JPH10321260A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH10321260A
JPH10321260A JP9129057A JP12905797A JPH10321260A JP H10321260 A JPH10321260 A JP H10321260A JP 9129057 A JP9129057 A JP 9129057A JP 12905797 A JP12905797 A JP 12905797A JP H10321260 A JPH10321260 A JP H10321260A
Authority
JP
Japan
Prior art keywords
battery
group
ion secondary
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9129057A
Other languages
Japanese (ja)
Inventor
Kenichi Maeda
謙一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9129057A priority Critical patent/JPH10321260A/en
Publication of JPH10321260A publication Critical patent/JPH10321260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the smoking or firing even when an internal short-circuit is caused in charged state by forming a clearance between the inner surface of a battery can and the outside of a pole plate group so as to substantially extend over the whole surface, and arranging a rib in the clearance as occasion demands. SOLUTION: A positive electrode 1 and a negative electrode 2 are arranged opposite to each other through a separator 3, and wound in roll to constitute a rolled group (pole plate group), which is then housed in a battery can (Ni plated iron can) 5, an electrolyte is put therein, and the battery can is sealed by a sealing body. A clearance is formed between the inside surface of the Ni-plated iron can 5 and the outside surface of the rolled group so as to substantially extend over the whole surface. A rib is preferably provided between the battery can inside surface and the rolled group outside surface to fix the wound group to some degree. The negative electrode 2 is produced by uniformly applying a slurry of amorphous carbon capable of doping and dedoping lithium and polyvinylidene fluoride dispersed which are dispersed in N-methyl-2- pyrolidone to both surfaces of a current collector, and drying it followed by compression molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池に関するものである。
TECHNICAL FIELD The present invention relates to a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年の電子機器の小型化・軽量化に伴
い、これらに使用されるポータブル電源としての電池も
小型化・軽量化が進んでいる。このような状況下で、高
エネルギー密度を有し、自己放電が小さい上、軽量とい
う優れた特性を持つ、金属リチウムやリチウム合金を負
極とする有機電解質二次電池(リチウム二次電池)の研究
が盛んに行われている。しかしながら、この電池におい
ては充放電時に負極で金属リチウムがデンドライト状に
析出し、正極と短絡をおこしやすいという問題点があ
る。
2. Description of the Related Art With the recent miniaturization and weight reduction of electronic devices, the size and weight of batteries used as portable power supplies for these devices have been reduced. Under these circumstances, research on organic electrolyte secondary batteries (lithium secondary batteries) using lithium metal or lithium alloy as the negative electrode, which has high energy density, low self-discharge, and excellent characteristics of light weight Is being actively conducted. However, in this battery, there is a problem that metallic lithium precipitates in a dendrite shape at the negative electrode at the time of charge and discharge, and a short circuit with the positive electrode is likely to occur.

【0003】そこで上記問題点を克服した電池系とし
て、負極に炭素材を使用した有機電解質二次電池(リチ
ウムイオン二次電池)が提案され実用化されている。こ
の電池はリチウムイオンの炭素層間へのドープ・脱ドー
プを負極反応に利用するもので、適切な電池設計により
金属リチウムは析出しない。したがってリチウム二次電
池に比べ、より安全な電池であるといえる。
[0003] As a battery system that overcomes the above problems, an organic electrolyte secondary battery (lithium ion secondary battery) using a carbon material for the negative electrode has been proposed and put into practical use. This battery utilizes the doping and undoping of lithium ions between carbon layers for the negative electrode reaction, and no lithium metal is deposited by an appropriate battery design. Therefore, it can be said that the battery is safer than the lithium secondary battery.

【0004】リチウムイオン二次電池の安全性向上技術
としては、充放電時に発生するガスによる電池の変形又
は電解液の漏出を防止する目的で、特開平1−2943
73号公報で、電池容器内に電気容量1Ah当たり0.
3cc以上の空隙を設けることを提案している。
[0004] As a technology for improving the safety of a lithium ion secondary battery, Japanese Patent Application Laid-Open No. 1-2943 discloses a technique for preventing deformation of the battery or leakage of electrolyte due to gas generated during charging and discharging.
No. 73, the battery capacity is set to be 0. 0 / Ah in the battery container.
It is proposed to provide a gap of 3 cc or more.

【0005】[0005]

【発明が解決しようとする課題】リチウムイオン二次電
池は、過充電などの電気的要因、高温放置などの環境的
要因、重量物の落下に伴う衝撃などの機械的要因により
発火するおそれがある。機械的要因により発火するかど
うかを試験する方法には、電池への重量物の落下、電池
への振動の付加の他に、最も過酷な状態を想定して、充
電状態のリチウムイオン二次電池に釘(φ5)を刺して内
部短絡をおこさせる方法がある(SBA規格、電池を木
箱などに梱包する際、誤って釘などが刺し込まれるよう
な誤用を想定している)。このような過酷な試験ではリ
チウムイオン二次電池は発煙、発火した。
Lithium ion secondary batteries may be ignited by electrical factors such as overcharging, environmental factors such as high temperature storage, and mechanical factors such as impacts caused by dropping heavy objects. . Methods to test for ignition due to mechanical factors include dropping heavy objects on the battery, adding vibration to the battery, and assuming the most severe conditions, charging the lithium ion secondary battery There is a method of causing an internal short circuit by inserting a nail (φ5) into the inside (SBA standard, when packing a battery in a wooden box or the like, it is assumed that a nail or the like is accidentally inserted). In such a severe test, the lithium ion secondary battery smoked and ignited.

【0006】この原因は、次のように考えられる。まず
内部短絡により、大電流が流れ発熱する。次にこの発熱
により極板及び極板群が膨張する。そして電池容器によ
って締め付けられた極板及び極板群にストレスがかか
る。このストレスにより、より大きな内部短絡が引き起
こされ発火に至る。このような事態は、前述したリチウ
ムイオン二次電池の安全性向上技術では回避できない。
The cause is considered as follows. First, a large current flows due to an internal short circuit and generates heat. Next, the heat generation causes the electrode plate and the electrode plate group to expand. Then, stress is applied to the electrode plate and the electrode plate group fastened by the battery container. This stress causes a larger internal short circuit and leads to ignition. Such a situation cannot be avoided by the above-described technology for improving the safety of the lithium ion secondary battery.

【0007】本発明が解決しようとする課題は、特に機
械的要因に対する安全性の高いリチウムイオン二次電池
を提供することである。具体的には、充電状態で釘(φ
5)を刺す場合のような内部短絡をおこしても発煙、発
火を抑制できる、より安全性の高いリチウムイオン二次
電池を提供することである。
[0007] An object of the present invention is to provide a lithium ion secondary battery having high safety especially against mechanical factors. Specifically, the nail (φ
5) To provide a safer lithium-ion secondary battery that can suppress smoke and ignition even when an internal short circuit occurs as in the case of puncturing.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明のリチウムイオン二次電池は、電池容器内側
面と、極板群外側面との間の実質的に全面に亘り隙間を
形成し得る構造であることを特徴とする。前述したよう
に、電池容器内の空隙(隙間)を規定する従来の考えと
して特開平1−294373号公報があるが、これは充
放電時に発生するガスによって電池が変形したり漏液し
たりするのを防ぐことを目的としているため、空隙の位
置については特に規定されておらず、実施例においても
極板群中心部に空隙が設けられていた。これに対し本発
明が解決しようとする課題は、極板群が膨張した場合に
電池容器が極板群を強く押さえつけ、より大きな内部短
絡を引き起こすのを防ぐことであるから、空隙の位置は
少なくとも極板群が膨張する方向の、電池容器内側面と
極板群外側面との間に位置している必要がある。例え
ば、捲回式極板群(以下、捲回群と略記する。)の最
外周の極板面と、それと対向する電池容器内面との間、
積層式極板群の積層方向最端極板面と、それと対向す
る電池容器内面との間、に空隙を設けるものである。
In order to solve the above-mentioned problems, a lithium ion secondary battery of the present invention has a gap over substantially the entire surface between an inner surface of a battery container and an outer surface of an electrode group. It is a structure that can be formed. As described above, Japanese Patent Application Laid-Open No. HEI 1-294373 discloses a conventional idea for defining a void (gap) in a battery container. The battery is deformed or leaks due to gas generated during charging and discharging. Therefore, the position of the gap is not particularly specified, and the gap is provided at the center of the electrode plate group in the embodiment. On the other hand, the problem to be solved by the present invention is to prevent the battery container from strongly pressing the electrode group when the electrode group expands, thereby preventing a larger internal short circuit. It must be located between the inner surface of the battery container and the outer surface of the electrode group in the direction in which the electrode group expands. For example, between the outermost electrode plate surface of a wound electrode plate group (hereinafter abbreviated as a wound group) and an inner surface of a battery container facing the outermost electrode plate surface;
A gap is provided between the end face of the stacking electrode group in the stacking direction and the inner face of the battery container facing the end face.

【0009】上記空隙は、もちろん電池容器内側面と、
極板群外側面との間の実質的に全面に亘り存在すること
が好ましい。しかし、極板群を電池容器内で位置固定す
ることを考慮すると、前記空隙に部分的にリブを配置し
てもよい。このような構成でも電池容器内側面と、極板
群外側面との間に空隙は確保される。従って、極板群が
膨張した場合に電池容器が極板群を強く押さえつけ、よ
り大きな内部短絡を引き起こすのを防ぐことができ、本
発明が解決しようとする課題は達成できる。
[0009] Of course, the gap is formed between the inner surface of the battery container and
It is preferable to exist over substantially the entire surface between the electrode group outer surface. However, in consideration of fixing the position of the electrode group in the battery container, a rib may be partially disposed in the gap. Even with such a configuration, a gap is secured between the inner surface of the battery container and the outer surface of the electrode plate group. Accordingly, it is possible to prevent the battery container from strongly pressing the electrode group when the electrode group expands, thereby preventing a larger internal short circuit, and the problem to be solved by the present invention can be achieved.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態のを図面を参
照しながら以下に説明していく。図1は電池容器が円筒
形で、極板群が捲回群であるリチウムイオン二次電池の
横断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a lithium ion secondary battery in which a battery container has a cylindrical shape and an electrode group is a wound group.

【0011】正極1は次のように作製した。コバルト酸
リチウムと黒鉛とポリフッ化ビニリデンとを、N−メチ
ル2ピロリドンに分散させたものをスラリとし、これを
正極集電体1b(厚さ20μmAl箔)の両面に均一に
塗布し、乾燥した。これをロールプレス機で圧縮成型し
て幅55mm厚さ174μmとした。負極2は次のよう
に作製した。リチウムをドープ・脱ドープしうる非晶質
炭素とポリフッ化ビニリデンとを、N−メチル2ピロリ
ドンに分散させたものをスラリとし、これを負極集電体
2b(厚さ10μmCu箔)の両面に均一に塗布し、乾
燥した。これをロールプレス機で圧縮成型して幅56m
m厚さ174μmとした。セパレータ3にはポリエチレ
ンの微多孔膜を用いている。正極1及び負極2をセパレ
ータ3を介して対向配置し、ロール状に捲回して構成し
た捲回群(極板群)を電池容器(Niメッキ鉄缶5)に
収納し、1M−LiPF6/PC+DMC+DECから
なる電解液をそこに注入し、電池容器を封口体により密
閉した。封口体は圧力スイッチ、PTC、ポリプロピレ
ン製のガスケットを備えている。上記Niメッキ鉄缶5
内側面と、捲回群外側面との間には実質的に全面に亘り
隙間が形成しうる構造とする。このようにしてリチウム
イオン二次電池を作製する。
The positive electrode 1 was manufactured as follows. A slurry in which lithium cobaltate, graphite, and polyvinylidene fluoride were dispersed in N-methyl-2-pyrrolidone was used as a slurry, and the slurry was uniformly applied to both surfaces of a positive electrode current collector 1b (20 μm thick Al foil) and dried. This was compression-molded with a roll press machine to a width of 55 mm and a thickness of 174 μm. The negative electrode 2 was produced as follows. A slurry obtained by dispersing amorphous carbon and polyvinylidene fluoride, which can be doped / undoped with lithium, in N-methyl-2-pyrrolidone is used as a slurry, which is uniformly applied to both surfaces of a negative electrode current collector 2b (10 μm thick Cu foil). And dried. This is compression-molded with a roll press machine and the width is 56m.
The thickness was 174 μm. A microporous polyethylene film is used for the separator 3. A positive electrode 1 and a negative electrode 2 are arranged to face each other with a separator 3 interposed therebetween, and a winding group (electrode plate group) formed by winding into a roll is housed in a battery container (Ni-plated iron can 5), and 1M-LiPF 6 / An electrolytic solution consisting of PC + DMC + DEC was injected therein, and the battery container was sealed with a sealing body. The sealing body is provided with a pressure switch, PTC, and a gasket made of polypropylene. Ni plated iron can 5
The structure is such that a gap can be formed over substantially the entire surface between the inner surface and the outer surface of the winding group. Thus, a lithium ion secondary battery is manufactured.

【0012】本例では電池容器内側面と、捲回群外側面
との間にリブを設けていないが、捲回群をある程度固定
するには電池容器内側面と、捲回群外側面との間にリブ
を設けることが好ましい。前記リブに用いる材料は、捲
回群を傷つけることを抑制する意味ではシリコーンゴム
等の弾力性を有するものが好ましい。またリブは電池容
器内側面、捲回群外側面のどちらに存在していてもよ
い。電池設計、製造上有利な方を適宜選択できる。また
本例では電池容器に円筒形、極板群に捲回群の組合せを
採用した。これは現在最も一般的に使用されている組合
せであり、出荷数が多いことを考慮したためである。し
かし本発明はこれに限定されない。電池容器に非円筒
形、極板群に捲回群の組合せや、電池容器に非円筒形、
極板群に正極と負極をセパレータを介して積層した構造
の組合せ等にも当然適用できる。前記非円筒形の電池容
器とはいわゆるチューインガム形等の角形、一部が丸み
を帯びた角形電池、電気自動車用等の大形角形電池、三
角柱形、5以上の多角柱形等である。これら非円筒形の
電池容器を用いた電池は、円筒形の電池容器を用いた電
池に比して電子、電気機器等に装着した際のデッドスペ
ースが少なく、エネルギー密度の向上が見込まれている
ため、今後出荷数が更に増大すると思われる。また非円
筒形の電池は平面部が多いため、釘等を刺し込まれるお
それが円筒形の電池に比べて大きく、本発明の効果が発
揮される機会が多いものと考えられる。また本例ではリ
チウムをドープ・脱ドープしうる材料に非晶質炭素を選
択したが本発明はこれに限定されない。黒鉛や金属酸化
物等も使用可能である。またこれらの併用も可能であ
る。
In this embodiment, no rib is provided between the inner surface of the battery container and the outer surface of the winding group. However, in order to fix the winding group to some extent, the inner surface of the battery container and the outer surface of the winding group are not provided. It is preferable to provide ribs between them. The material used for the rib is preferably an elastic material such as silicone rubber in order to prevent the wound group from being damaged. The rib may be present on either the inner surface of the battery container or the outer surface of the winding group. One that is more advantageous in battery design and manufacturing can be appropriately selected. Further, in this example, a combination of a cylindrical shape for the battery container and a winding group for the electrode plate group was employed. This is the most commonly used combination at present and takes into account the large number of shipments. However, the present invention is not limited to this. Non-cylindrical type for battery case, combination of winding group for electrode plate group, non-cylindrical type for battery case,
Naturally, the present invention can be applied to a combination of a structure in which a positive electrode and a negative electrode are laminated on an electrode plate group via a separator. Examples of the non-cylindrical battery container include a rectangular shape such as a so-called chewing gum shape, a partially rounded rectangular battery, a large rectangular battery for electric vehicles, a triangular prism, and a polygonal prism having five or more prisms. Batteries using these non-cylindrical battery containers have less dead space when mounted on electronic, electrical equipment, and the like, and are expected to have improved energy density, compared to batteries using cylindrical battery containers. Therefore, the number of shipments is expected to further increase in the future. In addition, since the non-cylindrical battery has many flat portions, there is a greater possibility that a nail or the like will be inserted than a cylindrical battery, and it is considered that there are many opportunities to exhibit the effects of the present invention. In this example, amorphous carbon was selected as a material capable of doping and undoping lithium, but the present invention is not limited to this. Graphite, metal oxides and the like can also be used. These can be used in combination.

【0013】[0013]

【実施例】発明の実施の形態に記載したリチウムイオン
二次電池の空隙率(=(電池容器内横断面積−捲回群横
断面積)/電池容器内横断面積)を調整して実施例1〜
5、比較例1〜5のリチウムイオン二次電池を作製し
た。捲回群横断面積は3カ所の直径の値の平均値を直径
とする真円として算出。なお捲回群横断面積は軸芯部の
面積も含む。前記調整方法は正極、負極の長さをそれぞ
れ変えるものである。また比較例1〜5のリチウムイオ
ン二次電池は、捲回群外側面全体をポリイミド(PI)テ
ープで捲き、更に捲回群軸芯部の空間にもポリイミドテ
ープを詰め込んで空隙率を0とした。
EXAMPLES The porosity of the lithium ion secondary battery described in the embodiment of the invention (= (cross-sectional area in battery container-cross-sectional area in winding group) / cross-sectional area in battery container) was adjusted to obtain Examples 1 to 3.
5. Lithium ion secondary batteries of Comparative Examples 1 to 5 were produced. The cross-sectional area of the winding group was calculated as a perfect circle having the diameter of the average value of the three diameters. The cross-sectional area of the winding group includes the area of the shaft core. The adjustment method changes the lengths of the positive electrode and the negative electrode, respectively. In addition, the lithium ion secondary batteries of Comparative Examples 1 to 5 were formed by winding the entire outer surface of the wound group with a polyimide (PI) tape, and further filling the space in the core of the wound group with the polyimide tape to reduce the porosity to 0. did.

【0014】実施例1〜5、比較例1〜5のリチウムイ
オン二次電池についてSBA規格に基づく釘刺し試験を
実施した。試験方法を以下に示す。図2に釘刺し試験装
置の概略図を示す。満充電状態の電池を鉄製治具に取り
付け、コンプレッサのエア圧力(6kg/mm2)によ
り釘(φ4.8鋼鉄製ドリル使用)を電池のほぼ中央部で
電極面に対し垂直方向に貫通させる。この際、電池電
圧、電池温度をレコーダーで測定、記録した。温度測定
には熱電対Kを使用した。釘刺し試験の結果を表1に示
す。
A nail penetration test based on the SBA standard was performed on the lithium ion secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 5. The test method is shown below. FIG. 2 shows a schematic view of the nail penetration test apparatus. A fully charged battery is mounted on an iron jig, and a nail (using a φ4.8 steel drill) is penetrated in a direction substantially perpendicular to the electrode surface at a substantially central portion of the battery by air pressure (6 kg / mm 2 ) of a compressor. At this time, the battery voltage and the battery temperature were measured and recorded by a recorder. Thermocouple K was used for temperature measurement. Table 1 shows the results of the nail penetration test.

【0015】[0015]

【表1】 [Table 1]

【0016】表1より次のことが分かる。The following can be seen from Table 1.

【0017】(1)空隙率0の電池(比較例1〜5)は
全て発火した。
(1) All batteries having a porosity of 0 (Comparative Examples 1 to 5) ignited.

【0018】(2)空隙率が正の値の電池(実施例1〜
5)は発火しないものがあった。
(2) Batteries having a positive porosity (Examples 1 to 3)
5) did not ignite.

【0019】(3)空隙率が10%以上の電池(実施例
1、2)の発火率は0%であった。
(3) The firing rate of the batteries having a porosity of 10% or more (Examples 1 and 2) was 0%.

【0020】以上の結果より釘刺し試験時の発火は、電
池容器内側面と捲回群外側面との間の空隙の大きさと関
係があることがわかる。これは釘刺しした際、空隙が小
さいと捲回群の変形可能な領域が少ないため、さらに短
絡のレベルを大きくし発火を招くものと思われる。また
釘刺し試験時の発火を抑制するためには空隙率を10%
以上とするのがより好ましいことがわかった。
From the above results, it can be seen that the ignition at the time of the nail penetration test is related to the size of the gap between the inner surface of the battery container and the outer surface of the winding group. This is presumably because when the nail is pierced, if the gap is small, the area where the winding group can be deformed is small, so that the level of the short circuit is further increased to cause ignition. In addition, the porosity should be 10% to suppress ignition during nail penetration test.
It has been found that the above is more preferable.

【0021】[0021]

【発明の効果】本発明により、機械的要因に対する安全
性の高いリチウムイオン二次電池を提供することができ
た。具体的には、充電状態で釘(φ5)を刺すような内部
短絡をおこしても発煙、発火を抑制できる、より安全性
の高いリチウムイオン二次電池を提供することができ
た。
According to the present invention, a lithium ion secondary battery having high safety against mechanical factors can be provided. Specifically, it was possible to provide a more secure lithium ion secondary battery capable of suppressing smoke and ignition even when an internal short circuit such as piercing a nail (φ5) occurs in a charged state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池容器が円筒形で、極板群が捲回群である本
発明の一例のリチウムイオン二次電池の横断面図であ
る。
FIG. 1 is a cross-sectional view of a lithium ion secondary battery according to an example of the present invention in which a battery container is cylindrical and an electrode group is a wound group.

【図2】釘刺し試験機の概略図である。FIG. 2 is a schematic view of a nail penetration tester.

【符号の説明】[Explanation of symbols]

1.正極 1b.正極集電体 2.負極 2b.負極集電体 3.セパレータ 5.Niメッキ鉄缶 1. Positive electrode 1b. 1. positive electrode current collector Negative electrode 2b. Negative electrode current collector 3. Separator 5. Ni-plated iron can

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リチウムをドープ・脱ドープしうる材料よ
りなる負極活物質を用いるリチウムイオン二次電池にお
いて、 電池容器内側面と、極板群外側面との間の実質的に全面
に亘り隙間が形成し得る構造であることを特徴とするリ
チウムイオン二次電池。
1. A lithium ion secondary battery using a negative electrode active material made of a material capable of doping and undoping lithium, wherein a gap is formed over substantially the entire surface between an inner surface of a battery container and an outer surface of an electrode group. A lithium ion secondary battery characterized by having a structure that can be formed.
【請求項2】リチウムをドープ・脱ドープしうる材料よ
りなる負極活物質を用いるリチウムイオン二次電池にお
いて、 電池容器内側面と、極板群外側面との間全域に亘り隙間
が形成し得る構造であり、 前記隙間にリブを設置し、極板群を固定してなるリチウ
ムイオン二次電池。
2. In a lithium ion secondary battery using a negative electrode active material made of a material capable of doping and undoping lithium, a gap can be formed over the entire area between the inner surface of the battery container and the outer surface of the electrode plate group. It is a structure, The rib is installed in the said gap | interval, The lithium ion secondary battery which fixes an electrode plate group.
【請求項3】電池容器内の空隙率(=(電池容器内横断
面積−極板群横断面積)/電池容器内横断面積)が10
%以上であることを特徴とする請求項1又は2記載のリ
チウムイオン二次電池。
3. The porosity in the battery case (= (cross-sectional area in battery case-cross-sectional area in electrode group) / cross-sectional area in battery case) is 10
% Or more. 3. The lithium ion secondary battery according to claim 1, wherein
【請求項4】電池が円筒形である請求項1〜3のいずれ
かに記載のリチウムイオン二次電池。
4. The lithium ion secondary battery according to claim 1, wherein the battery is cylindrical.
【請求項5】電池が非円筒形である請求項1〜3のいず
れかに記載のリチウムイオン二次電池。
5. The lithium ion secondary battery according to claim 1, wherein the battery has a non-cylindrical shape.
JP9129057A 1997-05-20 1997-05-20 Lithium ion secondary battery Pending JPH10321260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9129057A JPH10321260A (en) 1997-05-20 1997-05-20 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9129057A JPH10321260A (en) 1997-05-20 1997-05-20 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH10321260A true JPH10321260A (en) 1998-12-04

Family

ID=15000031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9129057A Pending JPH10321260A (en) 1997-05-20 1997-05-20 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH10321260A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102342A2 (en) * 1999-11-17 2001-05-23 Shin-Kobe Electric Machinery Co. Ltd Cylindrical lithium-ion battery
KR100528896B1 (en) * 1999-01-22 2005-11-16 삼성에스디아이 주식회사 Electrode of secondary battery
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
US7910242B2 (en) 2007-02-20 2011-03-22 Panasonic Corporation Nonaqueous electrolyte secondary battery
KR20150054221A (en) * 2013-11-11 2015-05-20 주식회사 엘지화학 Secondary battery having movable space and method for forming movable space

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528896B1 (en) * 1999-01-22 2005-11-16 삼성에스디아이 주식회사 Electrode of secondary battery
EP1102342A2 (en) * 1999-11-17 2001-05-23 Shin-Kobe Electric Machinery Co. Ltd Cylindrical lithium-ion battery
EP1102342A3 (en) * 1999-11-17 2002-07-24 Shin-Kobe Electric Machinery Co. Ltd Cylindrical lithium-ion battery
US6509114B1 (en) 1999-11-17 2003-01-21 Shin-Kobe Electric Machinery Co., Ltd. Cylindrical lithium-ion battery
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
US7910242B2 (en) 2007-02-20 2011-03-22 Panasonic Corporation Nonaqueous electrolyte secondary battery
KR20150054221A (en) * 2013-11-11 2015-05-20 주식회사 엘지화학 Secondary battery having movable space and method for forming movable space

Similar Documents

Publication Publication Date Title
US6841297B2 (en) Lithium secondary battery
JP4563264B2 (en) Lithium secondary battery
US7767348B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
US20090181305A1 (en) Non-Aqueous Electrolyte Secondary Battery
US8758917B2 (en) Secondary battery
JP4515405B2 (en) Cylindrical lithium secondary battery and manufacturing method thereof
US5658683A (en) Method for making a cell
JP2007200795A (en) Lithium ion secondary battery
WO2021229846A1 (en) Secondary battery
JPH11283588A (en) Sealed battery
CN102047468A (en) Cylindrical battery
JP5261869B2 (en) Nonaqueous electrolyte secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JPH10321260A (en) Lithium ion secondary battery
JPH11154500A (en) Nonaqueous electrolyte secondary battery
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JP2000182573A (en) Secondary battery
WO2022059339A1 (en) Secondary battery
US5935731A (en) Cylindrical battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP3438301B2 (en) Non-aqueous electrolyte secondary battery
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
JP2000277063A (en) Sealed battery
JP4420484B2 (en) Sealed battery
JP4789295B2 (en) Sealed battery