JPH1032986A - Protective circuit for inverter device - Google Patents

Protective circuit for inverter device

Info

Publication number
JPH1032986A
JPH1032986A JP8203103A JP20310396A JPH1032986A JP H1032986 A JPH1032986 A JP H1032986A JP 8203103 A JP8203103 A JP 8203103A JP 20310396 A JP20310396 A JP 20310396A JP H1032986 A JPH1032986 A JP H1032986A
Authority
JP
Japan
Prior art keywords
capacitor
snubber
resistor
voltage
inverter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8203103A
Other languages
Japanese (ja)
Other versions
JP3614250B2 (en
Inventor
Akio Imayanada
明夫 今柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP20310396A priority Critical patent/JP3614250B2/en
Publication of JPH1032986A publication Critical patent/JPH1032986A/en
Application granted granted Critical
Publication of JP3614250B2 publication Critical patent/JP3614250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a snubber resistor from becoming overloaded by pulling down the transient voltage applied across the resistor by providing a capacitor for suppressing transient voltage having a larger capacitance than the stray capacitance between the wiring connecting an inverter device and load to each other and the ground in parallel with a surge absorbing means. SOLUTION: A capacitor 10 for suppressing transient voltage is connected in parallel with a serial circuit composed of a snubber capacitor 41 and a snubber resistor 42. The capacitance of the capacitor 10 is made larger than stray capacitances 71, 72, and 73. Therefore, the resistor 42 is not overloaded and the overloading of the snubber means of a forward converting section can be prevented, because the voltage shared by a circuit network comprising the capacitor 41, the resistor 42, and the capacitor 10 becomes smaller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、交流電源を順変換部を
介して直流変換してさらに任意の電圧/周波数に交流変
換するインバ−タ装置に係わり、特にその出力に極めて
長い電力ケ−ブルを接続されるなどして、出力と対地間
の浮遊静電容量が大きくかつインバ−タ装置の電源イン
ピ−ダンスが小さいときに発生する順変換部へのサ−ジ
電圧から保護するサ−ジ吸収手段の過負荷状態を防ぐよ
うにしたインバ−タ装置の保護回路に、関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter device for converting an AC power supply to a direct current through a forward conversion section and further converting the AC power to an arbitrary voltage / frequency. To protect from a surge voltage to the forward converter, which is generated when the floating capacitance between the output and the ground is large and the power impedance of the inverter device is small. The present invention relates to a protection circuit of an inverter device for preventing an overload state of a laser absorbing means.

【0002】[0002]

【従来の技術】図3は代表的な従来例を示したものであ
って、11,12,13は交流電源、21,22,23は電源インピ
−ダンス、3は順変換部、41はスナバコンデンサ、42は
スナバ抵抗、51は平滑用リアクトル、52は平滑用コンデ
ンサ、6は逆変換部、71,72,73は浮遊静電容量、8は
負荷、9は大地である。すなわち、この種のインバ−タ
装置の保護回路は慣用されており、その動作は、例えば
昭和60年9月,電気書院発行「インバ−タ応用マニュア
ル」,P39〜P42に記載されている通りである。
2. Description of the Related Art FIG. 3 shows a typical conventional example, wherein 11, 12, 13 are AC power supplies, 21, 22, 23 are power supply impedances, 3 is a forward conversion section, and 41 is a snubber. A capacitor, 42 is a snubber resistor, 51 is a smoothing reactor, 52 is a smoothing capacitor, 6 is an inverse converter, 71, 72, and 73 are floating capacitances, 8 is a load, and 9 is the ground. That is, the protection circuit of this type of inverter device is commonly used, and its operation is as described in, for example, "Inverter Application Manual" published by Denki Shoin in September 1985, pp. 39-42. is there.

【0003】[0003]

【発明が解決しようとする課題】このようなインバ−タ
装置の保護回路の適用において、逆変換部6と負荷8と
の間の配線距離が極めて長い場合等、浮遊静電容量71,
72,73の静電容量値が大きく、かつインバータ装置の電
源インピーダンス21,22,23が小さいときに、順変換部
3をサ−ジ電圧から保護するスナバ回路が過負荷状態に
なり、最悪の場合、スナバ抵抗42が焼損するに到る、可
能性があることが見いだされた。これを、図4を参照し
て説明する。
In the application of such a protection circuit for an inverter device, when the wiring distance between the inverter 6 and the load 8 is extremely long, for example, the floating capacitance 71,
When the capacitance values of 72 and 73 are large and the power supply impedances 21, 22, and 23 of the inverter device are small, the snubber circuit that protects the forward conversion unit 3 from surge voltage becomes overloaded, causing the worst case. In some cases, it has been found that the snubber resistor 42 may burn out. This will be described with reference to FIG.

【0004】図4は図3を模式化したものであって、A
C21,AC23,AC6 は交流線、DCp,DCnは直流
線である。なお、ここでの説明では、交流電源11の電圧
が最も高く、交流電源13の電圧が最も低い状態である。
さて、交流電源11,12,13の電圧の大きさをそれぞれ
( 440/√3)(V)とすれば、直流線DCp,DCn
は大地9に対してそれぞれ、約(+ 300V),(− 300
V)の直流電圧が印加される。したがって、平滑用コン
デンサ52の充電電圧は約( 300V)である。ここで、逆
変換部であるスイッチ6が直流線DCn側へ接続されて
いるとして、過渡現象がおさまって定常状態にあれば、
交流線AC6 には(− 300V)が印加されるので、浮遊
静電容量7は(− 300V)に充電される。
FIG. 4 is a schematic diagram of FIG.
C21, AC23 and AC6 are AC lines, and DCp and DCn are DC lines. In the description here, the voltage of the AC power supply 11 is the highest, and the voltage of the AC power supply 13 is the lowest.
Now, assuming that the magnitudes of the voltages of the AC power supplies 11, 12, 13 are respectively (440 / √3) (V), the DC lines DCp, DCn
Are about (+ 300V) and (−300
V) DC voltage is applied. Therefore, the charging voltage of the smoothing capacitor 52 is about (300 V). Here, assuming that the switch 6 which is the inverse conversion unit is connected to the DC line DCn, if the transient phenomenon has subsided and is in a steady state,
Since (−300 V) is applied to the AC line AC6, the floating capacitance 7 is charged to (−300 V).

【0005】いま、ある時刻にスイッチ6が反転して直
流線DCp側へ接続されると、その瞬間は直流線DCp
の電圧が(− 300V)となる。ここでは、平滑用コンデ
ンサ52は、その静電容量が浮遊静電容量7のもつ静電容
量に比べて極めて大きくその間の電圧は一定とみなして
よく、直流線DCnの電位は、約(− 900V)となる。
そして、交流線AC23の電位はこれよりはるかに高く、
直流線DCnから交流線AC23への電流の流れ込みはな
い。したがって、交流電源11の電圧と直流線DCnの電
位との差が、電源インピ−ダンス21,スナバコンデンサ
41,スナバ抵抗42に印加される。このうちスナバコンデ
ンサ41には約( 600V)の電圧がすでに充電されている
ために、差引き、約( 600V)が電源インピ−ダンス21
とスナバ抵抗42に印加されるものとなる。当然、電源イ
ンピ−ダンスが小さければ、その殆どがスナバ抵抗42に
印加されるため、過負荷状態になってしまう。
[0005] When the switch 6 is inverted at a certain time and connected to the DC line DCp, at that instant the DC line DCp
Becomes (−300 V). Here, the capacitance of the smoothing capacitor 52 may be considered to be extremely large compared to the capacitance of the floating capacitance 7, and the voltage between them may be regarded as being constant. The potential of the DC line DCn is approximately (−900 V). ).
And the potential of the AC line AC23 is much higher than this,
No current flows from the DC line DCn to the AC line AC23. Therefore, the difference between the voltage of the AC power supply 11 and the potential of the DC line DCn is determined by the power supply impedance 21 and the snubber capacitor.
41, and are applied to the snubber resistor 42. Of these, the snubber capacitor 41 is already charged with a voltage of about (600 V), so the difference is about (600 V).
Is applied to the snubber resistor 42. Naturally, if the power supply impedance is small, most of the power supply impedance is applied to the snubber resistor 42, resulting in an overload state.

【0006】しかして本発明の目的とするところは、具
体的にはスナバ抵抗に印加される過渡電圧を引き下げる
べくスナバ抵抗の過負荷状態を防止する格別な装置を、
提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a special device for preventing an overload state of a snubber resistor in order to reduce a transient voltage applied to the snubber resistor.
To provide.

【0007】[0007]

【課題を解決するための手段】本発明は上述したような
点に鑑みなされたものであって、つぎの如くに構成した
ものである。すなわち、交流電源と負荷の間に接続され
て交流を直流に変換する順変換部および直流を所望の周
波数・電圧の交流に変換する逆変換部と、順変換部の直
流側に抵抗およびコンデンサの直列回路からなるスナバ
回路またはサ−ジ電圧を吸収するための半導体サ−ジ吸
収器のサ−ジ吸収手段を備えて成るインバ−タ装置の保
護回路において、インバ−タ装置および負荷間の配線と
対地間の浮遊静電容量よりも大きな静電容量をもつ過渡
電圧抑制用コンデンサをサ−ジ吸収手段に並列に設けて
なるものである。さらには、前記過渡電圧抑制用コンデ
ンサを必要に応じて設けることができるように構成した
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has the following structure. That is, a forward converter connected between an AC power supply and a load to convert AC to DC and an inverse converter to convert DC to AC of a desired frequency and voltage, and a resistor and a capacitor on the DC side of the forward converter. In a protection circuit for an inverter device comprising a snubber circuit comprising a series circuit or a surge absorption means of a semiconductor surge absorber for absorbing a surge voltage, wiring between the inverter device and a load is provided. And a transient voltage suppressing capacitor having a capacitance larger than the floating capacitance between the ground and the ground is provided in parallel with the surge absorbing means. Further, the configuration is such that the transient voltage suppressing capacitor can be provided as needed.

【0008】かかる解決手段により、図4の浮遊静電容
量7,電源インピ−ダンス21よりも、スナバコンデンサ
41,スナバ抵抗42の相対的なインピ−ダンスを下げ、過
渡的なスパイク電圧を引き下げてスナバ抵抗42の損失を
抑制することができる。
[0010] By such a solution, the snubber capacitor is replaced with the floating capacitance 7 and the power supply impedance 21 shown in FIG.
41, the relative impedance of the snubber resistor 42 can be reduced, and the transient spike voltage can be reduced to suppress the loss of the snubber resistor 42.

【0009】[0009]

【発明の実施の形態】つぎに、実施例図面に基づき説明
する。図1は本発明の一実施例を図3に類して示し、10
は過渡電圧抑制用コンデンサである。すなわち、スナバ
コンデンサ41およびスナバ抵抗42の直列回路と並列に、
過渡電圧抑制用コンデンサ10が、具備されて成る。これ
を、図2を参照して説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 shows an embodiment of the present invention in a manner similar to FIG.
Is a transient voltage suppressing capacitor. That is, in parallel with the series circuit of the snubber capacitor 41 and the snubber resistor 42,
A transient voltage suppressing capacitor 10 is provided. This will be described with reference to FIG.

【0010】図2は本発明の動作を説明するため示した
等価回路であって、 101, 103は直流電源、 102はリア
クトル、 104はスイッチ、 105はコンデンサである。こ
こに図2は、図4のスイッチ6が直流線DCnから直流
線DCpに切り替わった直後の動作を表すためのもので
ある。図2においては、直流電源 101は交流電源11,1
2,13を過渡現象が発生している極く短い時間に置き換
えて説明するための直流電源である。なぜなら、過渡現
象が生じている期間は数マイクロ秒〜数百マイクロ秒程
度なため、この間は交流電源の電圧は一定であるとして
差し支えない。リアクトル 102は電源インピーダンス2
1,22,23に相当する。直流電源 103は平滑用コンデン
サ52に蓄えられた電荷に相当する。スイッチ 104は逆変
換部6に相当する。コンデンサ 105は浮遊静電容量71,
72,73に相当する。
FIG. 2 is an equivalent circuit shown for explaining the operation of the present invention, wherein 101 and 103 are DC power supplies, 102 is a reactor, 104 is a switch, and 105 is a capacitor. FIG. 2 shows the operation immediately after the switch 6 in FIG. 4 switches from the DC line DCn to the DC line DCp. In FIG. 2, the DC power supply 101 is connected to the AC power supplies 11 and 1.
This is a DC power supply for explaining by replacing 2 and 13 with the extremely short time during which a transient phenomenon occurs. Because the period during which the transient phenomenon occurs is about several microseconds to several hundred microseconds, the voltage of the AC power supply may be constant during this period. Reactor 102 has power impedance 2
They correspond to 1, 22, and 23. DC power supply 103 corresponds to the electric charge stored in smoothing capacitor 52. The switch 104 corresponds to the inverse conversion unit 6. The capacitor 105 has a stray capacitance of 71,
Equivalent to 72, 73.

【0011】いま、コンデンサ 105の初期電圧が図示の
方向に充電されているとして、スイッチ 104をオンした
ときに、線路W1 から線路W3 間には直流電源 101, 1
03そしてコンデンサ 105の充電電圧の総和であるところ
の、約(1200V)が印加される。そしてこの電圧は、さ
らに、リアクトル 102と、スナバコンデンサ41,スナバ
抵抗42および過渡電圧抑制用コンデンサ10からなる回路
網とで分担される。ここで、過渡電圧抑制用コンデンサ
10の静電容量の大きさを、コンデンサ 105のそれよりも
大きくすれば、視察で明かな如く、スナバコンデンサ4
1,スナバ抵抗42および過渡電圧抑制用コンデンサ10か
らなる回路網の分担電圧は小さくなって、スナバ抵抗42
が過負荷になることもない。
Now, assuming that the initial voltage of the capacitor 105 is charged in the direction shown in the figure, when the switch 104 is turned on, a DC power supply 101, 1 is connected between the line W1 and the line W3.
03 and approximately (1200V), which is the sum of the charging voltages of the capacitor 105, is applied. This voltage is further shared by the reactor 102 and a circuit network including the snubber capacitor 41, the snubber resistor 42, and the transient voltage suppressing capacitor 10. Here, the transient voltage suppression capacitor
If the capacitance of the capacitor 10 is made larger than that of the capacitor 105, the snubber capacitor 4
1, the shared voltage of the network composed of the snubber resistor 42 and the transient voltage suppressing capacitor 10 is reduced, and the snubber resistor 42
Is not overloaded.

【0012】なお、サ−ジ吸収手段をスナバコンデンサ
41およびスナバ抵抗42の直列回路によるスナバ手段例で
説明したが、これに限定されるものではなく、例えば図
示しない半導体サ−ジ吸収器が並列に接続されている場
合にも効用できる。すなわち、半導体サ−ジ吸収器の動
作開始電圧は、通常、交流電源の線間電圧の約2倍にな
るように選定される。これまで説明してきた例では、約
( 900V)〜(1000V)に選ばれる。したがって、スナ
バ抵抗だけでなく、この半導体サージ吸収器もまた、過
負荷になってしまうことを防げる。また、本発明は三相
入出力のインバ−タ装置にとらわれず、単相または四相
以上の多相入出力の静止形電力変換器にも、適用可能な
ことは勿論である。
The surge absorbing means is a snubber capacitor.
Although the example of the snubber means using a series circuit of the snubber resistor 41 and the snubber resistor 42 has been described, the present invention is not limited to this. For example, the present invention can be applied to a case where a semiconductor surge absorber not shown is connected in parallel. That is, the operation start voltage of the semiconductor surge absorber is usually selected to be about twice the line voltage of the AC power supply. In the example described so far, the voltage is selected from about (900 V) to (1000 V). Therefore, not only the snubber resistance but also this semiconductor surge absorber can be prevented from being overloaded. Further, the present invention is not limited to an inverter device of three-phase input / output, and it is needless to say that the present invention can be applied to a static power converter of single-phase or multi-phase input / output of four or more phases.

【0013】[0013]

【発明の効果】以上詳述したように本発明によれば、順
変換部のスナバ手段の過負荷を防止し得る簡便な構成の
装置を提供でき、その実用的効果は極めて大である。
As described in detail above, according to the present invention, it is possible to provide an apparatus having a simple configuration capable of preventing the overload of the snubber means of the forward conversion section, and its practical effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing one embodiment of the present invention.

【図2】図2は本発明の動作を説明するため示した等価
回路である。
FIG. 2 is an equivalent circuit shown for explaining the operation of the present invention.

【図3】図3は代表的な従来例を示す回路図である。FIG. 3 is a circuit diagram showing a typical conventional example.

【図4】図4は図3を模式化した系統図である。FIG. 4 is a system diagram schematically showing FIG. 3;

【符号の説明】[Explanation of symbols]

11 交流電源 21 電源インピ−ダンス 3 順変換部 41 スナバコンデンサ 42 スナバ抵抗 51 平滑用リアクトル 52 平滑用コンデンサ 6 逆変換部 71 浮遊静電容量 8 負荷 9 大地 10 過渡電圧抑制用コンデンサ 101 直流電源 102 リアクトル 103 直流電源 104 スイッチ 105 コンデンサ DCp 直流線 DCn 直流線 11 AC power supply 21 Power supply impedance 3 Forward conversion unit 41 Snubber capacitor 42 Snubber resistor 51 Smoothing reactor 52 Smoothing capacitor 6 Inverting unit 71 Floating capacitance 8 Load 9 Ground 10 Transient voltage suppression capacitor 101 DC power supply 102 Reactor 103 DC power supply 104 Switch 105 Capacitor DCp DC line DCn DC line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電源と負荷の間に接続されて交流を
直流に変換する順変換部および該直流を所望の周波数・
電圧の交流に変換する逆変換部と、前記順変換部の直流
側に抵抗およびコンデンサの直列回路からなるスナバ回
路またはサ−ジ電圧を吸収するための半導体サ−ジ吸収
器のサ−ジ吸収手段を備えて成るインバ−タ装置の保護
回路において、インバ−タ装置および負荷間の配線と対
地間の浮遊静電容量よりも大きな静電容量をもつ過渡電
圧抑制用コンデンサを前記サ−ジ吸収手段に並列に設け
てなることを特徴とするインバ−タ装置の保護回路。
1. A forward converter connected between an AC power supply and a load for converting AC to DC and converting the DC to a desired frequency
A reverse converter for converting a voltage into an alternating current, and a snubber circuit comprising a series circuit of a resistor and a capacitor on the DC side of the forward converter or a surge absorber of a semiconductor surge absorber for absorbing a surge voltage. In a protection circuit for an inverter device comprising a means, a surge voltage suppressing capacitor having a capacitance larger than a floating capacitance between a wiring between the inverter device and a load and a ground is provided. A protection circuit for an inverter device, which is provided in parallel with the means.
JP20310396A 1996-07-12 1996-07-12 Inverter protection circuit Expired - Fee Related JP3614250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20310396A JP3614250B2 (en) 1996-07-12 1996-07-12 Inverter protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20310396A JP3614250B2 (en) 1996-07-12 1996-07-12 Inverter protection circuit

Publications (2)

Publication Number Publication Date
JPH1032986A true JPH1032986A (en) 1998-02-03
JP3614250B2 JP3614250B2 (en) 2005-01-26

Family

ID=16468447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20310396A Expired - Fee Related JP3614250B2 (en) 1996-07-12 1996-07-12 Inverter protection circuit

Country Status (1)

Country Link
JP (1) JP3614250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017080A (en) * 2009-10-20 2010-01-21 Daikin Ind Ltd Phase current detector
JP2017017936A (en) * 2015-07-06 2017-01-19 日産自動車株式会社 Device and system for power conversion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017080A (en) * 2009-10-20 2010-01-21 Daikin Ind Ltd Phase current detector
JP2017017936A (en) * 2015-07-06 2017-01-19 日産自動車株式会社 Device and system for power conversion

Also Published As

Publication number Publication date
JP3614250B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
US4926306A (en) Electric power converter
US4922401A (en) Inverter circuit utilizing the reverse voltage capabilities of symmetrical gate turn off thyristors
EP0588635B1 (en) Gate power supply circuit
US5287260A (en) GTO rectifier and inverter
JP4052152B2 (en) AC-AC direct conversion power converter
Yamada et al. High-frequency isolation UPS with novel SMR
JP3005804B2 (en) Power converter and uninterruptible power supply
EP0732002B1 (en) Rectifier bridge apparatus
JP3412828B2 (en) Power converter
JPH07250484A (en) High-voltage self-excited converter for interconnected system
JPH0655032B2 (en) Current type converter protection device
JP3614250B2 (en) Inverter protection circuit
JP2006109582A (en) Matrix converter
JPS5829375A (en) Starting system for polyphase rectifying circuit
JP3315303B2 (en) Motor control device
JP2619165B2 (en) Power converter
JP3886858B2 (en) Voltage fluctuation compensation device
JPH06292369A (en) Uninterruptible power supply device
JPS5911736A (en) Transmission controller
JPH0686563A (en) Power conversion apparatus
JP3652449B2 (en) Static power converter
JPH0336221Y2 (en)
JP3028694B2 (en) DC power supply
JP2528811B2 (en) Power converter
JP3296408B2 (en) Power converter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees