JPH10312825A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH10312825A
JPH10312825A JP9119782A JP11978297A JPH10312825A JP H10312825 A JPH10312825 A JP H10312825A JP 9119782 A JP9119782 A JP 9119782A JP 11978297 A JP11978297 A JP 11978297A JP H10312825 A JPH10312825 A JP H10312825A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
ethylene carbonate
secondary battery
butyrolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9119782A
Other languages
Japanese (ja)
Inventor
Aiichiro Fujiwara
愛一郎 藤原
Munehito Hayami
宗人 早見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP9119782A priority Critical patent/JPH10312825A/en
Publication of JPH10312825A publication Critical patent/JPH10312825A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide high discharge capacity even at a low temperature by using a mixed solvent by mixing an ethylene carbonate with γ-butyrolactone in the specific ratio as a nonaqueous solvent of a nonaqueous electrolyte of a battery. SOLUTION: A nonaqueous electrolyte of a nonaqueous solvent secondary battery has the composition obtained by dissolving an electrolyte in a nonaqueous solvent composed of a mixed solvent of 10 to 40 vol.% of ethylene carbonate with 60 to 90 vol.% of γ-butyrolactone. A dissolving quantity of the electrolyte to the nonaqueous solvent is desirably set to 0.5 to 1.5 mole/l. The nonaqueous solvent having this composition forms a coating film on a carbon material surface of a negative electrode of ethylene carbonate, and lowers a freezing point by blending of the γ-butyrolactone while making the best use of the prevention of gas generation, and can guarantees low temperature freezing property of ethylene carbonate. For example, lithium salt selected from lithium borofluoride, lithium phosphate hexafluoride, lithium perchlorate, arsenic lithium hexafluoride or the like can be cited as the electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水溶媒二次電池
に関し、特に非水電解液を改良したリチウム二次電池に
係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly, to a lithium secondary battery having an improved non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、負極活物質としてリチウムを用い
た非水電解液電池は高エネルギ―密度電池として注目さ
れており、正極活物質に二酸化マンガン(MnO2 )、
フッ化炭素[(CFn )]、塩化チオニル(SOCl
2 )等を用いた一次電池は既に電卓、時計の電源やメモ
リのバックアップ電池として多用されている。更に、近
年、VTR、通信機器等の各種の電子機器の小形、軽量
化に伴い、それらの電源として高エネルギ―密度の二次
電池の要求が高まり、リチウムイオンを吸蔵放出するこ
とが可能な炭素材料を負極活物質とする非水溶媒二次電
池の研究が活発に行われている。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries using lithium as a negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ) has been used as a positive electrode active material.
Fluorocarbon [(CF n )], thionyl chloride (SOCl
Primary batteries using 2 ) have been widely used as backup batteries for power supplies of calculators, watches and memories. Further, in recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication devices, the demand for secondary batteries having a high energy density as a power source for these devices has increased, and carbon materials capable of inserting and extracting lithium ions have been developed. Research on a non-aqueous solvent secondary battery using a material as a negative electrode active material has been actively conducted.

【0003】非水溶媒二次電池は、負極にリチウムイオ
ンを吸蔵放出することが可能な炭素質材料を負極活物質
を用い、リチウムイオン伝導性電解質としてエチレンカ
ーボネート(EC)の非水溶媒中にLiClO4 、Li
BF4 、LiAsF6 、LiPF6 等のリチウム塩を溶
解した非水電解液やリチウムイオン伝導性固体電解質か
ら構成され、正極活物質としては主にTiS2 、MoS
2 、V25 、V613等が研究されている。
A non-aqueous solvent secondary battery uses a carbonaceous material capable of inserting and extracting lithium ions for a negative electrode using a negative electrode active material, and a lithium ion conductive electrolyte in a non-aqueous solvent of ethylene carbonate (EC). LiClO 4 , Li
It is composed of a non-aqueous electrolyte or a lithium ion conductive solid electrolyte in which lithium salts such as BF 4 , LiAsF 6 , and LiPF 6 are dissolved, and the positive electrode active material is mainly TiS 2 , MoS
2 , V 2 O 5 , V 6 O 13 and the like have been studied.

【0004】しかしながら、非水電解液の非水溶媒とし
て用いられるエチレンカーボネートは前記リチウムイオ
ンを吸蔵放出することが可能な炭素質材料に耐しては安
定である物の、融点が高いために低温時における電池特
性が低下するするという問題があった。
However, ethylene carbonate used as a non-aqueous solvent for a non-aqueous electrolyte is stable with respect to the carbonaceous material capable of inserting and extracting lithium ions, but has a low melting point due to its high melting point. There is a problem that the battery characteristics at the time deteriorate.

【0005】[0005]

【発明が解決しようとする課題】本発明は、低温特性を
改善した非水溶媒二次電池を提供しようとするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous solvent secondary battery having improved low-temperature characteristics.

【0006】[0006]

【課題を解決するための手段】本発明に係わる非水溶媒
二次電池は、正極と、リチウムイオンの吸蔵・放出が可
能に炭素材料を含む負極と、イオン伝導性非水電解液と
を具備した非水溶媒二次電池において、前記非水電解液
の非水溶媒は、エチレンカーボネート10〜40体積%
とγ−ブチロラクトン60〜90体積%との組成の混合
溶媒からなることを特徴とするものである。
A non-aqueous solvent secondary battery according to the present invention comprises a positive electrode, a negative electrode containing a carbon material capable of inserting and extracting lithium ions, and an ion-conductive non-aqueous electrolyte. In the non-aqueous solvent secondary battery, the non-aqueous solvent in the non-aqueous electrolyte is 10 to 40% by volume of ethylene carbonate.
And a mixed solvent having a composition of γ-butyrolactone and 60 to 90% by volume.

【0007】[0007]

【発明の実施の形態】以下、本発明に係わるリチウム二
次電池を図1を参照して詳細に説明する。例えばステン
レス鋼製の正極缶1内には、正極2が収納されている。
セパレ―タ3は、前記正極2上配置されている。前記セ
パレータ3には、電解質を有機溶媒で溶解した非水電解
液が含浸保持されている。負極4は、前記セパレータ3
上に配置されている。前記正極缶1の開口部には、絶縁
ガスケット5を介して負極缶6が設けられており、この
負極缶6および前記正極缶1のかしめ加工により前記正
極缶1および前記負極缶6内に前記正極2、セパレ―タ
3および負極4が密閉されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a lithium secondary battery according to the present invention will be described in detail with reference to FIG. For example, a positive electrode 2 is housed in a positive electrode can 1 made of stainless steel.
The separator 3 is disposed on the positive electrode 2. The separator 3 is impregnated with a non-aqueous electrolyte in which an electrolyte is dissolved in an organic solvent. The negative electrode 4 is connected to the separator 3
Is placed on top. At the opening of the positive electrode can 1, a negative electrode can 6 is provided via an insulating gasket 5. By caulking the negative electrode can 6 and the positive electrode can 1, the negative electrode can 6 is inserted into the positive electrode can 1 and the negative electrode can 6. The positive electrode 2, the separator 3, and the negative electrode 4 are sealed.

【0008】次に、前記正極2、負極4およびセパレー
タ3および非水電解液について詳細に説明する。 (1)正極2 正極2は、正極活物質と、黒鉛のような導電助剤と、ポ
リテトラフルオロエチレンのような結着剤とを含む混合
物を加圧成形することにより作製される。
Next, the positive electrode 2, the negative electrode 4, the separator 3, and the non-aqueous electrolyte will be described in detail. (1) Positive electrode 2 The positive electrode 2 is produced by pressure-forming a mixture containing a positive electrode active material, a conductive auxiliary such as graphite, and a binder such as polytetrafluoroethylene.

【0009】前記正極活物質としては、種々の酸化物、
例えば五酸化バナジウム、二酸化マンガン、リチウムマ
ンガン複合酸化物、リチウム含有ニッケル酸化物、リチ
ウム含有コバルト化合物、リチウム含有ニッケルコバル
ト酸化物、リチウムを含むバナジウム酸化物や、二硫化
チタン、二硫化モリブデンなどのカルコゲン化合物など
を挙げることができる。中でも、リチウムコバルト酸化
物(LiCoO2 )、リチウムニッケル酸化物(LiN
iO2 )、リチウムマンガン酸化物(LiMn24
LiMnO2 )を用いると、高電圧が得られるために好
ましい。
As the positive electrode active material, various oxides,
For example, vanadium pentoxide, manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel cobalt oxide, vanadium oxide containing lithium, and chalcogens such as titanium disulfide and molybdenum disulfide And the like. Among them, lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiN
iO 2 ), lithium manganese oxide (LiMn 2 O 4)
Use of LiMnO 2 ) is preferable because a high voltage can be obtained.

【0010】前記導電剤としては、例えばアセチレンブ
ラック、カーボンブラック、黒鉛等を挙げることができ
る。前記結着剤としては、例えばポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVD
E)、エチレン−プロピレン−ジエン共重合体(EPD
M)、スチレン−ブタジエンゴム(SBR)等を用いる
ことができる。
[0010] Examples of the conductive agent include acetylene black, carbon black, graphite and the like. Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVD).
E), ethylene-propylene-diene copolymer (EPD)
M), styrene-butadiene rubber (SBR) and the like can be used.

【0011】前記正極活物質、導電剤および結着剤の配
合割合は、正極活物質80〜95重量%、導電剤3〜2
0重量%、結着剤2〜7重量%の範囲にすることが好ま
しい。
The mixing ratio of the positive electrode active material, the conductive agent and the binder is 80 to 95% by weight of the positive electrode active material, 3 to 2% of the conductive agent.
It is preferable that the content be in the range of 0% by weight and 2 to 7% by weight of the binder.

【0012】(2)負極4 この負極4は、炭素質材料、導電剤および結着剤からな
る混合物を加圧成形することにより作製される。
(2) Negative Electrode 4 The negative electrode 4 is produced by press-molding a mixture comprising a carbonaceous material, a conductive agent and a binder.

【0013】前記炭素質材料としては、例えば人造黒
鉛、天然黒鉛、熱分解炭素、コークス、樹脂焼成体、メ
ソフェーズ小球体、メソフェーズ系ピッチ等を用いるこ
とができる。
As the carbonaceous material, for example, artificial graphite, natural graphite, pyrolytic carbon, coke, resin fired body, mesophase small sphere, mesophase pitch and the like can be used.

【0014】前記導電材としては、例えばアセチレンブ
ラック、カーボンブラック等を用いることができる。前
記結着剤としては、例えばスチレン・ブタジエンラテッ
クス(SBR)、カルボキシメチルセルロース(CM
C)、ポリテトラフルオロエチレン(PTFE)、ポリ
フッ化ビニリデン(PVDE)、エチレン−プロピレン
−ジエン共重合体(EPDM)、ニトリル−ブタジエン
ゴム(NBR)、フッ化ビニリデン−ヘキサフルオロプ
ロピレン共重合体、フッ化ビニリデン−ヘキサフルオロ
プロピレン−テトラフルオロエチレン3元系共重合体、
ポリトリフルオロエチレン(PTrFE)、フッ化ビニ
リデン−トリフルオロエチレン共重合体、フッ化ビニリ
デン−テトラフルオロエチレン共重合体等を用いること
ができる。
As the conductive material, for example, acetylene black, carbon black or the like can be used. Examples of the binder include styrene-butadiene latex (SBR), carboxymethyl cellulose (CM)
C), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDE), ethylene-propylene-diene copolymer (EPDM), nitrile-butadiene rubber (NBR), vinylidene fluoride-hexafluoropropylene copolymer, fluorine Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer,
Polytrifluoroethylene (PTrFE), vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, or the like can be used.

【0015】(3)セパレータ3 このセパレータ3は、例えばポリプロピレン不織布、微
孔性ポリエチレンフィルム等からなる。
(3) Separator 3 The separator 3 is made of, for example, a polypropylene nonwoven fabric, a microporous polyethylene film, or the like.

【0016】(4)非水電解液 この非水電解液は、エチレンカーボネート(EC)10
〜40体積%とγ−ブチロラクトン(γ−BL)60〜
90体積%との混合溶媒からなる非水溶媒により電解質
を溶解した組成を有する。
(4) Non-aqueous electrolyte This non-aqueous electrolyte is made of ethylene carbonate (EC) 10
~ 40% by volume and γ-butyrolactone (γ-BL) 60 ~
It has a composition in which the electrolyte is dissolved by a non-aqueous solvent comprising a mixed solvent of 90% by volume.

【0017】前記非水溶媒中のγ−ブチロラクトンの混
合割合を規定したのは、次のような理由によるものであ
る。γ−ブチロラクトンの混合割合を60体積%未満に
すると、低温特性の優れた非水電解質二次電池を得るこ
とが困難になる。一方、γ−ブチロラクトンの混合割合
が90体積%を越えると、エチレンカーボネートの混合
割合が相対的に低下して負極を構成する炭素材料表面の
被膜形成が不十分になってガス発生を生じて二次電池の
容量を低下させる恐れがある。より好ましい前記非水溶
媒の組成は、EC25〜35体積%、γ−BL65〜7
5体積%である。
The reason for specifying the mixing ratio of γ-butyrolactone in the non-aqueous solvent is as follows. If the mixing ratio of γ-butyrolactone is less than 60% by volume, it becomes difficult to obtain a non-aqueous electrolyte secondary battery having excellent low-temperature characteristics. On the other hand, if the mixing ratio of γ-butyrolactone exceeds 90% by volume, the mixing ratio of ethylene carbonate is relatively reduced, and the formation of a film on the surface of the carbon material constituting the negative electrode becomes insufficient, thereby generating gas. The capacity of the secondary battery may be reduced. More preferable composition of the non-aqueous solvent is EC 25 to 35% by volume, γ-BL 65 to 7
5% by volume.

【0018】前記電解質としては、例えばホウフッ化リ
チウム(LiBF4 )、六フッ化リン酸リチウム(Li
PF6 )、過塩素酸リチウム(LiClO4 )、六フッ
化砒素リチウム(LiAsF6 )、トリフルオロメタン
スルホン酸リチウム(LiCF3 SO3 )、塩化アルミ
ニウムリチウム(LiAlCl)から選ばれる1種また
は2種以上のリチウム塩を挙げることができる。
Examples of the electrolyte include lithium borofluoride (LiBF 4 ) and lithium hexafluorophosphate (Li
PF 6 ), lithium perchlorate (LiClO 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium aluminum chloride (LiAlCl) Can be mentioned.

【0019】前記電解質の非水溶媒に対する溶解量は、
0.5〜1.5モル/lとすることが望ましい。以上説
明した本発明によれば、正極と、リチウムイオンの吸蔵
・放出が可能に炭素材料を含む負極と、エチレンカーボ
ネート(EC)10〜40体積%とγ−ブチロラクトン
(γ−BL)60〜90体積%との混合溶媒からなる非
水溶媒を含むイオン伝導性非水電解液とを具備する。こ
のような組成の非水溶媒は、前記エチレンカーボネート
による前記炭素材料表面への被膜形成、ガス発生の防止
を生かしつつ、前記γ−ブチロラクトンの配合による凝
固点降下を生じさせてエチレンカーボネートの低温凝固
性を補償することができる。その結果、低温でも高い放
電容量を示す低温特性の優れた非水溶媒二次電池を提供
できる。
The amount of the electrolyte dissolved in the non-aqueous solvent is as follows:
It is desirably 0.5 to 1.5 mol / l. According to the present invention described above, a positive electrode, a negative electrode containing a carbon material capable of inserting and extracting lithium ions, 10 to 40% by volume of ethylene carbonate (EC) and 60 to 90 of γ-butyrolactone (γ-BL) And an ion-conductive non-aqueous electrolyte containing a non-aqueous solvent composed of a mixed solvent with a volume%. The non-aqueous solvent having such a composition causes the formation of a film on the surface of the carbon material by the ethylene carbonate and prevents the generation of gas, while lowering the freezing point due to the blending of the γ-butyrolactone, thereby allowing the low-temperature solidification of ethylene carbonate. Can be compensated for. As a result, it is possible to provide a non-aqueous solvent secondary battery exhibiting high discharge capacity even at low temperatures and having excellent low-temperature characteristics.

【0020】[0020]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1) <正極の作製>正極活物質としての五酸化バナジウム
と、導電材としての人造黒鉛と、結着剤としてのポリテ
トラフルオロエチレンとを重量比で90:10:5の割
合で均一に混合し、この混合物をプレス機を用いてペレ
ット状に加圧成形して正極を作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. (Example 1) <Preparation of positive electrode> Vanadium pentoxide as a positive electrode active material, artificial graphite as a conductive material, and polytetrafluoroethylene as a binder in a weight ratio of 90: 10: 5. The mixture was uniformly mixed, and the mixture was pressure-formed into a pellet using a press machine to produce a positive electrode.

【0021】<負極の作製>メソフェーズピッチを原料
とするピッチ系炭素繊維を細かく粉砕し、2800℃の
温度で焼成して炭素繊維を得た。また、コールタールを
原料として蒸留、高温熱処理を施して炭素粒子を得た。
つづいて、前記炭素繊維と炭素粒子とを混合することに
より得られた炭素質粉末と結着剤としてのブタジエン−
スチレンラバーとを重量比で95:5の割合で混合、混
練し、この混合物をプレス機を用いてペレット状に加圧
成形して負極を作製した。
<Preparation of Negative Electrode> A pitch-based carbon fiber using mesophase pitch as a raw material was finely pulverized and fired at a temperature of 2800 ° C. to obtain a carbon fiber. Further, distillation and high-temperature heat treatment were performed using coal tar as a raw material to obtain carbon particles.
Subsequently, the carbonaceous powder obtained by mixing the carbon fiber and the carbon particles and butadiene-
Styrene rubber was mixed and kneaded at a weight ratio of 95: 5, and this mixture was pressure-formed into pellets using a press machine to produce a negative electrode.

【0022】次いで、前記正極および前記負極を用いて
前述した図1に示す構造の外径20mm、厚さ2.5m
mのコイン型チウム二次電池を組み立てた。なお、非水
電解液としてはホウフッ化リチウム(LiBF4 )をエ
チレンカーボネート(EC)およびγ−ブチロラクトン
(γ−BL)の混合溶媒(混合体積比率40:60)に
1.0モル/l溶解した組成のものを使用し、この非水
電解液をポリプロピレン不織布からなるセパレータに含
浸させた。
Next, using the positive electrode and the negative electrode, the structure shown in FIG.
m coin type secondary battery was assembled. As a non-aqueous electrolyte, 1.0 mol / l of lithium borofluoride (LiBF 4 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and γ-butyrolactone (γ-BL) (mixing volume ratio 40:60). A non-aqueous electrolytic solution having a composition was impregnated with a separator made of a nonwoven polypropylene fabric.

【0023】組み立てられたリチウム二次電池を室温で
7〜14日間エージングを行った。エージング後の電池
の開路電圧は、3.4Vであった。 (実施例2)エチレンカーボネート(EC)およびγ−
ブチロラクトン(γ−BL)の混合溶媒(混合体積比率
30:70)を用いた以外、実施例1と同様なコイン型
リチウム二次電池を組み立て、エージングを行った。
The assembled lithium secondary battery was aged at room temperature for 7 to 14 days. The open circuit voltage of the battery after aging was 3.4 V. (Example 2) Ethylene carbonate (EC) and γ-
A coin-type lithium secondary battery similar to that of Example 1 was assembled and aged, except that a mixed solvent of butyrolactone (γ-BL) (mixed volume ratio 30:70) was used.

【0024】(実施例3)エチレンカーボネート(E
C)およびγ−ブチロラクトン(γ−BL)の混合溶媒
(混合体積比率20:80)を用いた以外、実施例1と
同様なコイン型リチウム二次電池を組み立て、エージン
グを行った。
Example 3 Ethylene carbonate (E
A coin-type lithium secondary battery similar to that of Example 1 was assembled and aged, except that a mixed solvent of C) and γ-butyrolactone (γ-BL) (mixing volume ratio: 20:80) was used.

【0025】(実施例4)エチレンカーボネート(E
C)およびγ−ブチロラクトン(γ−BL)の混合溶媒
(混合体積比率10:90)を用いた以外、実施例1と
同様なコイン型リチウム二次電池を組み立て、エージン
グを行った。
Example 4 Ethylene carbonate (E
A coin-type lithium secondary battery similar to that of Example 1 was assembled and aged, except that a mixed solvent of C) and γ-butyrolactone (γ-BL) (mixing volume ratio: 10:90) was used.

【0026】(比較例1)エチレンカーボネート(E
C)およびγ−ブチロラクトン(γ−BL)の混合溶媒
(混合体積比率70:30)を用いた以外、実施例1と
同様なコイン型リチウム二次電池を組み立て、エージン
グを行った。
Comparative Example 1 Ethylene carbonate (E
A coin-type lithium secondary battery similar to that of Example 1 was assembled and aged, except that a mixed solvent of C) and γ-butyrolactone (γ-BL) (mixing volume ratio 70:30) was used.

【0027】(比較例2)エチレンカーボネート(E
C)およびγ−ブチロラクトン(γ−BL)の混合溶媒
(混合体積比率50:50)を用いた以外、実施例1と
同様なコイン型リチウム二次電池を組み立て、エージン
グを行った。
Comparative Example 2 Ethylene carbonate (E
A coin-type lithium secondary battery similar to that of Example 1 was assembled and aged, except that a mixed solvent of C) and γ-butyrolactone (γ-BL) (mixing volume ratio 50:50) was used.

【0028】実施例1〜4および比較例1、2の二次電
池について、15kΩの定抵抗下で2.0Vまで放電
し、100Ωの保護抵抗下、3.4Vの電圧、20℃の
温度で96時間充電した。これらの二次電池を−20
℃、15kΩの定抵抗下で放電し、2.0Vまでの放電
容量を測定した。その結果を下記表1に示す。
The secondary batteries of Examples 1 to 4 and Comparative Examples 1 and 2 were discharged at a constant resistance of 15 kΩ to 2.0 V, under a protection resistance of 100 Ω, at a voltage of 3.4 V and at a temperature of 20 ° C. Charged for 96 hours. These secondary batteries were replaced by -20.
The battery was discharged at 15 ° C. under a constant resistance of 15 ° C., and the discharge capacity up to 2.0 V was measured. The results are shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】前記表1から明らかなようにエチレンカー
ボネート(EC)10〜40体積%とγ−ブチロラクト
ン(γ−BL)60〜90体積%との混合溶媒からなる
非水溶媒を含む非水電解液を備えた実施例1〜4の二次
電池は、前記ECおよびγ−BLの組成比率が前記範囲
を外れる混合溶媒からなる非水溶媒を含む非水電解液を
備えた比較例1、2の二次電池に比べて低温での優れた
放電容量を示すことがわかる。
As apparent from Table 1, a non-aqueous electrolyte containing a non-aqueous solvent comprising a mixed solvent of 10 to 40% by volume of ethylene carbonate (EC) and 60 to 90% by volume of γ-butyrolactone (γ-BL). The secondary batteries of Examples 1 to 4 including Comparative Examples 1 and 2 of Comparative Examples 1 and 2 each including a non-aqueous electrolyte containing a non-aqueous solvent including a mixed solvent in which the composition ratio of the EC and γ-BL is out of the range. It can be seen that the battery exhibits an excellent discharge capacity at a lower temperature than the secondary battery.

【0031】[0031]

【発明の効果】以上詳述したように、本発明によれば低
温でも高い放電容量を示す低温特性が改善された非水溶
媒二次電池を提供できる。
As described above in detail, according to the present invention, it is possible to provide a non-aqueous solvent secondary battery exhibiting high discharge capacity even at low temperatures and having improved low-temperature characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるコイン型リチウム二次電池を示
す断面図。
FIG. 1 is a sectional view showing a coin-type lithium secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極缶、 2…正極、 4…負極、 6…負極缶。 1 ... Positive electrode can, 2 ... Positive electrode, 4 ... Negative electrode, 6 ... Negative electrode can.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウムイオンの吸蔵・放出が
可能に炭素材料を含む負極と、イオン伝導性非水電解液
とを具備した非水溶媒二次電池において、 前記非水電解液の非水溶媒は、エチレンカーボネート1
0〜40体積%とγ−ブチロラクトン60〜90体積%
との組成の混合溶媒からなることを特徴とする非水溶媒
二次電池。
1. A non-aqueous solvent secondary battery comprising a positive electrode, a negative electrode containing a carbon material capable of inserting and extracting lithium ions, and an ion-conductive non-aqueous electrolyte, Water solvent is ethylene carbonate 1
0 to 40% by volume and 60 to 90% by volume of γ-butyrolactone
A non-aqueous solvent secondary battery comprising a mixed solvent having the following composition:
JP9119782A 1997-05-09 1997-05-09 Nonaqueous solvent secondary battery Pending JPH10312825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9119782A JPH10312825A (en) 1997-05-09 1997-05-09 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9119782A JPH10312825A (en) 1997-05-09 1997-05-09 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH10312825A true JPH10312825A (en) 1998-11-24

Family

ID=14770096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9119782A Pending JPH10312825A (en) 1997-05-09 1997-05-09 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH10312825A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997960A2 (en) 1998-10-29 2000-05-03 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
WO2001003228A1 (en) * 1999-07-02 2001-01-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2006066297A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Lithium secondary battery
JP2009117382A (en) * 2004-06-30 2009-05-28 Samsung Sdi Co Ltd Lithium secondary cell
US7718322B2 (en) 2003-08-20 2010-05-18 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US11757134B2 (en) 2017-10-17 2023-09-12 Ngk Insulators, Ltd. Lithium secondary battery and method for manufacturing battery-incorporating device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727676B2 (en) 1998-10-29 2010-06-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
EP0997960A2 (en) 1998-10-29 2000-05-03 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
EP0997960A3 (en) * 1998-10-29 2001-09-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US6503657B1 (en) 1998-10-29 2003-01-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US9029008B2 (en) 1998-10-29 2015-05-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US8383275B2 (en) 1998-10-29 2013-02-26 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2001023684A (en) * 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6723473B1 (en) 1999-07-02 2004-04-20 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2001003228A1 (en) * 1999-07-02 2001-01-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
US7718322B2 (en) 2003-08-20 2010-05-18 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7846588B2 (en) 2004-06-30 2010-12-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2009117382A (en) * 2004-06-30 2009-05-28 Samsung Sdi Co Ltd Lithium secondary cell
JP4543831B2 (en) * 2004-08-27 2010-09-15 トヨタ自動車株式会社 Lithium secondary battery
JP2006066297A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Lithium secondary battery
US11757134B2 (en) 2017-10-17 2023-09-12 Ngk Insulators, Ltd. Lithium secondary battery and method for manufacturing battery-incorporating device

Similar Documents

Publication Publication Date Title
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
US20020061446A1 (en) Double current collector negative electrode design for alkali metal ion electrochemical cells
AU7859098A (en) Discharge promoter mixture for reducing cell swelling in alkali metal electr ochemical cells
JP2001266879A (en) Non-aqueous electrolyte secondary battery
US7052804B2 (en) Double current collector positive electrode for alkali metal ion electrochemical cells
JP3632389B2 (en) Lithium secondary battery
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JP3786273B2 (en) Negative electrode material and battery using the same
JPH10312825A (en) Nonaqueous solvent secondary battery
JPH09115546A (en) Secondary battery provided with non-aqueous solvent
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2003007331A (en) Nonaqueous electrolyte secondary battery
JP2003282147A (en) Lithium ion secondary battery
JP2001160418A (en) Lithium ion rechargeable battery
JP4915101B2 (en) Flat type non-aqueous electrolyte secondary battery
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JP2000106188A (en) Nonaqueous electrolyte secondary battery
JP2000113907A (en) Lithium ion secondary battery
JP2000285959A (en) Nonaqueous electrolyte secondary battery
JP2000106217A (en) Nonaqueous electrolyte secondary battery
JP3979428B2 (en) Lithium secondary battery
JP2000040511A (en) Lithium ion secondary battery
JP3029715B2 (en) Non-aqueous electrolyte secondary battery