および残部鉄からなることを特徴とするオーステ
ナイト系鉄基合金。
(1) Carbon 0.02% or less, nickel 9.0% by weight
~11.0%, chromium 18.0-20.0%, manganese 2.0% or less, phosphorus 0.005% or less, sulfur 0.00
4% or less, silicon 0.03% or less, niobium 0.1% to 0
.. An austenitic iron-based alloy characterized by comprising 6% iron and the balance iron.
JP60245621A 1985-10-31 1985-10-31 Austenitic iron alloy Pending JPS62107048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245621A JPS62107048A (en) 1985-10-31 1985-10-31 Austenitic iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245621A JPS62107048A (en) 1985-10-31 1985-10-31 Austenitic iron alloy

Publications (1)

Publication Number Publication Date
JPS62107048A true JPS62107048A (en) 1987-05-18

Family

ID=17136404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245621A Pending JPS62107048A (en) 1985-10-31 1985-10-31 Austenitic iron alloy

Country Status (1)

Country Link
JP (1) JPS62107048A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288245A2 (en) * 1987-04-20 1988-10-26 General Electric Company Steel for light water reactor cores
US5949838A (en) * 1992-12-18 1999-09-07 Electric Power Research Institute, Inc. Manufacture of materials and workpieces for components in nuclear plant applications
US6132525A (en) * 1992-12-18 2000-10-17 Electric Power Research Institute, Inc. Manufacturing of materials and workpieces for components in nuclear plant applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288245A2 (en) * 1987-04-20 1988-10-26 General Electric Company Steel for light water reactor cores
US5949838A (en) * 1992-12-18 1999-09-07 Electric Power Research Institute, Inc. Manufacture of materials and workpieces for components in nuclear plant applications
US6132525A (en) * 1992-12-18 2000-10-17 Electric Power Research Institute, Inc. Manufacturing of materials and workpieces for components in nuclear plant applications

Similar Documents

Publication Publication Date Title
Tamura et al. Development of potential low activation ferritic and austenitic steels
Mannan et al. Selection of materials for prototype fast breeder reactor
Gorynin et al. Structural materials for atomic reactors with liquid metal heat-transfer agents in the form of lead or lead—Bismuth alloy
JPH07504229A (en) Fuel rod cladding tube for boiling water reactors
Busby et al. Technical gap assessment for materials and component integrity issues for molten salt reactors
TWI460739B (en) A spacer grid and method of manufacturing the same
US4040876A (en) High temperature alloys and members thereof
JPH0699781B2 (en) Austenitic steel excellent in neutron irradiation embrittlement and its application
JPH10300876A (en) Nuclear fuel assembly for pressurized water reactor
JPH10282278A (en) Nuclear fuel rod for pressurized water reactor
JPS62107048A (en) Austenitic iron alloy
JPS62107047A (en) Austenitic iron alloy
JPS63186855A (en) Austenitic iron based alloy
JPS62120463A (en) Stainless steel having resistance to intergranular corrosion
JP2014005509A (en) Highly corrosion-resistant austenitic stainless steel and weld joint structure
US4849169A (en) High temperature creep resistant austenitic alloy
JPH10282277A (en) High strenght cladding tube for nuclear fuel for watercooling and/or deceleration nuclear reactor
JPH0336239A (en) Austenitic iron-base alloy
JPH04236744A (en) Irradiation resistant austenitic steel alloy
Ahemadabadi et al. Development of EPR test technique for alloy 800
JPS63176447A (en) Austenitic ferrous alloy
JPS6017058A (en) Alloy for apparatus in high irradiation region
US6511556B1 (en) High strength zirconium alloys containing bismuth and niobium
Davis et al. Structural materials data base assessment for the blanket comparison and selection study
JPH10265877A (en) Zirconium alloy having high strength