JP3614250B2 - Inverter protection circuit - Google Patents

Inverter protection circuit Download PDF

Info

Publication number
JP3614250B2
JP3614250B2 JP20310396A JP20310396A JP3614250B2 JP 3614250 B2 JP3614250 B2 JP 3614250B2 JP 20310396 A JP20310396 A JP 20310396A JP 20310396 A JP20310396 A JP 20310396A JP 3614250 B2 JP3614250 B2 JP 3614250B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
snubber
inverter device
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20310396A
Other languages
Japanese (ja)
Other versions
JPH1032986A (en
Inventor
明夫 今柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP20310396A priority Critical patent/JP3614250B2/en
Publication of JPH1032986A publication Critical patent/JPH1032986A/en
Application granted granted Critical
Publication of JP3614250B2 publication Critical patent/JP3614250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、交流電源を順変換部を介して直流変換してさらに任意の電圧/周波数に交流変換するインバ−タ装置に係わり、特にその出力に極めて長い電力ケ−ブルを接続されるなどして、出力と対地間の浮遊静電容量が大きくかつインバ−タ装置の電源インピ−ダンスが小さいときに発生する順変換部へのサ−ジ電圧から保護するサ−ジ吸収手段の過負荷状態を防ぐようにしたインバ−タ装置の保護回路に、関するものである。
【0002】
【従来の技術】
図3は代表的な従来例を示したものであって、11,12,13は交流電源、21,22,23は電源インピ−ダンス、3は順変換部、41はスナバコンデンサ、42はスナバ抵抗、51は平滑用リアクトル、52は平滑用コンデンサ、6は逆変換部、71,72,73は浮遊静電容量、8は負荷、9は大地である。
すなわち、この種のインバ−タ装置の保護回路は慣用されており、その動作は、例えば昭和60年9月,電気書院発行「インバ−タ応用マニュアル」,P39〜P42に記載されている通りである。
【0003】
【発明が解決しようとする課題】
このようなインバ−タ装置の保護回路の適用において、逆変換部6と負荷8との間の配線距離が極めて長い場合等、浮遊静電容量71,72,73の静電容量値が大きく、かつインバータ装置の電源インピーダンス21,22,23が小さいときに、順変換部3をサ−ジ電圧から保護するスナバ回路が過負荷状態になり、最悪の場合、スナバ抵抗42が焼損するに到る、可能性があることが見いだされた。
これを、図4を参照して説明する。
【0004】
図4は図3を模式化したものであって、AC21,AC23,AC6 は交流線、
DCp,DCnは直流線である。
なお、ここでの説明では、交流電源11の電圧が最も高く、交流電源13の電圧が最も低い状態である。
さて、交流電源11,12,13の電圧の大きさをそれぞれ( 440/√3)(V)とすれば、直流線DCp,DCnは大地9に対してそれぞれ、約(+ 300V),
(− 300V)の直流電圧が印加される。したがって、平滑用コンデンサ52の充電電圧は約( 300V)である。
ここで、逆変換部であるスイッチ6が直流線DCn側へ接続されているとして、過渡現象がおさまって定常状態にあれば、交流線AC6 には(− 300V)が印加されるので、浮遊静電容量7は(− 300V)に充電される。
【0005】
いま、ある時刻にスイッチ6が反転して直流線DCp側へ接続されると、その瞬間は直流線DCpの電圧が(− 300V)となる。
ここでは、平滑用コンデンサ52は、その静電容量が浮遊静電容量7のもつ静電容量に比べて極めて大きくその間の電圧は一定とみなしてよく、直流線DCnの電位は、約(− 900V)となる。
そして、交流線AC23の電位はこれよりはるかに高く、直流線DCnから交流線AC23への電流の流れ込みはない。
したがって、交流電源11の電圧と直流線DCnの電位との差が、電源インピ−ダンス21,スナバコンデンサ41,スナバ抵抗42に印加される。
このうちスナバコンデンサ41には約( 600V)の電圧がすでに充電されているために、差引き、約( 600V)が電源インピ−ダンス21とスナバ抵抗42に印加されるものとなる。
当然、電源インピ−ダンスが小さければ、その殆どがスナバ抵抗42に印加されるため、過負荷状態になってしまう。
【0006】
しかして本発明の目的とするところは、具体的にはスナバ抵抗に印加される過渡電圧を引き下げるべくスナバ抵抗の過負荷状態を防止する格別な装置を、提供することにある。
【0007】
【課題を解決するための手段】
本発明は上述したような点に鑑みなされたものであって、つぎの如くに構成したものである。すなわち、
交流電源と負荷の間に接続されて交流を直流に変換する順変換部および直流を所望の周波数・電圧の交流に変換する逆変換部と、順変換部の直流側に抵抗およびコンデンサの直列回路からなるスナバ回路またはサ−ジ電圧を吸収するための半導体サ−ジ吸収器のサ−ジ吸収手段を備えて成るインバ−タ装置の保護回路において、
インバ−タ装置および負荷間の配線と対地間の浮遊静電容量よりも大きな静電容量をもつ過渡電圧抑制用コンデンサをサ−ジ吸収手段に並列に設けてなるものである。
さらには、前記過渡電圧抑制用コンデンサを必要に応じて設けることができるように構成したものである。
【0008】
かかる解決手段により、図4の浮遊静電容量7,電源インピ−ダンス21よりも、スナバコンデンサ41,スナバ抵抗42の相対的なインピ−ダンスを下げ、過渡的なスパイク電圧を引き下げてスナバ抵抗42の損失を抑制することができる。
【0009】
【発明の実施の形態】
つぎに、実施例図面に基づき説明する。
図1は本発明の一実施例を図3に類して示し、10は過渡電圧抑制用コンデンサである。
すなわち、スナバコンデンサ41およびスナバ抵抗42の直列回路と並列に、過渡電圧抑制用コンデンサ10が、具備されて成る。
これを、図2を参照して説明する。
【0010】
図2は本発明の動作を説明するため示した等価回路であって、 101, 103は直流電源、 102はリアクトル、 104はスイッチ、 105はコンデンサである。
ここに図2は、図4のスイッチ6が直流線DCnから直流線DCpに切り替わった直後の動作を表すためのものである。
図2においては、直流電源 101は交流電源11,12,13を過渡現象が発生している極く短い時間に置き換えて説明するための直流電源である。なぜなら、過渡現象が生じている期間は数マイクロ秒〜数百マイクロ秒程度なため、この間は交流電源の電圧は一定であるとして差し支えない。
リアクトル 102は電源インピーダンス21,22,23に相当する。
直流電源 103は平滑用コンデンサ52に蓄えられた電荷に相当する。
スイッチ 104は逆変換部6に相当する。
コンデンサ 105は浮遊静電容量71,72,73に相当する。
【0011】
いま、コンデンサ 105の初期電圧が図示の方向に充電されているとして、スイッチ 104をオンしたときに、線路W1 から線路W3 間には直流電源 101, 103そしてコンデンサ 105の充電電圧の総和であるところの、約(1200V)が印加される。
そしてこの電圧は、さらに、リアクトル 102と、スナバコンデンサ41,スナバ抵抗42および過渡電圧抑制用コンデンサ10からなる回路網とで分担される。
ここで、過渡電圧抑制用コンデンサ10の静電容量の大きさを、コンデンサ 105のそれよりも大きくすれば、視察で明かな如く、スナバコンデンサ41,スナバ抵抗42および過渡電圧抑制用コンデンサ10からなる回路網の分担電圧は小さくなって、スナバ抵抗42が過負荷になることもない。
【0012】
なお、サ−ジ吸収手段をスナバコンデンサ41およびスナバ抵抗42の直列回路によるスナバ手段例で説明したが、これに限定されるものではなく、例えば図示しない半導体サ−ジ吸収器が並列に接続されている場合にも効用できる。
すなわち、半導体サ−ジ吸収器の動作開始電圧は、通常、交流電源の線間電圧の約2倍になるように選定される。
これまで説明してきた例では、約( 900V)〜(1000V)に選ばれる。したがって、スナバ抵抗だけでなく、この半導体サージ吸収器もまた、過負荷になってしまうことを防げる。
また、本発明は三相入出力のインバ−タ装置にとらわれず、単相または四相以上の多相入出力の静止形電力変換器にも、適用可能なことは勿論である。
【0013】
【発明の効果】
以上詳述したように本発明によれば、順変換部のスナバ手段の過負荷を防止し得る簡便な構成の装置を提供でき、その実用的効果は極めて大である。
【図面の簡単な説明】
【図1】図1は本発明の一実施例を示す回路図である。
【図2】図2は本発明の動作を説明するため示した等価回路である。
【図3】図3は代表的な従来例を示す回路図である。
【図4】図4は図3を模式化した系統図である。
【符号の説明】
11 交流電源
21 電源インピ−ダンス
3 順変換部
41 スナバコンデンサ
42 スナバ抵抗
51 平滑用リアクトル
52 平滑用コンデンサ
6 逆変換部
71 浮遊静電容量
8 負荷
9 大地
10 過渡電圧抑制用コンデンサ
101 直流電源
102 リアクトル
103 直流電源
104 スイッチ
105 コンデンサ
DCp 直流線
DCn 直流線
[0001]
[Industrial application fields]
The present invention relates to an inverter device that converts an alternating current power source into direct current through a forward conversion unit and further converts the alternating current power into an arbitrary voltage / frequency. In particular, an extremely long power cable is connected to the output of the inverter device. Overload condition of surge absorbing means that protects against surge voltage to the forward converter when the stray capacitance between the output and the ground is large and the power supply impedance of the inverter device is small The present invention relates to a protection circuit for an inverter device that prevents the above-described problem.
[0002]
[Prior art]
FIG. 3 shows a typical conventional example, in which 11, 12 and 13 are AC power sources, 21 and 22 are power source impedances, 3 is a forward conversion unit, 41 is a snubber capacitor, and 42 is a snubber. A resistor, 51 is a smoothing reactor, 52 is a smoothing capacitor, 6 is an inverse conversion unit, 71, 72, and 73 are stray capacitances, 8 is a load, and 9 is the ground.
That is, the protection circuit of this type of inverter device is commonly used, and its operation is as described in, for example, “Inverter Application Manual”, September 39, 1985, published by Denki Shoin, P39-P42. is there.
[0003]
[Problems to be solved by the invention]
In the application of the protection circuit of such an inverter device, when the wiring distance between the inverse conversion unit 6 and the load 8 is extremely long, the capacitance values of the floating capacitances 71, 72, 73 are large, When the power source impedance 21, 22, 23 of the inverter device is small, the snubber circuit that protects the forward converter 3 from the surge voltage is overloaded, and in the worst case, the snubber resistor 42 is burned out. It was found that there is a possibility.
This will be described with reference to FIG.
[0004]
FIG. 4 is a schematic diagram of FIG. 3, where AC21, AC23, and AC6 are AC lines,
DCp and DCn are direct current lines.
In the description here, the voltage of the AC power supply 11 is the highest and the voltage of the AC power supply 13 is the lowest.
Now, assuming that the voltages of the AC power supplies 11, 12, 13 are (440 / √3) (V), the DC lines DCp, DCn are about (+ 300V),
A DC voltage of (-300V) is applied. Therefore, the charging voltage of the smoothing capacitor 52 is about (300V).
Here, assuming that the switch 6 which is an inverse conversion unit is connected to the DC line DCn side, if the transient phenomenon is stopped and is in a steady state, (−300 V) is applied to the AC line AC6. The electric capacity 7 is charged to (-300V).
[0005]
Now, when the switch 6 is inverted and connected to the DC line DCp side at a certain time, the voltage of the DC line DCp becomes (−300 V) at that moment.
Here, the smoothing capacitor 52 has an extremely large capacitance compared to the capacitance of the floating capacitance 7, and the voltage therebetween may be regarded as constant, and the potential of the DC line DCn is about (−900V). )
The potential of the AC line AC23 is much higher than this, and no current flows from the DC line DCn to the AC line AC23.
Therefore, a difference between the voltage of the AC power supply 11 and the potential of the DC line DCn is applied to the power supply impedance 21, the snubber capacitor 41, and the snubber resistor 42.
Among these, since the snubber capacitor 41 is already charged with a voltage of about (600 V), the subtraction (about 600 V) is applied to the power source impedance 21 and the snubber resistor 42.
Naturally, if the power supply impedance is small, most of the power impedance is applied to the snubber resistor 42, resulting in an overload state.
[0006]
Accordingly, an object of the present invention is to provide a special device for preventing an overload state of a snubber resistor to specifically reduce a transient voltage applied to the snubber resistor.
[0007]
[Means for Solving the Problems]
The present invention has been made in view of the above points, and is configured as follows. That is,
A forward converter connected between an AC power source and a load for converting AC to DC, a reverse converter for converting DC to AC of a desired frequency and voltage, and a series circuit of resistors and capacitors on the DC side of the forward converter In a protection circuit for an inverter device comprising a surge absorbing means of a semiconductor surge absorber for absorbing a surge voltage
A transient voltage suppressing capacitor having a capacitance larger than the floating capacitance between the inverter device and the wiring between the load and the ground is provided in parallel with the surge absorbing means.
Further, the transient voltage suppression capacitor can be provided as necessary.
[0008]
By such a solution, the relative impedance of the snubber capacitor 41 and the snubber resistor 42 is lowered than the stray capacitance 7 and the power source impedance 21 of FIG. Loss can be suppressed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, description will be made based on the drawings of the embodiments.
FIG. 1 shows an embodiment of the present invention similar to FIG. 3, and reference numeral 10 denotes a transient voltage suppressing capacitor.
That is, the transient voltage suppressing capacitor 10 is provided in parallel with the series circuit of the snubber capacitor 41 and the snubber resistor 42.
This will be described with reference to FIG.
[0010]
FIG. 2 is an equivalent circuit shown for explaining the operation of the present invention, wherein 101 and 103 are DC power supplies, 102 is a reactor, 104 is a switch, and 105 is a capacitor.
FIG. 2 shows the operation immediately after the switch 6 in FIG. 4 is switched from the DC line DCn to the DC line DCp.
In FIG. 2, a DC power supply 101 is a DC power supply for explaining the AC power supplies 11, 12, and 13 by replacing them with a very short time during which a transient phenomenon occurs. This is because the period during which the transient phenomenon occurs is about several microseconds to several hundred microseconds, and thus the voltage of the AC power source may be constant during this period.
Reactor 102 corresponds to power source impedances 21, 22, and 23.
The DC power source 103 corresponds to the electric charge stored in the smoothing capacitor 52.
The switch 104 corresponds to the inverse conversion unit 6.
The capacitor 105 corresponds to the floating capacitances 71, 72, and 73.
[0011]
Assuming that the initial voltage of the capacitor 105 is charged in the direction shown in the figure, when the switch 104 is turned on, the sum of the charging voltages of the DC power supplies 101 and 103 and the capacitor 105 is between the lines W1 and W3. Of about 1200V is applied.
This voltage is further shared by the reactor 102 and a circuit network including the snubber capacitor 41, the snubber resistor 42, and the transient voltage suppression capacitor 10.
Here, if the capacitance of the transient voltage suppression capacitor 10 is made larger than that of the capacitor 105, it is made up of a snubber capacitor 41, a snubber resistor 42, and a transient voltage suppression capacitor 10 as apparent from the inspection. The shared voltage of the network is reduced and the snubber resistor 42 is not overloaded.
[0012]
The surge absorbing means has been described in the example of the snubber means using the series circuit of the snubber capacitor 41 and the snubber resistor 42, but the invention is not limited to this. For example, a semiconductor surge absorber (not shown) is connected in parallel. It can be used even if it is.
That is, the operation start voltage of the semiconductor surge absorber is usually selected to be about twice the line voltage of the AC power supply.
In the example described so far, it is selected from about (900V) to (1000V). Therefore, not only the snubber resistor but also the semiconductor surge absorber can be prevented from being overloaded.
Further, the present invention is not limited to a three-phase input / output inverter device but can be applied to a single-phase or four-phase or more multi-phase input / output static power converter.
[0013]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide an apparatus having a simple configuration capable of preventing overloading of the snubber means of the forward conversion unit, and its practical effect is extremely great.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
FIG. 2 is an equivalent circuit shown for explaining the operation of the present invention.
FIG. 3 is a circuit diagram showing a typical conventional example.
FIG. 4 is a system diagram schematically showing FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 AC power supply 21 Power supply impedance 3 Forward conversion part 41 Snubber capacitor 42 Snubber resistance 51 Smoothing reactor 52 Smoothing capacitor 6 Reverse conversion part 71 Floating capacitance 8 Load 9 Ground 10 Transient voltage suppression capacitor 101 DC power supply 102 Reactor 103 DC power supply 104 Switch 105 Capacitor DCp DC line DCn DC line

Claims (1)

交流電源と負荷の間に接続されて交流を直流に変換する順変換部および該直流を所望の周波数・電圧の交流に変換する逆変換部と、前記順変換部の直流側に抵抗およびコンデンサの直列回路からなるスナバ回路またはサ−ジ電圧を吸収するための半導体サ−ジ吸収器のサ−ジ吸収手段を備えて成るインバ−タ装置の保護回路において、インバ−タ装置および負荷間の配線と対地間の浮遊静電容量よりも大きな静電容量をもつ過渡電圧抑制用コンデンサを前記サ−ジ吸収手段に並列に設けてなることを特徴とするインバ−タ装置の保護回路。A forward conversion unit that is connected between an AC power source and a load and converts alternating current into direct current, an inverse conversion unit that converts the direct current into alternating current of a desired frequency and voltage, and a resistor and a capacitor on the direct current side of the forward conversion unit In a protective circuit of an inverter device comprising a surge absorber means of a semiconductor surge absorber for absorbing a surge voltage or a surge voltage composed of a series circuit, wiring between the inverter device and a load A protection circuit for an inverter device, wherein a transient voltage suppression capacitor having a capacitance larger than a floating capacitance between the ground and the ground is provided in parallel with the surge absorbing means.
JP20310396A 1996-07-12 1996-07-12 Inverter protection circuit Expired - Fee Related JP3614250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20310396A JP3614250B2 (en) 1996-07-12 1996-07-12 Inverter protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20310396A JP3614250B2 (en) 1996-07-12 1996-07-12 Inverter protection circuit

Publications (2)

Publication Number Publication Date
JPH1032986A JPH1032986A (en) 1998-02-03
JP3614250B2 true JP3614250B2 (en) 2005-01-26

Family

ID=16468447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20310396A Expired - Fee Related JP3614250B2 (en) 1996-07-12 1996-07-12 Inverter protection circuit

Country Status (1)

Country Link
JP (1) JP3614250B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218371B2 (en) * 2009-10-20 2013-06-26 ダイキン工業株式会社 Phase current detector
JP6493033B2 (en) * 2015-07-06 2019-04-03 日産自動車株式会社 Power conversion device and power conversion system

Also Published As

Publication number Publication date
JPH1032986A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
EP1835609B1 (en) Multi-phase current supplying circuit, driving apparatus, compressor, and air conditioner
US4926306A (en) Electric power converter
JPH01283063A (en) Power unit by pwm control
JP4052152B2 (en) AC-AC direct conversion power converter
JP3005804B2 (en) Power converter and uninterruptible power supply
Yamada et al. High-frequency isolation UPS with novel SMR
JP3614250B2 (en) Inverter protection circuit
EP0732002B1 (en) Rectifier bridge apparatus
JP3412828B2 (en) Power converter
JP4662022B2 (en) Matrix converter
JPH0655032B2 (en) Current type converter protection device
EP0081133A1 (en) Current-type inverter
JP2004524795A (en) VSC converter
JPS5829375A (en) Starting system for polyphase rectifying circuit
JPH05219758A (en) Noise preventing device for power inverter
JP3315303B2 (en) Motor control device
JP2619165B2 (en) Power converter
JPH0444510B2 (en)
JPH09103078A (en) Power converter
JPH03289362A (en) Power converter
JP3652449B2 (en) Static power converter
JPH0759360A (en) Uninterruptive power unit
WO2015059771A1 (en) Power conversion device and power conversion method for power conversion device
JP3886858B2 (en) Voltage fluctuation compensation device
JPH0686563A (en) Power conversion apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees