JPH1032119A - Magnetoresistance effect film - Google Patents

Magnetoresistance effect film

Info

Publication number
JPH1032119A
JPH1032119A JP8187589A JP18758996A JPH1032119A JP H1032119 A JPH1032119 A JP H1032119A JP 8187589 A JP8187589 A JP 8187589A JP 18758996 A JP18758996 A JP 18758996A JP H1032119 A JPH1032119 A JP H1032119A
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
laminated
film
nicoo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8187589A
Other languages
Japanese (ja)
Inventor
Atsushi Maeda
篤志 前田
Koji Yamano
耕治 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8187589A priority Critical patent/JPH1032119A/en
Publication of JPH1032119A publication Critical patent/JPH1032119A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Abstract

PROBLEM TO BE SOLVED: To enable obtaining higher magntoresistance effect ratio by a method, wherein an antiferromagnetic layer is composed of an NiO film and NiCoO layer, while the NiCoO layer is provided on a ferromagnetic layer side. SOLUTION: An NiO layer 2 and an NiCoO layer 3 are laminated on a glass substrate 1, so as to compose an antiferromagnetic layer. Next, an NiFe layer 4 and Co layer 5 are laminated on the antiferromagnetic layers to compose a ferromagnetic layer. Furthermore, a Cu layer 6 as a nonmagnetic conductive layer is laminated on the ferromagnetic layer and then a Co layer 7 and an NiFe layer 8, as the other ferromagnetic layers, are laminated on the Cu layer 6. Through these procedures, the magnetoresistance effect ratio higher than the conventional one can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果膜に
関するものであり、特にスピンバルブ構造を有する磁気
抵抗効果膜に関するものである。
The present invention relates to a magnetoresistive film, and more particularly to a magnetoresistive film having a spin valve structure.

【0002】[0002]

【従来の技術】磁気抵抗効果素子(MR素子)は、磁場
印加による磁気抵抗効果膜の電気抵抗の変化を検出する
ことにより、磁界強度及びその変化を測定するための素
子である。このような磁気抵抗効果素子を組み込んだ再
生ヘッド(MRヘッド)は、従来の誘導型ヘッドに比べ
磁気感度が高いので、ハード・ディスク装置の再生ヘッ
ドとして検討されている。このようなMRヘッドの感度
を高めることにより、ハード・ディスク装置の面記録密
度を向上させることが可能になる。従って、感度に対応
するMR比の高い磁気抵抗効果膜の開発が近年盛んに進
められている。
2. Description of the Related Art A magnetoresistive element (MR element) is an element for measuring a magnetic field strength and its change by detecting a change in electric resistance of a magnetoresistive film due to application of a magnetic field. A reproducing head (MR head) incorporating such a magnetoresistive element has been studied as a reproducing head for a hard disk drive because it has higher magnetic sensitivity than a conventional inductive head. By increasing the sensitivity of such an MR head, it is possible to improve the areal recording density of a hard disk drive. Therefore, development of a magnetoresistive film having a high MR ratio corresponding to sensitivity has been actively pursued in recent years.

【0003】大きなMR比を示す素子として、巨大磁気
抵抗素子(GMR素子)が知られており、このようなG
MR素子の1つの構造として、反強磁性層/強磁性層/
非磁性導電層/強磁性層からなる積層構造を有するスピ
ンバルブ膜が知られている。このようなスピンバルブ膜
において、NiO/CoOの積層膜を反強磁性層として
用いた、NiO/CoO/Ni−Fe/Co/Cu/C
o/Ni−Feの積層膜がMR比約11%を示すことが
報告されている(日経エレクトロニクス1996年2月
12日号(No. 655)第16頁)。このスピンバルブ
膜は、従来反強磁性層として一般的に用いられていたF
e−Mnに代えて、NiOとCoOの積層膜を用いてい
るため、耐腐食性が向上し、また反強磁性層が酸化物層
であるので、より多くの電流を強磁性層/非磁性導電層
/強磁性層に流すことができ、感度を高めることができ
るとされている。
A giant magnetoresistive element (GMR element) is known as an element exhibiting a large MR ratio.
As one structure of the MR element, an antiferromagnetic layer / ferromagnetic layer /
2. Description of the Related Art A spin valve film having a laminated structure of a nonmagnetic conductive layer / a ferromagnetic layer has been known. In such a spin valve film, a NiO / CoO / Ni-Fe / Co / Cu / C film using a NiO / CoO laminated film as an antiferromagnetic layer is used.
It has been reported that a laminated film of o / Ni-Fe exhibits an MR ratio of about 11% (Nikkei Electronics, February 12, 1996, No. 655, p. 16). This spin-valve film is formed of F
Since a laminated film of NiO and CoO is used instead of e-Mn, corrosion resistance is improved, and since the antiferromagnetic layer is an oxide layer, more current is supplied to the ferromagnetic layer / nonmagnetic layer. It is said that it can be passed through the conductive layer / ferromagnetic layer and the sensitivity can be increased.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、磁気記
録の分野においては、さらに高密度化が望まれており、
このような観点から、より高いMR比を示すMR素子の
開発が望まれている。
However, in the field of magnetic recording, higher densification is desired.
From such a viewpoint, development of an MR element exhibiting a higher MR ratio is desired.

【0005】本発明の目的は、より高いMR比を示す磁
気抵抗効果膜を提供することにある。
An object of the present invention is to provide a magnetoresistive film exhibiting a higher MR ratio.

【0006】[0006]

【課題を解決するための手段】本発明に従う第1の局面
の磁気抵抗効果膜は、反強磁性層、強磁性層、非磁性導
電層及び強磁性層をこの順序で備える磁気抵抗効果膜で
あり、反強磁性層がNiO層とNiCoO層の積層膜で
あり、NiCoO層が前記強磁性層側に設けられている
ことを特徴としている。
According to a first aspect of the present invention, there is provided a magnetoresistive film including an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic conductive layer, and a ferromagnetic layer in this order. The antiferromagnetic layer is a laminated film of a NiO layer and a NiCoO layer, and the NiCoO layer is provided on the ferromagnetic layer side.

【0007】NiO層の膜厚としては、一般に20〜6
0nm程度であり、NiCoO層の膜厚としては、0.
5〜2nm程度である。本発明に従う第2の局面の磁気
抵抗効果膜は、反強磁性層、強磁性層、非磁性導電層及
び強磁性層をこの順序で備える磁気抵抗効果膜であり、
反強磁性層がNiCoO層であることを特徴としてい
る。
The thickness of the NiO layer is generally 20 to 6
The thickness of the NiCoO layer is about 0 nm.
It is about 5 to 2 nm. A magnetoresistive film according to a second aspect of the present invention is a magnetoresistive film including an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic conductive layer, and a ferromagnetic layer in this order,
It is characterized in that the antiferromagnetic layer is a NiCoO layer.

【0008】NiCoO層の膜厚としては、一般に20
〜60nm程度である。本発明において用いられる強磁
性層は、キュリー温度が素子使用温度を超えた温度であ
る強磁性体から形成された層であれば特に限定されるも
のではない。具体的には、NiFe層とCo層の積層膜
や、NiFe層、Co層、これらの合金等からなる強磁
性層などが挙げられる。強磁性層の膜厚は、一般に、1
〜10nm程度である。
The thickness of the NiCoO layer is generally 20
〜60 nm. The ferromagnetic layer used in the present invention is not particularly limited as long as it is a layer formed of a ferromagnetic material whose Curie temperature is higher than the device operating temperature. Specific examples include a laminated film of a NiFe layer and a Co layer, a NiFe layer, a Co layer, and a ferromagnetic layer made of an alloy thereof. Generally, the thickness of the ferromagnetic layer is 1
About 10 nm.

【0009】本発明において用いられる非磁性導電層と
しては、少なくとも室温において非磁性であり、導電性
に優れたものであれば特に限定されるものではなく、例
えばCu層、Ag層などが用いられる。非磁性導電層の
厚みとしては、一般的には、1〜5nm程度である。
The nonmagnetic conductive layer used in the present invention is not particularly limited as long as it is nonmagnetic at least at room temperature and has excellent conductivity. For example, a Cu layer, an Ag layer, etc. are used. . The thickness of the nonmagnetic conductive layer is generally about 1 to 5 nm.

【0010】本発明の磁気抵抗効果膜は、一般に基板上
に形成されるが、基板の材質は非磁性であれば特に限定
されるものではなく、例えば、Si、TiC、Al2
3 、ガラスなどの基板が用いられる。
The magnetoresistive film of the present invention is generally formed on a substrate, but the material of the substrate is not particularly limited as long as it is non-magnetic. For example, Si, TiC, Al 2 O
3. A substrate such as glass is used.

【0011】[0011]

【発明の実施の形態】実施例1 図1に示すような、本発明の第1の局面に従う磁気抵抗
効果膜を作製した。図1を参照して、ガラス基板1の上
に、NiO層2、及びNiCoO層3が積層されてい
る。これらのNiO層2及びNiCoO層3により、反
強磁性層が構成されている。このような反強磁性層の上
に、NiFe層4、及びCo層5が積層されている。こ
れらのNiFe層4及びCo層5により強磁性層が構成
されている。このような強磁性層の上に、非磁性導電層
としてのCu層6が積層されている。Cu層6の上に、
強磁性層であるCo層7及びNiFe層8が積層されて
いる。
DETAILED DESCRIPTION OF THE INVENTION, as shown in Example 1 1, was produced magnetoresistive film according to the first aspect of the present invention. Referring to FIG. 1, a NiO layer 2 and a NiCoO layer 3 are laminated on a glass substrate 1. The NiO layer 2 and the NiCoO layer 3 constitute an antiferromagnetic layer. On such an antiferromagnetic layer, a NiFe layer 4 and a Co layer 5 are laminated. These NiFe layer 4 and Co layer 5 constitute a ferromagnetic layer. On such a ferromagnetic layer, a Cu layer 6 as a nonmagnetic conductive layer is laminated. On the Cu layer 6,
A Co layer 7 and a NiFe layer 8, which are ferromagnetic layers, are stacked.

【0012】図2及び図3は、図1に示す実施例1の磁
気抵抗効果膜を製造する工程を示す断面図である。図2
(a)に示すように、ガラス基板1上にイオンビームス
パッタリング法により、Ni5050の組成のNiO層2
(膜厚50nm)を形成する。次に、図2(b)に示す
ように、NiO層2の上に、イオンビームスパッタリン
グ法により、(Ni0.5 Co0.5 5050の組成からな
るNiCoO層3(膜厚1nm)を積層する。次に、図
2(c)に示すように、NiCoO層3の上に、Ni80
Fe20の組成からなるNiFe層4(膜厚6nm)をイ
オンビームスパッタリング法により積層する。
FIGS. 2 and 3 are sectional views showing steps of manufacturing the magnetoresistive film of the first embodiment shown in FIG. FIG.
As shown in (a), a NiO layer 2 having a composition of Ni 50 O 50 is formed on a glass substrate 1 by an ion beam sputtering method.
(Film thickness 50 nm). Next, as shown in FIG. 2B, a NiCoO layer 3 (1 nm thick) having a composition of (Ni 0.5 Co 0.5 ) 50 O 50 is laminated on the NiO layer 2 by an ion beam sputtering method. . Next, as shown in FIG. 2C, Ni 80
A NiFe layer 4 (thickness: 6 nm) having a composition of Fe 20 is laminated by an ion beam sputtering method.

【0013】次に、図3(d)〜(f)に示すように、
Co層5(膜厚0.3nm)、Cu層6(膜厚2.5n
m)、及びCo層7(膜厚0.3nm)をイオンビーム
スパッタリング法により順次積層する。
Next, as shown in FIGS. 3 (d) to 3 (f),
Co layer 5 (thickness 0.3 nm), Cu layer 6 (thickness 2.5 n)
m) and a Co layer 7 (thickness 0.3 nm) are sequentially laminated by an ion beam sputtering method.

【0014】最後に、図1に示すように、Co層7の上
に、Ni80Fe20の組成のNiFe層8(膜厚6nm)
をイオンビームスパッタリング法により積層する。図4
は、以上のようにして得られた図1に示す本発明に従う
磁気抵抗効果膜の外部磁界の変化に対するMR比の変化
を示す図である。は、上記実施例1の磁気抵抗効果膜
のMR比の変化を示している。は、比較の磁気抵抗効
果膜のMR比の変化を示しており、反強磁性層としてN
iO層(膜厚50nm)/CoO層(膜厚1nm)の積
層膜を用い、その他の強磁性層、非磁性導電層及び強磁
性層の構造は実施例1と同じである磁気抵抗効果膜(比
較例1)のMR比の変化を示している。または、同じ
く比較の磁気抵抗効果膜のMR比の変化を示しており、
反強磁性層としてNiO層(膜厚50nm)のみを用
い、その他の強磁性層、非磁性導電層及び強磁性層の構
造は実施例1と同じである磁気抵抗効果膜(比較例2)
のMR比の変化を示している。
Finally, as shown in FIG. 1, a NiFe layer 8 having a composition of Ni 80 Fe 20 (6 nm thick) is formed on the Co layer 7.
Are laminated by an ion beam sputtering method. FIG.
FIG. 3 is a diagram showing a change in an MR ratio with respect to a change in an external magnetic field of the magnetoresistive effect film according to the present invention shown in FIG. 1 and obtained as described above. Shows the change in the MR ratio of the magnetoresistive film of the first embodiment. Indicates the change in the MR ratio of the comparative magnetoresistive film, and N represents an antiferromagnetic layer.
A laminated film of an iO layer (thickness: 50 nm) / CoO layer (thickness: 1 nm) is used, and the structures of the other ferromagnetic layers, nonmagnetic conductive layers, and ferromagnetic layers are the same as in the first embodiment. 9 shows the change in the MR ratio of Comparative Example 1). Or, it also shows the change in the MR ratio of the comparative magnetoresistive film,
A magnetoresistive film (Comparative Example 2) in which only the NiO layer (50 nm thick) is used as the antiferromagnetic layer, and the structures of the other ferromagnetic layers, nonmagnetic conductive layers, and ferromagnetic layers are the same as those in Example 1.
Shows the change in the MR ratio.

【0015】図4から明らかなように、本発明に従う実
施例1の磁気抵抗効果膜は最大のMR比として18%の
値を示しており、従来よりも高いMR比を示すことがわ
かる。
As is apparent from FIG. 4, the magnetoresistive film of Example 1 according to the present invention has a maximum MR ratio of 18%, which indicates that the MR ratio is higher than that of the prior art.

【0016】実施例2 本発明の第2の局面に従う磁気抵抗効果膜として、図5
に示すような構造を有する磁気抵抗効果膜を作製した。
図5に示すように、ガラス基板1上にNiCoO層3を
積層し、この上に順次NiFe層4、Co層5、Cu層
6、Co層7、及びNiFe層8をイオンビームスパッ
タリング法により形成し積層した。なお、各層の組成及
び膜厚は、図1に示す実施例1と同様である。
Embodiment 2 As a magnetoresistive film according to a second aspect of the present invention, FIG.
A magnetoresistive film having the structure shown in FIG.
As shown in FIG. 5, a NiCoO layer 3 is laminated on a glass substrate 1, and a NiFe layer 4, a Co layer 5, a Cu layer 6, a Co layer 7, and a NiFe layer 8 are sequentially formed thereon by an ion beam sputtering method. And laminated. Note that the composition and thickness of each layer are the same as those in Example 1 shown in FIG.

【0017】図6は、図5に示す実施例2の磁気抵抗効
果膜の外部磁界の変化に対するMR比の変化を示す図で
ある。は、実施例2のMR比の変化を示しており、
及びは、それぞれ図4に示す及びと同様である。
図6に示すように、本発明に従う実施例2の磁気抵抗効
果膜も、最大MR比として16%の値を示しており、従
来よりも高いMR比を示すことがわかる。
FIG. 6 is a diagram showing a change in the MR ratio with respect to a change in the external magnetic field of the magnetoresistive film of the second embodiment shown in FIG. Indicates a change in the MR ratio of Example 2.
And are the same as those shown in FIG.
As shown in FIG. 6, the magnetoresistive effect film of Example 2 according to the present invention also shows a value of 16% as the maximum MR ratio, which indicates that the MR ratio is higher than that of the related art.

【0018】本発明に従う磁気抵抗効果膜が、従来より
高いMR比を示す詳細な理由については明らかでない
が、従来の磁気抵抗効果膜で反強磁性層に用いられてい
るCoOは、そのネール点が289K(約16℃)であ
り、これより高い室温で十分な反強磁性を示しにくいの
に対し、本発明において反強磁性層に用いているNiC
oOのネール点は378K(約105℃)であるため、
室温においても十分な反強磁性を示し、ネール点が50
7K(約234℃)であるNiOと同様に十分なピン止
め効果を発揮し、その結果として高いMR比を示すもの
と考えられる。
Although the detailed reason why the magnetoresistive film according to the present invention exhibits a higher MR ratio than the conventional one is not clear, CoO used for the antiferromagnetic layer in the conventional magnetoresistive effect film has its Neel point. Is 289K (about 16 ° C.), and it is difficult to exhibit sufficient antiferromagnetism at room temperature higher than 289K (about 16 ° C.).
Since the Neel point of oO is 378K (about 105 ° C),
It shows sufficient antiferromagnetism even at room temperature and has a Neel point of 50
It is considered that a sufficient pinning effect is exhibited similarly to NiO at 7K (about 234 ° C.), and as a result, a high MR ratio is exhibited.

【0019】また、本発明の第1の局面では、NiOの
上に直接NiFeなどの強磁性層を積層する場合に比
べ、NiCoO層を介在させることにより、格子整合性
がよくなり、積層膜の結晶性が改善され、高いMR比が
得られるものと考えられる。
Further, in the first aspect of the present invention, the lattice matching is improved by interposing the NiCoO layer as compared with the case where a ferromagnetic layer such as NiFe is directly laminated on NiO, so that It is considered that the crystallinity is improved and a high MR ratio is obtained.

【0020】本発明の磁気抵抗効果膜は、上記実施例1
及び2の組成及び膜厚等に限定されるものではない。ま
た本発明における反強磁性層は、強磁性層に対しピン止
め効果を発揮し得る反強磁性を示す組成及び膜厚等であ
れば、上記実施例1及び2の組成及び膜厚等に限定され
るものではない。
The magnetoresistive film of the present invention is similar to that of the first embodiment.
And 2 are not limited to the composition and film thickness. The antiferromagnetic layer of the present invention is not limited to the composition and thickness of Examples 1 and 2 as long as the composition and the thickness show antiferromagnetism capable of exhibiting a pinning effect on the ferromagnetic layer. It is not something to be done.

【0021】[0021]

【発明の効果】本発明に従う磁気抵抗効果膜は、従来よ
り高いMR比を示すものであり、例えばMRヘッドに用
いることにより、ヘッドの再生出力を高めることがで
き、従来よりも高い記録密度を実現することができる。
The magnetoresistive film according to the present invention exhibits a higher MR ratio than conventional ones. For example, when used in an MR head, the read output of the head can be increased, and a higher recording density than the conventional one can be obtained. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の局面に従う実施例の磁気抵抗効
果膜を示す断面図。
FIG. 1 is a sectional view showing a magnetoresistive film of an example according to a first aspect of the present invention.

【図2】図1に示す実施例を製造する工程を示す断面
図。
FIG. 2 is a sectional view showing a step of manufacturing the embodiment shown in FIG. 1;

【図3】図1に示す実施例を製造する工程を示す断面
図。
FIG. 3 is a sectional view showing a step of manufacturing the embodiment shown in FIG. 1;

【図4】図1に示す実施例の磁気抵抗効果膜の外部磁界
に対するMR比の変化を示す図。
4 is a diagram showing a change in an MR ratio of the magnetoresistive film of the embodiment shown in FIG. 1 with respect to an external magnetic field.

【図5】本発明の第2の局面に従う実施例の磁気抵抗効
果膜を示す断面図。
FIG. 5 is a sectional view showing a magnetoresistive film of an example according to a second aspect of the present invention.

【図6】図5に示す実施例の磁気抵抗効果膜の外部磁界
に対するMR比の変化を示す図。
6 is a diagram showing a change in an MR ratio of the magnetoresistive film of the embodiment shown in FIG. 5 with respect to an external magnetic field.

【符号の説明】[Explanation of symbols]

1…ガラス基板 2…NiO層 3…NiCoO層 4,8…NiFe層 5,7…Co層 6…Cu層 DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... NiO layer 3 ... NiCoO layer 4,8 ... NiFe layer 5,7 ... Co layer 6 ... Cu layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反強磁性層、強磁性層、非磁性導電層及
び強磁性層をこの順序で備える磁気抵抗効果膜におい
て、 前記反強磁性層がNiO層とNiCoO層の積層膜であ
り、NiCoO層が前記強磁性層側に設けられているこ
とを特徴とする磁気抵抗効果膜。
1. A magnetoresistive film comprising an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic conductive layer and a ferromagnetic layer in this order, wherein the antiferromagnetic layer is a laminated film of a NiO layer and a NiCoO layer, A magnetoresistive film, wherein a NiCoO layer is provided on the ferromagnetic layer side.
【請求項2】 反強磁性層、強磁性層、非磁性導電層及
び強磁性層をこの順序で備える磁気抵抗効果膜におい
て、 前記反強磁性層がNiCoO層であることを特徴とする
磁気抵抗効果膜。
2. A magnetoresistive film comprising an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic conductive layer and a ferromagnetic layer in this order, wherein the antiferromagnetic layer is a NiCoO layer. Effect membrane.
【請求項3】 前記強磁性層がNiFe層とCo層の積
層膜である請求項1または2に記載の磁気抵抗効果膜。
3. The magnetoresistive film according to claim 1, wherein the ferromagnetic layer is a laminated film of a NiFe layer and a Co layer.
【請求項4】 前記非磁性導電層がCu層である請求項
1〜3のいずれか1項に記載の磁気抵抗効果膜。
4. The magnetoresistance effect film according to claim 1, wherein said nonmagnetic conductive layer is a Cu layer.
JP8187589A 1996-07-17 1996-07-17 Magnetoresistance effect film Pending JPH1032119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8187589A JPH1032119A (en) 1996-07-17 1996-07-17 Magnetoresistance effect film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8187589A JPH1032119A (en) 1996-07-17 1996-07-17 Magnetoresistance effect film

Publications (1)

Publication Number Publication Date
JPH1032119A true JPH1032119A (en) 1998-02-03

Family

ID=16208761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8187589A Pending JPH1032119A (en) 1996-07-17 1996-07-17 Magnetoresistance effect film

Country Status (1)

Country Link
JP (1) JPH1032119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178073B1 (en) 1997-12-01 2001-01-23 Nec Corporation Magneto-resistance effect element with a fixing layer formed from a superlattice of at least two different materials and production method of the same
US6295187B1 (en) 1999-06-29 2001-09-25 International Business Machines Corporation Spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6836392B2 (en) * 2001-04-24 2004-12-28 Hitachi Global Storage Technologies Netherlands, B.V. Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178073B1 (en) 1997-12-01 2001-01-23 Nec Corporation Magneto-resistance effect element with a fixing layer formed from a superlattice of at least two different materials and production method of the same
US6295187B1 (en) 1999-06-29 2001-09-25 International Business Machines Corporation Spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6751844B2 (en) 1999-06-29 2004-06-22 International Business Machines Corporation Method of making a spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6836392B2 (en) * 2001-04-24 2004-12-28 Hitachi Global Storage Technologies Netherlands, B.V. Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems
US6992866B2 (en) 2001-04-24 2006-01-31 Hitachi Global Storage Technologies Netherlands B.V. Exchange-coupled magnetoresistive sensor with a coercive ferrite layer and an oxide underlayer having a spinal lattice structure
US7116532B2 (en) 2001-04-24 2006-10-03 Hitachi Global Storage Technologies Netherlands B.V. Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems

Similar Documents

Publication Publication Date Title
JP4421822B2 (en) Bottom spin valve magnetoresistive sensor element and manufacturing method thereof
KR100288466B1 (en) Magnetoresistive element, magnetoresistive head, memory element and amplification element using the same
JP3447468B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
JP2778626B2 (en) Magnetoresistance effect film, method of manufacturing the same, and magnetoresistance effect element
JP3291208B2 (en) Magnetoresistive sensor, method of manufacturing the same, and magnetic head equipped with the sensor
US6258470B1 (en) Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
US6282069B1 (en) Magnetoresistive element having a first antiferromagnetic layer contacting a pinned magnetic layer and a second antiferromagnetic layer contacting a free magnetic layer
KR100249976B1 (en) Magnetoresistive device and the method
EP0814519B1 (en) Magnetoresistive effect device, process for fabricating the same, and magnetic head produced using the same
JP2000340858A (en) Magnetoresistive effect film and magnetoresistive effect head
JPH11296823A (en) Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system
JPH1041132A (en) Magnetic resistance effect film
KR20060101139A (en) Magnetoresistive element, magnetic head, and magnetic memory apparatus
KR100304770B1 (en) Magnetoresistive effect film and method of manufacture thereof
US6765769B2 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JPH10188235A (en) Magneto-resistive film and its production
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP3420152B2 (en) Magnetoresistive head and magnetic recording / reproducing device
JP3137288B2 (en) Exchange coupling film, magnetoresistive element, magnetoresistive head, and method of manufacturing magnetoresistive element
JPH1032119A (en) Magnetoresistance effect film
JPH1091921A (en) Dual spin bulb-type thin film magnetic head
JP2000020926A (en) Magnetoresistance effect head
JPH10270776A (en) Method for manufacturing magnetoresistance effect film
JP3675327B2 (en) Magnetoresistive sensor, thin film magnetic head provided with the sensor, method for manufacturing the sensor, and method for manufacturing the head