JPH10330980A - Method for using gas generator using water electrolytic cell - Google Patents

Method for using gas generator using water electrolytic cell

Info

Publication number
JPH10330980A
JPH10330980A JP9154596A JP15459697A JPH10330980A JP H10330980 A JPH10330980 A JP H10330980A JP 9154596 A JP9154596 A JP 9154596A JP 15459697 A JP15459697 A JP 15459697A JP H10330980 A JPH10330980 A JP H10330980A
Authority
JP
Japan
Prior art keywords
water
anode
exchange membrane
electrolysis cell
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9154596A
Other languages
Japanese (ja)
Inventor
Shinzo Okuda
晋三 奥田
Shuji Hitomi
人見  周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9154596A priority Critical patent/JPH10330980A/en
Publication of JPH10330980A publication Critical patent/JPH10330980A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the energy conversion efficiency is decreased caused by the long shutdown. SOLUTION: This gas generator is used as follows. Namely, pure water is supplied to the anode or to the anode and cathode of a water electrolytic cell having an ion-exchange membrane-catalytic electrode joiner formed by joining the catalytic electrode to both sides of the membrane as a basic unit, and a DC voltage is impressed between both electrodes to generate gaseous hydrogen and/or oxygen. In this case, after the electrolysis is stopped, pure water is continuously supplied only to the anode compartment of the cell for a certain period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイオン交換膜を電解質と
する水電解セルを用い、水素ガス及び酸素ガスを供給す
る装置の使用方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of using an apparatus for supplying hydrogen gas and oxygen gas using a water electrolysis cell using an ion exchange membrane as an electrolyte.

【0002】[0002]

【従来の技術】イオン交換膜型水電解セルを用いている
水素ガス、酸素ガス発生装置は図6のように、イオン交
換膜1の両面に白金族金属等の触媒電極2,3を接合し
た、イオン交換膜−触媒電極接合体を基本ユニットとす
る水電解セルを用い、その陽極、または陽極及び陰極に
純水を供給しながら両極間に直流電圧を印加し、陰極で
水素ガス、陽極で酸素ガスを生成し、各ガスを供給する
装置である。
2. Description of the Related Art As shown in FIG. 6, a hydrogen gas / oxygen gas generator using an ion exchange membrane type water electrolysis cell has catalytic electrodes 2 and 3 made of platinum group metal or the like bonded to both sides of an ion exchange membrane 1. Using a water electrolysis cell having an ion exchange membrane-catalyst electrode assembly as a basic unit, applying a DC voltage between both electrodes while supplying pure water to the anode, or the anode and the cathode, and applying hydrogen gas at the cathode and hydrogen gas at the anode. This is a device that generates oxygen gas and supplies each gas.

【0003】イオン交換膜型水電解セルを用いた水素ガ
ス、酸素ガス発生装置には、次のようないくつもの優れ
た特長がある。イオン交換膜1が電解質として働くた
め、純水の直接電解が可能となる。イオン交換膜1が
隔膜として働くため、陰極から発生した水素ガスと陽極
から発生した酸素ガスが混合せず、純度の高いガスが得
られる。電解質として働くイオン交換膜の厚みが0.
1〜0.2mmと非常に薄く膜抵抗が小さいため、電解
電圧が低く高エネルギー変換効率で水素ガスと酸素ガス
を供給できる。この中でもの高エネルギー変換効率に
注目して最近では、イオン交換膜型水電解セルを用いた
水素ガス、酸素ガス発生装置を太陽電池とに組み合わ
せ、高効率で太陽エネルギーを水素ガスに変換し、水素
エネルギーを有効に活用しようとする動きがでている。
A hydrogen gas and oxygen gas generator using an ion exchange membrane type water electrolysis cell has several excellent features as follows. Since the ion exchange membrane 1 functions as an electrolyte, direct electrolysis of pure water is possible. Since the ion exchange membrane 1 functions as a diaphragm, the hydrogen gas generated from the cathode and the oxygen gas generated from the anode are not mixed, and a highly pure gas can be obtained. The thickness of the ion exchange membrane acting as an electrolyte is 0.
Since the film resistance is extremely thin, 1 to 0.2 mm, the hydrogen resistance and the oxygen gas can be supplied with low electrolysis voltage and high energy conversion efficiency. Focusing on high energy conversion efficiency among these, recently, hydrogen gas and oxygen gas generators using ion exchange membrane type water electrolysis cells are combined with solar cells to convert solar energy to hydrogen gas with high efficiency, There is a movement to make effective use of hydrogen energy.

【0004】[0004]

【発明が解決しようとする課題】上述のように、イオン
交換膜型水電解セルを用いた水素ガス、酸素ガス発生装
置は高エネルギー変換効率という優れた特長を持つが、
イオン交換膜型水電解セルに用いているイオン交換膜の
含水率には細心の注意をはらう必要がある。なぜなら
ば、このイオン交換膜は含水率が高い時は膜抵抗が小さ
いため、電解電圧も低く、高エネルギー変換効率に大き
く寄与するが、含水率が低下すると膜抵抗が増大するた
めに、イオン交換膜型ガス発生装置の高エネルギー変換
効率という特長を失うことになる。
As described above, a hydrogen gas and oxygen gas generator using an ion exchange membrane type water electrolysis cell has an excellent feature of high energy conversion efficiency.
It is necessary to pay close attention to the water content of the ion exchange membrane used in the ion exchange membrane type water electrolysis cell. This is because the ion exchange membrane has a low membrane resistance when the water content is high, so that the electrolysis voltage is low and greatly contributes to high energy conversion efficiency. The characteristic of high energy conversion efficiency of the membrane type gas generator is lost.

【0005】従来の装置は、電解停止と同時に水電解セ
ルへの純水の供給も停止していたため、図7のように、
水電解セル内の陰極室5に水素ガス、陽極室4に酸素ガ
スが残留する。この状態で放置すると水素ガス、酸素ガ
スの両方と接する水電解セル上部のイオン交換膜の含水
率が低下し、膜抵抗が増大する。そのため、再度電解を
行う際の電解電圧が高くなり、エネルギー変換効率が低
下してしまう。
In the conventional apparatus, since the supply of pure water to the water electrolysis cell is stopped simultaneously with the stop of electrolysis, as shown in FIG.
Hydrogen gas remains in the cathode chamber 5 and oxygen gas remains in the anode chamber 4 in the water electrolysis cell. If left in this state, the water content of the ion exchange membrane above the water electrolysis cell that is in contact with both the hydrogen gas and the oxygen gas decreases, and the membrane resistance increases. Therefore, the electrolysis voltage at the time of performing electrolysis again increases, and the energy conversion efficiency decreases.

【0006】一度、含水率が低下したイオン交換膜を正
常な状態に回復させるには、ガス発生装置より水電解セ
ルを取り外し、水電解セル内に塩酸を投入したり、水電
解セルを分解してイオン交換膜を取り出し、イオン交換
膜を純水で煮沸するなど大変面倒な処置を施さなければ
ならない。
[0006] In order to restore the ion-exchange membrane having a reduced water content to a normal state, the water electrolysis cell is removed from the gas generator and hydrochloric acid is introduced into the water electrolysis cell, or the water electrolysis cell is disassembled. It is necessary to take very troublesome measures such as taking out the ion exchange membrane and boiling the ion exchange membrane with pure water.

【0007】しかしながら、従来の装置ではこの問題点
に関して何等考慮されていなかった。
However, in the conventional apparatus, no consideration has been given to this problem.

【0008】[0008]

【課題を解決するための手段】本発明は、イオン交換膜
の両面に純水を満たさなくても、どちらか一方の面に純
水を満たしておけば、イオン交換膜の含水率は充分保た
れるということに着目してなされたものであり、従来の
ように水電解セルへの純水供給を電解停止と同時に停止
することなく、電解停止後、水電解セルの陽極へのみ一
定時間、純水を供給し続けることにより上述の課題を解
決するものである。
According to the present invention, even if pure water is not filled on both sides of the ion exchange membrane, if one of the surfaces is filled with pure water, the water content of the ion exchange membrane can be sufficiently maintained. It was made with the focus on the dripping, without stopping the supply of pure water to the water electrolysis cell simultaneously with the stop of electrolysis as in the past, after the electrolysis was stopped, only for a certain time only to the anode of the water electrolysis cell, This is to solve the above-mentioned problem by continuously supplying pure water.

【0009】[0009]

【発明の実施の形態】本発明は、電解停止後も水電解セ
ルの陽極へのみ一定時間純水を供給し続けることによ
り、水電解セル内の陽極室に残留する酸素ガスを取り除
き、陽極室が満水状態となるので、陰極室に水素ガスが
残留していてもイオン交換膜の含水率は低下しない。そ
のため、長期間停止後に再度電解を開始しても電解電圧
は、その停止直後と同等であり、エネルギー変換効率が
低下しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention removes oxygen gas remaining in an anode chamber in a water electrolysis cell by continuously supplying pure water only to the anode of the water electrolysis cell for a certain period of time even after the electrolysis is stopped. Is filled with water, so that even if hydrogen gas remains in the cathode chamber, the water content of the ion exchange membrane does not decrease. Therefore, even if electrolysis is restarted after a long stop, the electrolysis voltage is the same as immediately after the stop, and the energy conversion efficiency does not decrease.

【0010】[0010]

【実施例】以下、本発明の適切な実施例を用いて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a description will be given using a suitable embodiment of the present invention.

【0011】図1は、本発明の一実施例に係るイオン交
換膜型水素ガス、酸素ガス発生装置を簡略化した流路図
である。
FIG. 1 is a simplified flow diagram of an ion exchange membrane type hydrogen gas and oxygen gas generator according to one embodiment of the present invention.

【0012】同図において、ポンプ7により酸素分離タ
ンク6から流路14を経て強制的に水電解セル8の陽極
に純水を供給し、水電解セル8は直流電源9から与えら
れた電力により純水を電気分解し、水電解セル8の陽極
で酸素ガスを、陰極で水素ガスを発生させる。この時、
酸素ガスは電気分解されなかった余剰水とともに酸素分
離タンク6に戻る。一方、水素ガスは電気分解に伴い陽
極から陰極へ移動したわずかな水とともに水素分離タン
ク10へ送り込まれる。これらのガスは、その比重の差
により酸素分離タンク6と水素分離タンク10で分離さ
れ、それぞれ供給される。
In FIG. 1, pure water is forcibly supplied to the anode of a water electrolysis cell 8 from a oxygen separation tank 6 via a flow path 14 by a pump 7, and the water electrolysis cell 8 is supplied with electric power supplied from a DC power supply 9. Pure water is electrolyzed to generate oxygen gas at the anode of the water electrolysis cell 8 and hydrogen gas at the cathode. At this time,
The oxygen gas returns to the oxygen separation tank 6 together with the surplus water that has not been electrolyzed. On the other hand, the hydrogen gas is sent to the hydrogen separation tank 10 together with a small amount of water moved from the anode to the cathode during the electrolysis. These gases are separated in the oxygen separation tank 6 and the hydrogen separation tank 10 due to the difference in specific gravity, and are supplied respectively.

【0013】また、水素分離タンク10の下方に分離さ
れた水は、液面センサ11が感知するレベルまで到達す
ると、液面センサ11の信号により連動して開閉する電
磁弁12を途中に設けた流路15を経て、水素分離タン
ク10より酸素分離タンク6に戻る。また、水素分離タ
ンク10内の圧はニードルバルブ13を用いて酸素分離
タンク6内の圧より高くする必要がある。
When the water separated below the hydrogen separation tank 10 reaches a level detected by the liquid level sensor 11, an electromagnetic valve 12 which opens and closes in response to a signal from the liquid level sensor 11 is provided in the middle. After passing through the flow path 15, the hydrogen separation tank 10 returns to the oxygen separation tank 6. In addition, the pressure in the hydrogen separation tank 10 needs to be higher than the pressure in the oxygen separation tank 6 using the needle valve 13.

【0014】ここでスイッチのON/OFFに連動する
直流電源9とポンプ7の動きについて述べる。直流電源
9とポンプ7とのシーケンスを図2に示す。本実施例
は、オフディレイタイマ16(a)(b)の採用によ
り、メインスイッチ17をOFFにして装置を停止した
際、直流電源9は瞬時に停止して電解は停止するもの
の、オフディレイタイマの設定を15秒にしているた
め、ポンプ7はその後も15秒間稼働し続ける。これに
より、図3のように陽極室内4の酸素ガスがなくなり、
純水で満たされることになる。
Here, the operation of the DC power supply 9 and the pump 7 linked to the ON / OFF of the switch will be described. FIG. 2 shows a sequence of the DC power supply 9 and the pump 7. In the present embodiment, when the main switch 17 is turned off and the apparatus is stopped by employing the off-delay timers 16 (a) and (b), the DC power supply 9 stops instantaneously and the electrolysis stops. Is set to 15 seconds, the pump 7 continues to operate for 15 seconds thereafter. As a result, oxygen gas in the anode chamber 4 disappears as shown in FIG.
It will be filled with pure water.

【0015】本発明の効果を確認するため、以下の実験
を行った。
The following experiment was conducted to confirm the effects of the present invention.

【0016】すなわち、水電解セル(a)を用い、本装
置を初期運転のため7日間稼働させ、水電解セル(a)
の電流−電圧特性及びエネルギー変換効率特性を測定し
た後に停止する。そして、30日間放置後に再度電流−
電圧特性及びエネルギー変換効率特性を測定する。
That is, using the water electrolysis cell (a), this apparatus was operated for 7 days for initial operation, and the water electrolysis cell (a) was used.
Stop after measuring the current-voltage characteristics and the energy conversion efficiency characteristics of. After 30 days, the current
The voltage characteristics and the energy conversion efficiency characteristics are measured.

【0017】この結果を図4、5に示す。なお、図4、
5には、従来のガス発生装置においても、水電解セル
(a)と同等の特性である水電解セル(b)を用いて同
様の実験を行った。その結果も比較のためにあわせてプ
ロットした。
The results are shown in FIGS. In addition, FIG.
5, the same experiment was performed using the water electrolysis cell (b) having the same characteristics as the water electrolysis cell (a) in the conventional gas generator. The results were also plotted for comparison.

【0018】ただし、(A)は7日間の初期運転後の水
電解セル(a)を示し、(B)は7日間の初期運転後に
本発明の方法で運転を停止し、30日間放置後の水電解
セル(a)を示す。また、(C)は7日間の初期運転後
の水電解セル(b)を示し、(D)は7日間の初期運転
後に従来の方法で運転を停止し、30日間放置後の水電
解セル(b)を示す。
Here, (A) shows the water electrolysis cell (a) after the initial operation for 7 days, and (B) shows the operation stopped by the method of the present invention after the initial operation for 7 days, and after standing for 30 days. 1 shows a water electrolysis cell (a). Further, (C) shows the water electrolysis cell (b) after the initial operation for 7 days, and (D) shows the operation of the water electrolysis cell (7) after the initial operation for 7 days, the operation was stopped by the conventional method, and the cell was left for 30 days. b) is shown.

【0019】図4、5より、本発明を用いた装置(a)
は、長期間停止後も水電解セルの特性を維持し続けてい
るが、従来法の装置(b)では停止後の電解電圧が上昇
し、エネルギー変換効率が低下していることがわかっ
た。
4 and 5, the apparatus (a) using the present invention is shown.
Although the characteristics of the water electrolysis cell continue to be maintained even after the shutdown for a long time, it was found that the electrolysis voltage after the shutdown increased and the energy conversion efficiency decreased in the device (b) of the conventional method.

【0020】[0020]

【発明の効果】以上述べたように、本発明を用いた水素
ガス、酸素ガス発生装置は、電解停止後も水電解セル8
の陽極室4に純水を一定時間供給し続けることにより、
陽極室4に残留した酸素ガスを除去し、陽極側4を満水
状態にする。
As described above, the hydrogen gas / oxygen gas generator using the present invention can maintain the water electrolysis cell 8 even after the electrolysis is stopped.
By continuously supplying pure water to the anode chamber 4 for a certain time,
The oxygen gas remaining in the anode chamber 4 is removed, and the anode side 4 is filled with water.

【0021】これにより、水素ガス、酸素ガス発生装置
を長期間停止してもイオン交換膜の含水率低下による、
水電解セルの電解電圧の増大がないため、エネルギー変
換効率が低下しない。従って、本発明は工業上、寄与す
ること大である。
As a result, even if the hydrogen gas and oxygen gas generators are stopped for a long period of time, the water content of the ion exchange membrane decreases.
Since there is no increase in the electrolysis voltage of the water electrolysis cell, the energy conversion efficiency does not decrease. Therefore, the present invention greatly contributes industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例で用いた、水素ガス、酸素ガ
ス発生装置の簡略化した流路図である。
FIG. 1 is a simplified flow diagram of a hydrogen gas and oxygen gas generator used in one embodiment of the present invention.

【図2】本発明の一実施例で用いた停止方法に必要な電
気回路の簡略図である。
FIG. 2 is a simplified diagram of an electric circuit required for a stopping method used in one embodiment of the present invention.

【図3】本発明の一実施例における装置を停止させた時
の水電解セル内の状態を示す図である。
FIG. 3 is a diagram showing a state in the water electrolysis cell when the device in one embodiment of the present invention is stopped.

【図4】各条件による水電解セルの電流−電圧特性を示
す図である。
FIG. 4 is a diagram showing current-voltage characteristics of a water electrolysis cell under each condition.

【図5】各条件による電気エネルギーから水素ガスへの
エネルギー変換効率を示す図である。
FIG. 5 is a diagram showing energy conversion efficiency from electric energy to hydrogen gas under each condition.

【図6】イオン交換膜型水素ガス、酸素ガス発生装置に
よる水素ガス、酸素ガスの発生メカニズムを示す図であ
る。
FIG. 6 is a diagram showing a generation mechanism of hydrogen gas and oxygen gas by an ion exchange membrane type hydrogen gas and oxygen gas generator.

【図7】従来の停止方法で運転を停止した時の水電解セ
ル内の状態とイオン交換膜の含水率が低下した部分とを
示す説明図である。
FIG. 7 is an explanatory diagram showing a state in the water electrolysis cell when the operation is stopped by the conventional stop method and a portion where the water content of the ion exchange membrane is reduced.

【符号の説明】[Explanation of symbols]

1 イオン交換膜 2 触媒電極(陽極) 3 触媒電極(陰極) 4 陽極室 5 陰極室 6 酸素分離タンク 7 ポンプ 8 水電解セル 9 直流電源 10 水素分離タンク 11 液面センサ 12 電磁弁 13 ニードルバルブ 14 純水流路 15 純水流路 16(a) オフディレイタイマ(接点) 16(b) オフディレイタイマ(コイル) 17 メインスイッチ DESCRIPTION OF SYMBOLS 1 Ion exchange membrane 2 Catalytic electrode (anode) 3 Catalytic electrode (cathode) 4 Anode chamber 5 Cathode chamber 6 Oxygen separation tank 7 Pump 8 Water electrolysis cell 9 DC power supply 10 Hydrogen separation tank 11 Liquid level sensor 12 Electromagnetic valve 13 Needle valve 14 Pure water flow path 15 Pure water flow path 16 (a) Off delay timer (contact) 16 (b) Off delay timer (coil) 17 Main switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜の両面に触媒電極が接合さ
れたイオン交換膜−触媒電極接合体を基本ユニットとす
る水電解セルの陽極又は陽極と陰極とに純水を供給し、
両極間に直流電圧を印加することにより、水素ガス又は
/及び酸素ガスを発生させるガス発生装置の使用方法に
おいて、 電解停止後、水電解セルの陽極室のみに一定時間純水を
供給し続けることを特徴とするガス発生装置の使用方
法。
1. A pure water is supplied to an anode or an anode and a cathode of a water electrolysis cell having an ion exchange membrane-catalyst electrode assembly in which a catalyst electrode is joined to both surfaces of an ion exchange membrane as a basic unit,
In a method of using a gas generator that generates hydrogen gas and / or oxygen gas by applying a DC voltage between both electrodes, after the electrolysis is stopped, supply pure water only to the anode chamber of the water electrolysis cell for a certain period of time. A method for using a gas generator, characterized in that:
JP9154596A 1997-05-28 1997-05-28 Method for using gas generator using water electrolytic cell Pending JPH10330980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9154596A JPH10330980A (en) 1997-05-28 1997-05-28 Method for using gas generator using water electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9154596A JPH10330980A (en) 1997-05-28 1997-05-28 Method for using gas generator using water electrolytic cell

Publications (1)

Publication Number Publication Date
JPH10330980A true JPH10330980A (en) 1998-12-15

Family

ID=15587650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9154596A Pending JPH10330980A (en) 1997-05-28 1997-05-28 Method for using gas generator using water electrolytic cell

Country Status (1)

Country Link
JP (1) JPH10330980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131957A (en) * 2004-11-05 2006-05-25 Kobelco Eco-Solutions Co Ltd Gaseous hydrogen-oxygen generator and method for operating the same
JP2014062311A (en) * 2012-09-24 2014-04-10 Honda Motor Co Ltd High pressure water electrolysis system and its activation method
WO2020085434A1 (en) * 2018-10-26 2020-04-30 三菱重工業株式会社 Hydrogen/oxygen generation system and hydrogen/oxygen generation method
US20210262101A1 (en) * 2018-07-27 2021-08-26 Tokuyama Corporation Gas production apparatus and gas production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131957A (en) * 2004-11-05 2006-05-25 Kobelco Eco-Solutions Co Ltd Gaseous hydrogen-oxygen generator and method for operating the same
JP2014062311A (en) * 2012-09-24 2014-04-10 Honda Motor Co Ltd High pressure water electrolysis system and its activation method
US20210262101A1 (en) * 2018-07-27 2021-08-26 Tokuyama Corporation Gas production apparatus and gas production method
US11505872B2 (en) * 2018-07-27 2022-11-22 Tokuyama Corporation Gas production apparatus and gas production method
WO2020085434A1 (en) * 2018-10-26 2020-04-30 三菱重工業株式会社 Hydrogen/oxygen generation system and hydrogen/oxygen generation method
JP2020066796A (en) * 2018-10-26 2020-04-30 三菱重工業株式会社 Hydrogen and oxygen generating system and hydrogen and oxygen generating method
US11618958B2 (en) 2018-10-26 2023-04-04 Mitsubishi Heavy Industries, Ltd. Hydrogen-oxygen generation system and hydrogen-oxygen generation method

Similar Documents

Publication Publication Date Title
US4390603A (en) Methanol fuel cell
WO2004049490A3 (en) Solid polymer electrolyte fuel cell system and operation method therefor
US20220316075A1 (en) Method for controlling hydrogen generation system, and hydrogen generation system
JP2021105194A (en) Hydrogen generation system, hydrogen generation system control device and hydrogen generation system control method
JP3788489B2 (en) Water electrolyzer
JP2012167331A (en) Method for operating differential pressure water electrolysis apparatus
US20130084512A1 (en) Fuel battery system
JPH10330980A (en) Method for using gas generator using water electrolytic cell
US4257856A (en) Electrolytic process useful for the electrolysis of water
JP2001338672A (en) Home-use electric power supply system
JP2021105193A (en) Organic hydride generation system, control device for organic hydride generation system and control method for organic hydride generation system
JP2000032685A (en) Uninterruptible power supply system
JPH04314881A (en) Electrolytic device
JP2005129237A (en) Water treatment apparatus of fuel cell system
NISHIMURA et al. High current density solid polymer electrolyte water electrolysis
JPH07242402A (en) Water-electrolysis ozonizer
JPH01222082A (en) Electrochemical device using ion exchange membrane as electrolyte
JP3366549B2 (en) Hydrogen / oxygen generator and electrolytic cell used therefor
WO2011093124A1 (en) Water treatment device
JPS59163770A (en) Method of producing oxygen
KR100957219B1 (en) Apparatus for generating hydrogen and fuel cell power generator having the same
KR100998728B1 (en) Apparatus for generating hydrogen and fuel cell power generator having the same
JP3094767B2 (en) Fuel cell electrolyte replenishment method
EP4170068A1 (en) Water electrolyzer and control method of water electrolysis cell
JPS6081005A (en) Operating method of electrochemical oxygen separator