JPH10321220A - Manufacture of rolled electrode body for secondary battery - Google Patents

Manufacture of rolled electrode body for secondary battery

Info

Publication number
JPH10321220A
JPH10321220A JP9132514A JP13251497A JPH10321220A JP H10321220 A JPH10321220 A JP H10321220A JP 9132514 A JP9132514 A JP 9132514A JP 13251497 A JP13251497 A JP 13251497A JP H10321220 A JPH10321220 A JP H10321220A
Authority
JP
Japan
Prior art keywords
separator layer
electrode plate
strip
negative electrode
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9132514A
Other languages
Japanese (ja)
Inventor
Noriaki Sato
典明 佐藤
Juichi Ino
壽一 猪野
Kenichi Nakamura
賢一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Glass Fiber Co Ltd
Original Assignee
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Glass Fiber Co Ltd filed Critical Nippon Glass Fiber Co Ltd
Priority to JP9132514A priority Critical patent/JPH10321220A/en
Publication of JPH10321220A publication Critical patent/JPH10321220A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture of efficiently manufacturing a rolled electrode body having high porosity and a thin separator layer. SOLUTION: In a manufacture of a rolled electrode body for a secondary battery which is composed of a band-like positive electrode sheet, a band-like negative electrode sheet, and a separator layer rolled while the separator layer being sandwiched between the band-like positive electrode sheet and the band- like negative electrode sheet, the separator layer is previously and unitedly formed either in one side face or both side faces of at least one of the band-like positive electrode sheet and the band-like negative electrode sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池用電極体の製造
方法、特に二次電池用巻回電極体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a battery electrode assembly, and more particularly to a method for manufacturing a wound electrode assembly for a secondary battery.

【0002】[0002]

【従来の技術】近年、コードレス機器用の電源には、繰
り返し使用できるリチウムイオン電池、ニッケル水素電
池に代表される小型二次電池が広く採用されている。
2. Description of the Related Art In recent years, small rechargeable batteries such as lithium ion batteries and nickel hydride batteries which can be used repeatedly have been widely used as power supplies for cordless devices.

【0003】これらの小型二次電池は正極板とセパレー
ターと負極板とで電極体を構成するが、電極体の幾種類
かの構造の中で、電極面積が広くとれる巻回電極体が一
般的である。巻回電極体は、それぞれ帯状をした正極板
とセパレーターと負極板を電池製造時に同時に巻き込ん
で形成される。この巻回電極体に用いられるセパレータ
ーは正極と負極が接触しないように絶縁する機能のほか
に、正極と負極との間でイオンのやりとりをする電解液
を保持する機能が必要である。
[0003] In these small secondary batteries, an electrode body is composed of a positive electrode plate, a separator and a negative electrode plate. Among several types of electrode structures, a wound electrode body having a large electrode area is generally used. It is. The wound electrode body is formed by simultaneously winding a strip-shaped positive electrode plate, a separator, and a negative electrode plate during battery production. The separator used in the spirally wound electrode body needs to have a function of retaining an electrolyte for exchanging ions between the positive electrode and the negative electrode, in addition to a function of insulating the positive electrode and the negative electrode so as not to contact each other.

【0004】電池性能の向上には高いイオン伝導性能を
確保する必要があり、イオンの通り道が広く、イオンが
通る距離を短くするため、セパレーターとして多孔度の
高い薄膜シート(以後、多孔性シートと呼ぶ)が用いら
れている。この多孔性シートの多孔度を増やし、そして
厚みを薄くすれば、イオン伝導性能を向上させ、電池の
性能を高めることができる。
[0004] In order to improve battery performance, it is necessary to ensure high ion conduction performance. In order to widen the path of ions and to shorten the distance through which ions pass, a thin porous sheet (hereinafter referred to as a porous sheet) is used as a separator. Call) is used. By increasing the porosity and reducing the thickness of the porous sheet, the ion conduction performance can be improved and the performance of the battery can be improved.

【0005】しかしながら、この多孔度の増大および厚
みの減少のどちらも、セパレーターの強度を弱くする方
向に働く結果、巻回電極体を形成するときに必要な巻き
取り方向の引張強度が不足し、巻き取り作業時に帯状セ
パレーターが切断して作業能率および製造歩留まりが低
下する事態となる。また、帯状セパレーターが切断しな
くとも、通常、その中心に金属層を集電体として持つ正
極板や負極板に比べて、セパレーターは多孔性の材料で
あるので巻き取り作業時に伸びが大きく、その伸びの結
果、幅方向の長さが減少し、正極板と負極板の端部にお
いてセパレーターのない部分が生じ、短絡の危険が生ず
る。さらに、多孔度を増やしたり、薄くしたセパレータ
ーは屈曲強度が小さくていわゆる腰が弱く、わずかな気
流の変化やセパレーターの表面の粗さの変化によるハン
ドリング装置との摩擦係数の変化により、セパレーター
の折れ曲りや位置ずれが生じ、前記と同様の短絡やセパ
レーターのはみ出し、極板間隔の不良などの欠点が発生
しやすい。
However, both the increase in porosity and the decrease in thickness act in the direction of weakening the strength of the separator, resulting in insufficient tensile strength in the winding direction required for forming a wound electrode body, At the time of the winding operation, the band-shaped separator is cut, and the operation efficiency and the production yield are reduced. Also, even if the strip-shaped separator does not cut, usually, compared to the positive electrode plate and the negative electrode plate having a metal layer as a current collector at the center thereof, the separator is a porous material, so the elongation during winding operation is large, As a result of the elongation, the length in the width direction is reduced, and a portion without a separator is formed at the end portions of the positive electrode plate and the negative electrode plate, thereby causing a danger of a short circuit. Furthermore, separators with increased porosity or thinner have low flexural strength, so-called low stiffness, and breakage of the separator due to slight changes in airflow and changes in the coefficient of friction with the handling device due to changes in the surface roughness of the separator. Bending and misalignment occur, and shortcomings similar to the above, protrusion of the separator, and defects such as poor electrode plate spacing are likely to occur.

【0006】この問題を解決するため、多孔性シートを
ガラス繊維などの強度の高い補強用繊維と複合させるこ
とが考えられるが、多孔性シートは通常はその多孔化の
過程で延伸がかけられるため、補強用繊維がその延伸の
妨げとなって多孔化され難くなり、また均一な多孔度も
得られない。
In order to solve this problem, a porous sheet may be combined with a high-strength reinforcing fiber such as glass fiber, but the porous sheet is usually stretched in the process of making it porous. In addition, the reinforcing fibers hinder the drawing of the reinforcing fibers, making it difficult for the reinforcing fibers to be porous, and cannot provide a uniform porosity.

【0007】[0007]

【発明が解決しようとする課題】本発明は多孔度が高
く、薄いセパレーター層を持つ巻回電極体を効率的に製
造する製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for efficiently producing a wound electrode body having a high porosity and a thin separator layer.

【0008】[0008]

【課題を解決するための手段】本発明は、帯状正極板、
帯状負極板およびセパレーター層を、帯状正極板と帯状
負極板の間に前記セパレーター層が介在するように巻回
する二次電池用巻回電極体の製造方法において、巻回す
る前の、前記帯状正極板および前記帯状負極板の少なく
とも一方の極板の片側表面または両表面に予め一体的に
セパレーター層を形成させることを特徴とする二次電池
用巻回電極体の製造方法である。
SUMMARY OF THE INVENTION The present invention provides a belt-like positive electrode plate,
In a method for manufacturing a wound electrode body for a secondary battery in which a strip-shaped negative electrode plate and a separator layer are wound so that the separator layer is interposed between the strip-shaped positive electrode plate and the strip-shaped negative electrode plate, before the winding, the strip-shaped positive electrode plate And a method for manufacturing a wound electrode body for a secondary battery, wherein a separator layer is integrally formed on one surface or both surfaces of at least one electrode plate of the strip-shaped negative electrode plate in advance.

【0009】本発明において、電池に用いられる巻回電
極体の正極もしくは負極の帯状電極の片面もしくは両面
に、その巻回に先だって予め、多孔質のセパレーター層
を形成させる。
In the present invention, a porous separator layer is previously formed on one or both sides of a positive or negative electrode strip of a spirally wound electrode body used in a battery prior to the winding.

【0010】多孔質のセパレーター層は、その内部に、
電極に面する側の表面からその反対表面までの連通孔を
有しており、電解液を含浸して、正極と負極とのイオン
のやりとりを可能にする。セパレーター層の多孔度は、
空間体積パーセントで、従来の多孔性シートの値、すな
わち30〜40%に設定してもよいが、引張強度が必要
ではないので、これ以上、例えば40〜97%に設定す
ることも可能であり、多孔度が高いほど、イオン伝導度
の向上に寄与することができる。
[0010] The porous separator layer has a
It has a communication hole from the surface on the side facing the electrode to the opposite surface, and is impregnated with an electrolytic solution to enable exchange of ions between the positive electrode and the negative electrode. The porosity of the separator layer is
In terms of the space volume percentage, the value may be set to the value of the conventional porous sheet, that is, 30 to 40%. However, since the tensile strength is not required, it is possible to set the value to a higher value, for example, 40 to 97%. The higher the porosity, the more the ion conductivity can be improved.

【0011】また、セパレーター層の孔の直径(孔径)
の好ましい値は、セパレーター層の孔が繊維の集積体を
含めた三次元編み目構造により形成される(以下、この
セパレーター層を繊維集積体タイプと称する)か、膜状
基材への貫通孔にて形成される(以下、このセパレータ
ー層を膜タイプと称する)かにより異なるし、また、本
発明をリチウムイオン電池のような非水系電池に適用す
るのか、ニッケル水素電池や鉛蓄電池のような水系電池
に適用するのかによっても異なる。
The diameter (pore diameter) of the pores in the separator layer
The preferable value of is that the pores of the separator layer are formed by a three-dimensional knitted structure including the fiber aggregate (hereinafter, this separator layer is referred to as a fiber aggregate type), or (Hereinafter, this separator layer is referred to as a membrane type), and whether the present invention is applied to a non-aqueous battery such as a lithium ion battery or an aqueous battery such as a nickel hydrogen battery or a lead storage battery. It also depends on whether it is applied to batteries.

【0012】すなわち、膜タイプのセパレーター層を水
系電池で用いる場合には、電極から脱落した活物質の対
極への移行を防止するため、セパレーター層の孔径は2
μm以下とする必要がある。それに対して、この膜タイ
プのセパレーター層を非水系電池で用いる場合には、上
記脱落活物質の移行防止の他に、充電時に金属の樹状晶
が発生してセパレーター層を貫通することを防ぐため
に、水系電池の場合よりも、更に孔径の小さくする必要
があり、1.0μm以下の孔径であることが望ましい。
That is, when a membrane-type separator layer is used in an aqueous battery, the pore size of the separator layer is 2 to prevent the active material dropped from the electrode from migrating to the counter electrode.
It is necessary to be less than μm. On the other hand, when this membrane-type separator layer is used in a non-aqueous battery, in addition to preventing the migration of the deactivated material, it also prevents the formation of metal dendrites during charging and penetration of the separator layer. Therefore, it is necessary to make the pore diameter smaller than that of the water-based battery, and it is desirable that the pore diameter is 1.0 μm or less.

【0013】また、繊維集積体タイプのセパレーター層
を水系電池で用いる場合には、そのセパレーター層の孔
は、膜タイプのセパレーター層の直状に近い孔形状とは
異なり、曲がりくねった形状の孔が入り組んだ構造をし
ているので、セパレーター層の厚み方向での活物質の移
行が妨げられやすく、従って平均孔径として10μm以
下がよい。この繊維集積体タイプのセパレーター層を非
水系電池で用いる場合には、上記脱落活物質の移行防止
の他に、充電時に金属の樹状晶が発生してセパレーター
層を貫通することを防ぐために、水系電池の場合より
も、更に孔径の小さくする必要があり、このセパレータ
ー層は5μm以下の孔径を有することが望ましい。
When a fiber-assembly type separator layer is used in an aqueous battery, the pores of the separator layer are different from the pores of the membrane type separator layer which are almost straight, and have a meandering shape. Because of the intricate structure, migration of the active material in the thickness direction of the separator layer is easily hindered, and therefore, the average pore diameter is preferably 10 μm or less. In the case of using this fiber assembly type separator layer in a non-aqueous battery, in addition to the above-described prevention of the migration of the deactivated material, in order to prevent dendrites of metal from being generated during charging and penetrating the separator layer, It is necessary to make the pore size even smaller than in the case of an aqueous battery, and it is desirable that this separator layer has a pore size of 5 μm or less.

【0014】セパレーター層の材質としては、ポリプロ
ピレン、ポリエチレン、塩化ビニル樹脂などの樹脂材料
の中から選択できる。また、この樹脂中に、耐熱性の高
い非電導性の充填材を混合させることは、もし、電池が
何らかの原因で高温となって、セパレーター層の樹脂が
融けて軟化して、正極と負極とを隔離する強度を有しな
くなっても、正極板と負極板との間に前記高耐熱性充填
材が残存するので、正極板と負極板との間の電気絶縁が
維持されるので都合がよい。耐熱性の高い非電導性の充
填材としては、ガラス、アルミナなどの非電導性無機材
料の繊維または粉体の他、樹脂の中でもフッ素樹脂、エ
ンジニアリングプラスチック等の高耐熱性樹脂の繊維や
粉体も利用できる。この非電導性無機材料の大きさは、
繊維の場合、直径にして0.3〜10μmが好ましく、
粉体の場合の粒子直径は5〜30μmが好ましい。また
セパレーター層の全重量に対して通常0.002〜30
重量%添加される。
The material of the separator layer can be selected from resin materials such as polypropylene, polyethylene and vinyl chloride resin. Also, if a non-conductive filler having high heat resistance is mixed into the resin, if the battery becomes hot for some reason, the resin of the separator layer melts and softens, and the positive electrode and the negative electrode are mixed. Even if it does not have the strength to isolate the above, the high heat-resistant filler remains between the positive electrode plate and the negative electrode plate, so that electrical insulation between the positive electrode plate and the negative electrode plate is maintained, which is convenient. . Non-conductive fillers with high heat resistance include fibers and powders of non-conductive inorganic materials such as glass and alumina, and fibers and powders of highly heat-resistant resins such as fluororesins and engineering plastics among resins. Also available. The size of this non-conductive inorganic material is
In the case of fibers, the diameter is preferably 0.3 to 10 μm,
In the case of powder, the particle diameter is preferably 5 to 30 μm. Further, usually 0.002 to 30 with respect to the total weight of the separator layer.
% By weight.

【0015】本発明において、帯状正極板および前記帯
状負極板の少なくとも一方の極板の片側表面または両表
面に予め一体的にセパレーター層を形成させる方法の具
体的な方法の一つは、正極板もしくは負極板にシート状
セパレーターを貼り付けることである。
In the present invention, one of the specific methods of forming a separator layer on one surface or both surfaces of at least one of the strip-shaped positive electrode plate and at least one of the strip-shaped negative electrode plates in advance is a positive electrode plate. Alternatively, a sheet-like separator is attached to the negative electrode plate.

【0016】貼り付けるシート状セパレーターの内、膜
タイプのセパレーター層は、(1)ポリエチレンなどの
ポリオレフィン樹脂に流動パラフィンなどの低分子量物
質を混合し、加熱溶融させ、シート形状に押し出し成形
したのち、易揮発性溶剤で洗浄して残留する低分子量物
質を除去する方法、(2)樹脂と無機粉体や可塑剤を混
合して、これをフィルム成形し、溶剤により無機粉体や
可塑剤を抽出して延伸する方法、または(3)結晶性高
分子樹脂を溶融押し出しして、シート化し、結晶化熱処
理の後、低温で延伸により、微孔のイニシエーターを形
成して、引き続き高温での延伸により微多孔を形成する
方法、等により製造することができる。これらのシート
状セパレーターには、前述のように、高温時の絶縁性能
を向上させる目的で、事前にガラスやアルミナの繊維や
粉末、高耐熱性樹脂の繊維や粉末を予め基材となる樹脂
に混合しておいてもよい。この膜タイプのセパレーター
層の孔径は、低分子量物質、無機粉体や可塑剤の粒径を
所定の値に維持すること等により調節することができ
る。
Among the sheet-like separators to be attached, the membrane-type separator layer is formed by (1) mixing a polyolefin resin such as polyethylene with a low molecular weight substance such as liquid paraffin, heating and melting the mixture, and extruding the sheet into a sheet. A method of removing residual low molecular weight substances by washing with a volatile solvent. (2) Mixing a resin with an inorganic powder or a plasticizer, forming a film, and extracting the inorganic powder or the plasticizer with the solvent. Or (3) melt-extruding the crystalline polymer resin into a sheet, forming a microporous initiator by stretching at a low temperature after crystallization heat treatment, and subsequently stretching at a high temperature. Can be produced by a method of forming microporous material by the method described above. As described above, these sheet-like separators are preliminarily made of glass or alumina fibers or powders or high heat-resistant resin fibers or powders in advance for the purpose of improving the insulation performance at high temperatures. They may be mixed. The pore size of the membrane type separator layer can be adjusted by maintaining the particle size of the low molecular weight substance, the inorganic powder or the plasticizer at a predetermined value.

【0017】また貼り付けるシート状セパレーターの
内、繊維集積体タイプのセパレーター層としては、
(1)メルトブロー不織布や分割繊維不織布のような樹
脂繊維の極細繊維不織布、または(2)湿式抄紙プロセ
スで製造された極細ガラス繊維不織布などの不織布、を
用いることができる。これらの不織布は、異種の不織布
シートを貼り合わせたものや前記の膜シートと貼り合わ
せたものや異種の繊維を混合して不織布化したものでも
よい。この繊維集積体タイプのセパレーター層の孔径
は、使用する繊維の直径を所定の値に維持すること等に
より調節することができる。
Further, among the sheet-like separators to be attached, the fiber-assembly-type separator layer includes:
(1) Ultrafine fiber nonwoven fabric of resin fibers such as melt blown nonwoven fabric and split fiber nonwoven fabric, or (2) nonwoven fabric such as ultrafine glass fiber nonwoven fabric produced by a wet papermaking process can be used. These nonwoven fabrics may be those obtained by bonding different types of nonwoven sheets, those bonded to the above-mentioned membrane sheet, or those formed by mixing different types of fibers. The pore diameter of the fiber assembly type separator layer can be adjusted by maintaining the diameter of the fiber used at a predetermined value.

【0018】これらの帯状セパレーターは、電池の帯状
電極の幅に合わせた幅に切断され、帯状正極板もしくは
帯状負極板に片面または両面に貼り付けられる。
These strip separators are cut into a width corresponding to the width of the strip electrodes of the battery, and attached to one or both sides of a strip-shaped positive electrode plate or a strip-shaped negative electrode plate.

【0019】貼り付ける方法の一つは、ホットメルト樹
脂粉末を貼り付けたい帯状極板に少量、均一に散布し、
その上に所定の幅に切断された、前記シートを置いて、
加熱し、ホットメルト樹脂を溶融し、接着をおこなう方
法である。その他に、帯状極板の両面に極板の幅より大
きめに切断された前記シートを幅方向の両端が等分に極
板よりはみ出すように沿わせ、両面のシートのはみ出し
た部分同士を熱接着やホットメルト接着をおこなうこと
によっても帯状セパレーターを帯状負極板の表面に貼り
付けることができる。
One method of sticking is to spread a small amount of hot-melt resin powder uniformly on a strip-shaped electrode plate to be sticked,
Put the sheet cut on it to a predetermined width,
This is a method of heating and melting the hot melt resin to perform bonding. In addition, the sheet cut larger than the width of the electrode plate on both sides of the band-shaped electrode plate is placed along the width direction so that both ends of the sheet protrude equally from the electrode plate, and the protruding portions of the sheet on both surfaces are thermally bonded to each other. The band separator can also be attached to the surface of the band negative electrode plate by performing hot melt bonding.

【0020】巻回する前の帯状極板に予め一体的にセパ
レーター層を形成させる方法として、上記貼り付け法の
他に、セパレーターの原料を液状でまたは粉末状で前記
極板表面に被覆した後に反応させまたは加工することに
よっても製造できる。
As a method of integrally forming a separator layer in advance on a strip-shaped electrode plate before winding, in addition to the above-mentioned attaching method, after a raw material for a separator is coated on the surface of the electrode plate in a liquid or powder form, It can also be produced by reacting or processing.

【0021】一般に、連続気泡を形成することのできる
プラスチックフォーム形成法としては、(1)界面活性
剤を含んだスラリー状の樹脂に不活性気体を機械的に分
散吸収させて、その気体の膨張により樹脂を発泡させる
気体混入法、(2)液状樹脂の硬化によって生ずる反応
熱を利用して蒸発型発泡剤を気散させ、発泡と同時に樹
脂を硬化させて気泡構造を形成する二液混合発泡法、
(3)ポリマーの生成反応と同時に発生するガスで気泡
構造を形成する化学反応法、(4)水またはその他の溶
剤で、溶解除去できる可溶性の固形微粉末を樹脂に混和
した後、これを溶出して気泡構造を形成させる溶出法、
(5)樹脂を溶媒で薄め、これを所定の形状に成形した
後、水中で溶媒置換をおこない多孔体を形成せしむる湿
式凝固法、(6)プラスチック粉末を金型に充填し、プ
ラスチックの融点以下の温度で、適当時間焼結して、粒
子間の未結合部分を気泡として残す焼結法、または
(7)ある溶媒に対して可溶性の樹脂と少なくとも1種
類の非溶解性のエマルジョンもしくはディスパージョン
を混合し、フィルム化した後、溶媒に浸漬し、溶媒に溶
解する樹脂のみ溶出して多孔化する方法(多孔化方
法)、等があり、これを応用して帯状極板に一体的にセ
パレーター層を形成することができる。
Generally, as a method of forming a plastic foam capable of forming open cells, (1) an inert gas is mechanically dispersed and absorbed in a slurry resin containing a surfactant to expand the gas. (2) A two-component mixed foaming method that uses a reaction heat generated by curing of a liquid resin to diffuse an evaporative foaming agent, and simultaneously cures the resin to form a cellular structure. Law,
(3) A chemical reaction method that forms a gas bubble structure with a gas generated simultaneously with the formation reaction of the polymer. (4) A soluble solid fine powder that can be dissolved and removed with water or another solvent is mixed with the resin and then eluted. Elution method to form a bubble structure by
(5) A resin is diluted with a solvent, molded into a predetermined shape, and then subjected to solvent substitution in water to form a porous body. (6) A plastic powder is filled in a mold, and Sintering at a temperature below the melting point for a suitable time to leave unbonded portions between particles as bubbles, or (7) a resin soluble in a solvent and at least one insoluble emulsion or After mixing the dispersion to form a film, immersing it in a solvent, and elute only the resin that is soluble in the solvent to make it porous (porosity making method). To form a separator layer.

【0022】これらの連続気泡を形成することのできる
プラスチックフォーム形成法のうち、上記(6)の焼結
法を応用する場合は、例えば静電気力を利用して極板表
面にプラスチック粉末の層を付着させ、その後にこの層
を加熱・焼結することにより、プラスチック粉末の相互
融着およびプラスチック粉末の極板への融着をおこなわ
せて、帯状極板に表面にセパレーター層を形成させる。
この方法は帯状極板にセパレーター層が形成される際
に、電極板とセパレーター層との境界部にセパレーター
層樹脂材料のフィルムができることがなく、気泡部に含
浸される電解液が十分電極と接することができるので、
好適である。またこの方法は不純物を残さず、低公害で
あるため好適である。
When applying the sintering method (6) among the plastic foam forming methods capable of forming these open cells, a plastic powder layer is formed on the surface of the electrode plate using, for example, electrostatic force. By adhering and then heating and sintering this layer, mutual fusion of the plastic powder and fusion of the plastic powder to the electrode plate are performed to form a separator layer on the surface of the strip-shaped electrode plate.
In this method, when the separator layer is formed on the belt-shaped electrode plate, a film of the separator layer resin material is not formed at the boundary between the electrode plate and the separator layer, and the electrolyte impregnated in the bubble portion is sufficiently in contact with the electrode. So you can
It is suitable. This method is suitable because it does not leave impurities and has low pollution.

【0023】焼結法を本発明に適応する場合、プラスチ
ック粉末としては、セパレーター層の厚みにもよるが、
その平均粒径を50μm以下で選択することが望まし
い。粒径が小さければ小さいほど、例えば粒径が約0.
1μmまでは、セパレーター層の緻密化ができ、好まし
いが、50μmを越えると、空隙の径が大きくなりすぎ
て、耐ショート性(耐短絡性)を低下させることとな
る。使用するプラスチック粉末の粒径により最終のセパ
レーター層の孔径を調節することができる。プラスチッ
ク粉末の樹脂の種類としてはポリオレフィン樹脂が電池
の中で不純物の溶出が少なく、安価であることから適し
ている。
When the sintering method is applied to the present invention, the plastic powder depends on the thickness of the separator layer.
It is desirable to select an average particle size of 50 μm or less. The smaller the particle size, the smaller the particle size, e.g.
If the thickness is up to 1 μm, the separator layer can be densified, which is preferable. However, if it exceeds 50 μm, the diameter of the voids becomes too large, and the short-circuit resistance (short-circuit resistance) is reduced. The pore size of the final separator layer can be adjusted by the particle size of the plastic powder used. As the type of resin of the plastic powder, a polyolefin resin is suitable because it has less elution of impurities in the battery and is inexpensive.

【0024】また、これらの連続気泡を形成することの
できるプラスチックフォーム形成法のうち、上記(7)
の多孔化方法では、セパレーター層の孔径はエマルジョ
ンまたはディスパージョンの粒子の粒径により決定され
るが、このエマルジョンまたはディスパージョンの粒子
の粒径を非常に小さくできるので、微細な孔のセパレー
ター層を形成でき、耐ショート性の高いセパレーター層
を形成できる点で適している。
Further, among the plastic foam forming methods capable of forming these open cells, the above (7)
In the porous method, the pore size of the separator layer is determined by the particle size of the emulsion or dispersion particles.Since the particle size of the emulsion or dispersion particles can be extremely small, the separator layer having fine pores is formed. It is suitable because it can be formed and a separator layer having high short-circuit resistance can be formed.

【0025】上記多孔化方法において溶媒として水を用
いる場合、水溶性の樹脂が利用可能であり、ポリビニル
アルコール樹脂、ポリエチレンオキサイド、プルロニッ
クなどが例示できる。また、非溶解性のエマルジョンも
しくはディスパージョンとしてはポリプロピレン樹脂、
ポリエチレン樹脂などのエマルジョンもしくはディスパ
ージョンが例示できる。
When water is used as the solvent in the above-mentioned method for making porous, a water-soluble resin can be used, and examples thereof include polyvinyl alcohol resin, polyethylene oxide, and pluronic. In addition, as a non-soluble emulsion or dispersion, polypropylene resin,
An emulsion or dispersion such as a polyethylene resin can be exemplified.

【0026】また、前記の(1)の気体混入法、(2)
の二液混合発泡法、(3)の化学反応法、(5)の湿式
凝固法、(6)の焼結法、(7)の多孔化方法等のセパ
レーター層の形成方法において、そのセパレーター層形
成の過程で耐熱性の非電導性材料の繊維や粉末をセパレ
ーター層の内部に組み込むことによって、セパレーター
層の正極と負極を絶縁する機能を一層高めることができ
る。
Further, the gas mixing method of the above (1), (2)
In the two-component mixed foaming method, the chemical reaction method in (3), the wet coagulation method in (5), the sintering method in (6), and the porous method in (7). By incorporating fibers or powder of a heat-resistant non-conductive material into the separator layer during the formation process, the function of insulating the positive electrode and the negative electrode of the separator layer can be further enhanced.

【0027】たとえば、セパレーター層の前駆液、前駆
粉末等に耐熱性の非電導性材料の繊維または粉末を予め
混合しておいて、セパレーター層を形成することは、本
発明の巻回電極体を製造するときに、特別にこの繊維、
粉末を意識することなく、セパレーター層にこれらの材
料を導入することができ、本発明の実施形態として、最
適である。
For example, forming a separator layer by previously mixing fibers or powders of a heat-resistant non-conductive material with a precursor solution, a precursor powder, etc. of the separator layer can form the wound electrode body of the present invention. When manufacturing this fiber,
These materials can be introduced into the separator layer without being conscious of the powder, which is the best embodiment of the present invention.

【0028】また、非導電性材料を含まないセパレータ
ー層の前駆液を帯状電極に塗布してから、前駆液の液膜
上に非導電性材料を散布し、その後、セパレーター層と
することにより、セパレーター層にこれらの材料を導入
することができる。この方法はたとえば、球状の非導電
性材料を一つずつ、置いていくなど、散布法を選択する
ことにより、規則正しく、非導電性材料を配置すること
ができ、電池の信頼性を高める上で、好適である。
Further, a precursor solution for the separator layer containing no non-conductive material is applied to the strip-shaped electrode, and then the non-conductive material is sprayed on the liquid film of the precursor solution, and then the separator layer is formed. These materials can be introduced into the separator layer. In this method, for example, a non-conductive material can be arranged regularly by selecting a spraying method, such as placing spherical non-conductive materials one by one, to improve the reliability of the battery. Is preferred.

【0029】本発明において、上述のようにして予め表
面に一体的にセパレーター層を形成させた帯状正極板お
よび前記帯状負極板を、その間にセパレーター層が介在
するように配置して、帯状正極板および前記帯状負極板
のそれぞれに、あるいは一方に、活物質層の脱落、クラ
ックの発生、集電体層の変形や破損の発生しない範囲の
張力を作用させながら、巻回することにより、帯状正極
板、前記帯状負極板、およびセパレーター層が緊密に重
ね合わされた二次電池用巻回電極体が製造される。
In the present invention, the strip-shaped positive electrode plate and the strip-shaped negative electrode plate, each having a separator layer integrally formed on the surface in advance as described above, are arranged so that the separator layer is interposed therebetween. And applying a tension to the or each of the strip-shaped negative electrode plates while applying a tension in a range that does not cause the active material layer to fall off, generate cracks, or deform or damage the current collector layer. A wound electrode body for a secondary battery in which the plate, the strip-shaped negative electrode plate, and the separator layer are closely stacked is manufactured.

【0030】[0030]

【発明の実施の形態】以下、実施例に基づいて本発明を
詳細に説明するが、本発明はかかる実施例にのみ限定さ
れるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited only to such embodiments.

【0031】[実施例1]大きさ30mm×30mm厚
み100μmのニッケル製平板模擬電極の一方表面に平
均粒径が5μmのエチレン酢酸ビニルホットメルト樹脂
粉末を0.5g/m2 の密度でばらまき、その上に目付
け(単位面積(平方メートル)あたり重量g)10g/
2 、平均繊維径3μmのポリプロピレン極細繊維不織
布を置いた後、表面温度が125℃の熱ロールでホット
メルト樹脂粉末を溶解しながら、極細繊維層を押しつぶ
しながら、厚み調節し、前記ニッケル板の表面に接着さ
れた厚み25μmのセパレーター層を形成した。ニッケ
ル板の重量増加と樹脂の比重0.91から計算して、セ
パレーター層の空隙率は60%であった。
Example 1 An ethylene vinyl acetate hot melt resin powder having an average particle size of 5 μm was scattered at a density of 0.5 g / m 2 on one surface of a nickel simulated electrode having a size of 30 mm × 30 mm and a thickness of 100 μm. Weight on top (weight g per unit area (square meter)) 10g /
m 2 , after laying a polypropylene microfiber nonwoven fabric having an average fiber diameter of 3 μm, adjusting the thickness while crushing the microfiber layer while dissolving the hot melt resin powder with a hot roll having a surface temperature of 125 ° C. A 25 μm thick separator layer adhered to the surface was formed. Calculated from the weight increase of the nickel plate and the specific gravity of the resin of 0.91, the porosity of the separator layer was 60%.

【0032】このセパレーター層のイオン伝導度の測定
をアルゴン雰囲気のグローブボックス内でおこなった。
まず、電解液としてエチレンカーボネート、ジエチルカ
ーボネートの1:1の混合溶液に過塩素酸リチウムを1
mol/dm3 となるように溶解したものを用い、充分に平板
模擬電極のセパレーター層に充分含浸させ、対抗電極と
してニッケル板を用いて挟んだ。インピーダンスアナラ
イザーにて電解液のイオン伝導度を測定したところ、0.
9 x 10-3S/cmであった。
The ionic conductivity of the separator layer was measured in a glove box in an argon atmosphere.
First, lithium perchlorate was added to a 1: 1 mixed solution of ethylene carbonate and diethyl carbonate as an electrolytic solution.
Using a solution dissolved at mol / dm 3 , the separator layer of the simulated flat plate electrode was sufficiently impregnated, and sandwiched using a nickel plate as a counter electrode. When the ionic conductivity of the electrolyte was measured with an impedance analyzer,
It was 9 x 10 -3 S / cm.

【0033】それぞれ幅が45mmで厚み24μmのア
ルミニウム箔集電体層の両面にコバルト酸リチウムの正
極活物質を均等に塗付けた厚みが177μmの帯状正極
板および厚み21μmの銅箔集電体層の両面にカーボン
の負極活物質を均等に塗付けた厚みが190μmの帯状
負極板を作製した。前記の帯状正極の両面に、上記と同
じ材質で幅が50mmの帯状ポリプロピレン極細繊維不
織布を用いて上記と同じ方法で厚み25μmのセパレー
ター層を形成した。このセパレーター層付きの帯状正極
板および帯状負極板を重ね合わせて、帯状負極板の長さ
方向に約4.5kgの張力を与えながら渦巻き状に巻回
して、巻回電極体を作製する。その後上記巻回電極体を
負極缶内に挿入し、その後、1mol/dm3となるようにL
iClO4を溶解させた、エチレンカーボネートとジエ
チルカーボネートの1:1の混合溶液を上記負極缶内に
注液して円筒型非水系リチウム二次電池を作製する。こ
の電池のサイクル特性を調べたところ優れた特性を示し
た。
An aluminum foil current collector layer having a width of 45 mm and a thickness of 24 μm is coated with a positive electrode active material of lithium cobalt oxide uniformly on both surfaces, and a strip-shaped positive electrode plate having a thickness of 177 μm and a copper foil current collector layer having a thickness of 21 μm are provided. A 190 μm-thick strip-shaped negative electrode plate was prepared by uniformly applying a carbon negative electrode active material to both surfaces of the substrate. A separator layer having a thickness of 25 μm was formed on both surfaces of the belt-shaped positive electrode by using the same material as described above and a band-shaped polypropylene ultrafine fiber nonwoven fabric having a width of 50 mm in the same manner as described above. The strip-shaped positive electrode plate and the strip-shaped negative electrode plate with the separator layer are superimposed and spirally wound while applying a tension of about 4.5 kg in the length direction of the strip-shaped negative electrode plate to produce a wound electrode body. Thereafter, the wound electrode body is inserted into a negative electrode can, and then L is adjusted to 1 mol / dm 3.
A 1: 1 mixed solution of ethylene carbonate and diethyl carbonate in which iClO 4 is dissolved is poured into the negative electrode can to produce a cylindrical nonaqueous lithium secondary battery. When the cycle characteristics of this battery were examined, it showed excellent characteristics.

【0034】[実施例2]微粒子状超高分子ポリオレフ
ィンパウダー(三井石油化学製、「ミペロンXM−22
0」、平均粒径10μm)を大きさ30mm×30mm
厚み100μmのニッケル製平板模擬電極の一方表面に
厚み30μmになるよう静電塗装し、表面温度が125
℃の熱ロールで塗膜層のパウダーを半溶融しながら厚み
調節し、厚み25μmのセパレーター層を形成した。ニ
ッケル板の重量増加と樹脂の比重0.935から、セパ
レーター層の空隙率は50%であった。
Example 2 Ultrafine polyolefin powder in the form of fine particles (Miperon XM-22 manufactured by Mitsui Petrochemical Co., Ltd.)
0 ”, average particle size of 10 μm) with a size of 30 mm × 30 mm
Electrostatic coating was performed on one surface of a 100 μm-thick nickel flat plate simulated electrode to a thickness of 30 μm, and the surface temperature was 125 μm.
The thickness of the coating film layer was adjusted while semi-melting the powder of the coating layer with a hot roll at ℃ to form a separator layer having a thickness of 25 μm. From the increase in the weight of the nickel plate and the specific gravity of the resin of 0.935, the porosity of the separator layer was 50%.

【0035】実施例1と同様にこのセパレーター層のイ
オン伝導度を測定したところ、0.9x 10-3S/cmであっ
た。
The ion conductivity of this separator layer was measured in the same manner as in Example 1, and was found to be 0.9 × 10 −3 S / cm.

【0036】実施例1と同様の帯状正極板と帯状負極板
の片側表面に上記と同じ方法で厚み25μmのセパレー
ター層を形成した。そして実施例1と同じ方法で円筒型
非水系リチウム二次電池を作製する。この電池のサイク
ル特性を調べたところ優れた特性を示した。
A separator layer having a thickness of 25 μm was formed on one surface of the strip-shaped positive electrode plate and the strip-shaped negative electrode plate in the same manner as in Example 1 by the same method as described above. Then, a cylindrical non-aqueous lithium secondary battery is manufactured in the same manner as in Example 1. When the cycle characteristics of this battery were examined, it showed excellent characteristics.

【0037】[実施例3]ポリプロピレンエマルジョン
(五協産業製、「MGF-1650」、固形分20%)100重
量部に対して、ポリビニルアルコール((株)クラレ
製、「KL506」 )10重量部を混合し、大きさ30mm
×30mm厚み100μmのニッケル製平板模擬電極の
一方表面に厚み80μmの厚みで塗布し、80℃で0.
5時間、続いて、105℃で0.5時間、加熱乾燥して
フィルム化をおこない、流水中で、0.5時間の洗浄を
おこなった後、乾燥デシケーター中で、一昼夜、常温乾
燥をおこない、厚み25μmの多孔性のポリプロピレン
のセパレーター層を形成した。
Example 3 10 parts by weight of polyvinyl alcohol ("KL506" manufactured by Kuraray Co., Ltd.) per 100 parts by weight of a polypropylene emulsion ("MGF-1650" manufactured by Gokyo Sangyo, solid content: 20%) Mixed, size 30mm
A 30 μm thick nickel-made flat plate simulated electrode having a thickness of 100 μm is coated on one surface with a thickness of 80 μm, and is applied at 80 ° C. to a thickness of 0.8 μm.
5 hours, followed by heating and drying at 105 ° C for 0.5 hour to form a film, washing in running water for 0.5 hour, and then drying in a desiccator for 24 hours at room temperature for 24 hours. A 25 μm thick porous polypropylene separator layer was formed.

【0038】ニッケル板の重量増加と樹脂の比重0.9
1から、セパレーター層の空隙率は48%であった。実
施例1と同様にこのセパレーター層のイオン伝導度を測
定したところ、0.8 x 10-3S/cmであった。
Increase in weight of nickel plate and specific gravity of resin 0.9
From 1, the porosity of the separator layer was 48%. When the ionic conductivity of this separator layer was measured in the same manner as in Example 1, it was 0.8 × 10 −3 S / cm.

【0039】実施例1と同様の帯状正極板と帯状負極板
の片側表面に上記と同じ方法で厚み25μmのセパレー
ター層を形成した。そして実施例1と同じ方法で円筒型
非水系リチウム二次電池を作製する。この電池のサイク
ル特性を調べたところ優れた特性を示した。
A separator layer having a thickness of 25 μm was formed on one surface of each of the strip-shaped positive electrode plate and the strip-shaped negative electrode plate in the same manner as in Example 1. Then, a cylindrical non-aqueous lithium secondary battery is manufactured in the same manner as in Example 1. When the cycle characteristics of this battery were examined, it showed excellent characteristics.

【0040】[比較例1]実施例1で用いたのとそれぞ
れ同じ帯状正極板、帯状負極板および2枚の帯状ポリプ
ロピレン極細繊維不織布(ただし、実施例1と同様に不
織布を熱ロールにより極細繊維層を押しつぶして、厚み
25μmにする)を、正極板と負極板の間に不織布が配
置されるように重ね合わせて、2枚の帯状不織布のそれ
ぞれにその長さ方向に約4.5kgの張力を与えなが
ら、渦巻き状に巻回して、巻回電極体を作製する。この
際、巻回時に与える張力により不織布が時々破断し、電
池を製造することができなかった。
[Comparative Example 1] The same strip-shaped positive electrode plate, strip-shaped negative electrode plate and two strip-shaped polypropylene microfiber non-woven fabrics as used in Example 1 (however, as in Example 1, the non-woven fabric was converted to a micro-fiber by a hot roll) The layers are crushed to a thickness of 25 μm) so that the nonwoven fabric is disposed between the positive electrode plate and the negative electrode plate, and a tension of about 4.5 kg is applied to each of the two belt-shaped nonwoven fabrics in the length direction thereof. While being wound, a spirally wound electrode body is produced. At this time, the nonwoven fabric sometimes broke due to the tension applied during winding, and the battery could not be manufactured.

【0041】[比較例2]実施例1で用いたのとそれぞ
れ同じ帯状正極板、帯状負極板および2枚の帯状ポリプ
ロピレン極細繊維不織布(ただし、実施例1と同様に不
織布を熱ロールにより極細繊維層を押しつぶして、厚み
25μmにする)を、正極板と負極板の間に不織布が配
置されるように重ね合わせて、帯状負極板にその長さ方
向に約4.5kgの張力を与えながら、渦巻き状に巻回
して、巻回電極体を作製する。その後上記巻回電極体を
負極缶内に挿入し、その後、1mol/dm3 となるようにL
iClO4 を溶解させたエチレンカーボネート、ジエチ
ルカーボネートの1:1の混合溶液を上記負極缶内に注
液して円筒型非水系リリウム二次電池を作製する。この
際、巻回時に帯状ポリプロピレン極細繊維不織布が位置
ずれを起し、その修正の為、しばしば巻回作業を中断し
なければならなかった。
Comparative Example 2 The same strip-shaped positive electrode plate, strip-shaped negative electrode plate and two strip-shaped polypropylene microfiber nonwoven fabrics as used in Example 1 (however, as in Example 1, the nonwoven fabric was formed with a hot roll using a microfiber) Layer is crushed to a thickness of 25 μm) so that the nonwoven fabric is disposed between the positive electrode plate and the negative electrode plate, and a spiral shape is applied to the strip-shaped negative electrode plate while applying a tension of about 4.5 kg in the length direction thereof. To form a wound electrode body. Thereafter, the wound electrode body is inserted into a negative electrode can, and then L is adjusted to 1 mol / dm 3.
A 1: 1 mixed solution of ethylene carbonate and diethyl carbonate in which iClO 4 is dissolved is poured into the above-mentioned negative electrode can to produce a cylindrical nonaqueous lithium secondary battery. At this time, the band-shaped polypropylene ultrafine fiber non-woven fabric was displaced during winding, and the winding operation often had to be interrupted for the correction.

【0042】[0042]

【発明の効果】本発明によれば、帯状正極板または前記
帯状負極板の表面には、その巻回の前に予め一体的にセ
パレーター層を形成されているので、帯状正極板および
/または前記帯状負極板にそれぞれ張力を作用させなが
ら、巻回して巻回電極体を製造する際に、セパレーター
層には張力が作用しないので、大きな多孔度および小さ
な厚みを有し、引張強度が小さく、変形しやすいセパレ
ーター層を使用することができ、従って高い性能を有す
る電池を効率的に製造することができる。
According to the present invention, a separator layer is integrally formed on the surface of the strip-shaped positive electrode plate or the strip-shaped negative electrode plate before the winding thereof. When producing a wound electrode body by winding while applying tension to the strip-shaped negative electrode plate, since tension does not act on the separator layer, the separator layer has large porosity and small thickness, low tensile strength, and deformation. A separator layer that is easy to use can be used, and thus a battery having high performance can be efficiently manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 帯状正極板、帯状負極板およびセパレー
ター層を、帯状正極板と帯状負極板の間に前記セパレー
ター層が介在するように巻回する二次電池用巻回電極体
の製造方法において、巻回する前の、前記帯状正極板お
よび前記帯状負極板の少なくとも一方の極板の片側表面
または両表面に予め一体的にセパレーター層を形成させ
ることを特徴とする二次電池用巻回電極体の製造方法。
1. A method for manufacturing a wound electrode body for a secondary battery, comprising: winding a strip-shaped positive electrode plate, a strip-shaped negative electrode plate, and a separator layer such that the separator layer is interposed between the strip-shaped positive electrode plate and the strip-shaped negative electrode plate. Before turning, a wound electrode body for a secondary battery, wherein a separator layer is integrally formed on one surface or both surfaces of at least one of the strip-shaped positive electrode plate and the strip-shaped negative electrode plate in advance. Production method.
【請求項2】 前記一体的なセパレーター層形成は帯状
セパレーターを前記極板の表面に貼り付けることにより
おこなう請求項1記載の二次電池用巻回電極体の製造方
法。
2. The method for manufacturing a wound electrode body for a secondary battery according to claim 1, wherein the integral separator layer is formed by attaching a strip-shaped separator to the surface of the electrode plate.
【請求項3】 前記一体的なセパレーター層形成はセパ
レーターの原料を液状でまたは粉末状で前記極板表面に
被覆した後に反応させまたは加工することによりおこな
う請求項1記載の二次電池用巻回電極体の製造方法。
3. The winding for a secondary battery according to claim 1, wherein the integral separator layer is formed by coating the raw material of the separator in liquid or powder form on the surface of the electrode plate and then reacting or processing the raw material. A method for manufacturing an electrode body.
JP9132514A 1997-05-22 1997-05-22 Manufacture of rolled electrode body for secondary battery Pending JPH10321220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9132514A JPH10321220A (en) 1997-05-22 1997-05-22 Manufacture of rolled electrode body for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9132514A JPH10321220A (en) 1997-05-22 1997-05-22 Manufacture of rolled electrode body for secondary battery

Publications (1)

Publication Number Publication Date
JPH10321220A true JPH10321220A (en) 1998-12-04

Family

ID=15083124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9132514A Pending JPH10321220A (en) 1997-05-22 1997-05-22 Manufacture of rolled electrode body for secondary battery

Country Status (1)

Country Link
JP (1) JPH10321220A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117825A (en) * 2000-10-06 2002-04-19 Denso Corp Manufacturing method of flat-state winding-type electrode
WO2003043107A1 (en) * 2001-11-15 2003-05-22 Toray Engineering Co., Ltd. Method for manufacturing secondary battery electrode composite material and manufacturing apparatus
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2006164883A (en) * 2004-12-10 2006-06-22 Hitachi Maxell Ltd Winding electrode and its manufacturing method, and method of manufacturing battery
JP2018160370A (en) * 2017-03-23 2018-10-11 トヨタ自動車株式会社 Device of manufacturing electrode plate with separator and method of manufacturing electrode plate with separator
CN113300002A (en) * 2021-05-28 2021-08-24 隆能科技(南通)有限公司 Zero-deformation winding type lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117825A (en) * 2000-10-06 2002-04-19 Denso Corp Manufacturing method of flat-state winding-type electrode
WO2003043107A1 (en) * 2001-11-15 2003-05-22 Toray Engineering Co., Ltd. Method for manufacturing secondary battery electrode composite material and manufacturing apparatus
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2006164883A (en) * 2004-12-10 2006-06-22 Hitachi Maxell Ltd Winding electrode and its manufacturing method, and method of manufacturing battery
JP2018160370A (en) * 2017-03-23 2018-10-11 トヨタ自動車株式会社 Device of manufacturing electrode plate with separator and method of manufacturing electrode plate with separator
CN113300002A (en) * 2021-05-28 2021-08-24 隆能科技(南通)有限公司 Zero-deformation winding type lithium ion battery
CN113300002B (en) * 2021-05-28 2022-07-15 隆能科技(南通)有限公司 Zero-deformation winding type lithium ion battery

Similar Documents

Publication Publication Date Title
US10347892B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR102151509B1 (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US7790321B2 (en) Separator for use in high-energy batteries and method for the production thereof
KR101434379B1 (en) Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
JP5717723B2 (en) Production and use of ceramic composites based on polymer carrier films
CN108023049B (en) Nonwoven material filled with particles
WO2006123811A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
TW200415813A (en) Durable separator for an electrochemical cell
Li et al. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability
CN108630871B (en) Battery, battery diaphragm and preparation method thereof
CN102751462B (en) Power lithium ion battery and composite diaphragm thereof
JP2008179903A (en) Porous membrane, separator for electrochemical element, method for producing porous membrane, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
JP2007048738A (en) Separator for electronic part and its manufacturing method
KR20010053640A (en) Separator for cell, cell, and method for producing separator
WO2012018133A1 (en) Separator and method for producing same
EP2605311B1 (en) Separator
JP2019216033A (en) Separator for nonaqueous secondary battery and the nonaqueous secondary battery
JPH1064503A (en) Lithium ion battery
KR20180042831A (en) Laminated separator for non-aqueous secondary battery, non-aqueous secondary battery member, and non-aqueous secondary battery
JP7204905B2 (en) SEPARATOR FOR NON-AQUEOUS SECONDARY BATTERY, METHOD FOR MANUFACTURING SAME, AND NON-AQUEOUS SECONDARY BATTERY
JPH10321220A (en) Manufacture of rolled electrode body for secondary battery
JP2013196839A (en) Nonaqueous secondary battery separator
CN112042006B (en) Separator for electrochemical element
JP2006351365A (en) Separator for electronic components, and the electronic component
JP2011233473A (en) Separator for nonaqueous secondary battery and battery using the same