JPH10308592A - Composite magnetic body and electromagnetic interference suppressing body - Google Patents

Composite magnetic body and electromagnetic interference suppressing body

Info

Publication number
JPH10308592A
JPH10308592A JP11716497A JP11716497A JPH10308592A JP H10308592 A JPH10308592 A JP H10308592A JP 11716497 A JP11716497 A JP 11716497A JP 11716497 A JP11716497 A JP 11716497A JP H10308592 A JPH10308592 A JP H10308592A
Authority
JP
Japan
Prior art keywords
magnetic
composite magnetic
powder
composite
microwave band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11716497A
Other languages
Japanese (ja)
Inventor
栄▲吉▼ ▲吉▼田
Eikichi Yoshida
Takeshi Asano
健 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11716497A priority Critical patent/JPH10308592A/en
Publication of JPH10308592A publication Critical patent/JPH10308592A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase magnetic loss (imaginary part permeability) in microwave band by employing spherical or octahedral magnetic powder particles and imparting a form magnetic anisotropy so that magnetic resonance takes place in VHF band through microwave band. SOLUTION: A composite magnetic body 1 is formed by dispersing a magnetic powder 2 of acicular Fe3 O4 (magnetite) particles having coercive force Hc of 10-300 Oe into a layer of organic binder 3 and bonding the Fe3 O4 particles thereto. When shielding characteristics are required in addition to high frequency magnetic loss characteristics as an electromagnetic interference suppressing body, a highly conductive support 4 is provided while taking account of the electric characteristics. Form anisotropy is imparted by employing acicular or planar magnetic powder and the thickness thereof is set equal to or shorter than the skin depth. Aspect ratio of the acicular or planar powder is set at 10 or above in order to bring the diamagnetic coefficient close to 1 and the magnetic powder is oriented and arranged in a composite magnetic body thus obtaining a higher imaginary part permeability. According to the arrangement, a high magnetic loss is attained in microwave band and electromagnetic wave can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,電磁干渉抑制体と
そのための複合磁性材料に関し,詳しくは,高周波領
域,特に,マイクロ波帯用電磁干渉抑制体とそれに用い
る複合磁性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic interference suppressor and a composite magnetic material therefor, and more particularly to an electromagnetic interference suppressor for use in a high frequency region, particularly for a microwave band, and a composite magnetic material used therefor.

【0002】[0002]

【従来の技術】近年,デジタル電子機器をはじめ高周波
を利用する電子機器類の普及が進み,中でも準マイクロ
波帯あるいはマイクロ波帯を使用する移動通信機器類の
普及がめざましい。このような,携帯電話に代表される
移動体通信機器では,小型化・軽量化の要求が顕著であ
り,電子部品の高密度実装化が最大の技術課題となって
いる。従って,過密に実装された電子部品類やプリント
配線あるいはモジュール間配線等が互いに極めて接近す
ることになり,更には,信号処理速度の高速化も図られ
ている為,静電結合及び/又は電磁結合による線間結合
の増大化や放射ノイズによる干渉などが生じ,機器の正
常な動作を妨げる事態が少なからず生じている。
2. Description of the Related Art In recent years, electronic devices using high frequencies, such as digital electronic devices, have become widespread. In particular, mobile communication devices using a quasi-microwave band or a microwave band have been remarkably spread. In such mobile communication devices typified by mobile phones, there is a remarkable demand for miniaturization and weight reduction, and high-density mounting of electronic components is the greatest technical problem. Therefore, densely mounted electronic components, printed wiring or wiring between modules, etc., are extremely close to each other, and furthermore, the signal processing speed has been increased, so that electrostatic coupling and / or electromagnetic Coupling causes an increase in line-to-line coupling and interference due to radiated noise, etc., and there are not a few cases where normal operation of devices is hindered.

【0003】このようないわゆる高周波電磁障害に対し
て従来は,主に導体シールドを施す事による対策がなさ
れてきた。
Conventionally, countermeasures against such a so-called high-frequency electromagnetic interference have been made mainly by providing a conductor shield.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,導体シ
ールドは,空間とのインピーダンス不整合に起因する電
磁波の反射を利用する電磁障害対策である為に,遮蔽効
果は得られても不要輻射源からの反射による電磁結合が
助長される欠点がある。その欠点を解消するために,二
次的な電磁障害対策として,磁性体の磁気損失,即ち虚
数部透磁率μ''を利用した不要輻射の抑制が有効である
と考えられる。
However, since the conductor shield is an electromagnetic interference countermeasure that utilizes the reflection of electromagnetic waves due to impedance mismatch with the space, even if the shielding effect is obtained, the shield from unnecessary radiation sources can be obtained. There is a disadvantage that electromagnetic coupling by reflection is promoted. In order to solve the drawback, it is considered effective to suppress the unnecessary radiation using the magnetic loss of the magnetic material, that is, the imaginary part permeability μ ″, as a secondary electromagnetic interference countermeasure.

【0005】ここで,不要輻射の吸収効率は,μ''>
μ' なる周波数範囲において,μ''の大きさに見合って
高まることが知られている。従って,マイクロ波帯にて
大きな磁気損失を得るためには,実数部透磁率がVHF
帯(30MHz〜300MHz),準マイクロ波帯(3
00MHz〜3GHz),乃至はマイクロ波帯の低周波
側(3GHz〜概ね10GHz)にて磁気共鳴により減
衰する特性を実現する必要がある。
[0005] Here, the absorption efficiency of unnecessary radiation is μ ″>
It is known that in the frequency range of μ ′, it increases in proportion to the size of μ ″. Therefore, in order to obtain a large magnetic loss in the microwave band, the real part magnetic permeability is VHF.
Band (30 MHz to 300 MHz), quasi-microwave band (3
(00 MHz to 3 GHz) or a characteristic that attenuates due to magnetic resonance on the low frequency side (3 GHz to approximately 10 GHz) of the microwave band.

【0006】そこで,本発明の一技術的課題は,VHF
帯乃至マイクロ波帯に磁気共鳴が現れ,その結果,マイ
クロ波帯に大きな磁気損失を有する(即ち,虚数部透磁
率μ''が大きな)複合磁性体の提供することにある。
Therefore, one technical problem of the present invention is that the VHF
An object of the present invention is to provide a composite magnetic material having magnetic resonance appearing in the band or the microwave band, and as a result, having a large magnetic loss in the microwave band (that is, having a large imaginary part permeability μ ″).

【0007】また,本発明の他の技術的課題は,前記複
合磁性体を用いた電磁干渉抑制体を提供することにあ
る。
Another technical object of the present invention is to provide an electromagnetic interference suppressor using the composite magnetic material.

【0008】[0008]

【課題を解決するための手段】本発明によれば,保磁力
Hcが10〜300OeのFe3 4 (マグネタイト)
からなる磁性粉末と前記磁性粉末を結着する有機結合剤
とを備えた複合磁性体であって,VHF帯乃至マイクロ
波帯において,磁気共鳴を有することを特徴とする複合
磁性体が得られる。
According to the present invention, Fe 3 O 4 (magnetite) having a coercive force Hc of 10 to 300 Oe is provided.
A composite magnetic body comprising a magnetic powder comprising: and a magnetic binder for binding the magnetic powder, wherein the composite magnetic body has magnetic resonance in a VHF band or a microwave band.

【0009】また,本発明によれば,前記複合磁性体に
おいて,前記磁性粉末粒子が球状又は八面体状の形状を
有することを特徴とする複合磁性体が得られる。
According to the present invention, there is provided the composite magnetic material, wherein the magnetic powder particles have a spherical or octahedral shape.

【0010】また,本発明によれば,前記複合磁性体に
おいて,前記磁性粉末粒子が形状磁気異方性を有するこ
とを特徴とする複合磁性体が得られる。
Further, according to the present invention, in the composite magnetic body, the composite magnetic body is characterized in that the magnetic powder particles have a shape magnetic anisotropy.

【0011】また,本発明によれば,前記複合磁性体に
おいて,前記磁性粉末粒子が針状の形状を有し,前記複
合磁性体中で配向もしくは配列されていることを特徴と
する複合磁性体が得られる。
According to the present invention, in the composite magnetic body, the magnetic powder particles have a needle-like shape and are oriented or arranged in the composite magnetic body. Is obtained.

【0012】さらに,本発明によれば,前記したいずれ
かの複合磁性体を任意の形状に加工してなり,マイクロ
波帯に磁気損失を有することを特徴とする電磁干渉抑制
体が得られる。
Further, according to the present invention, there is provided an electromagnetic interference suppressor obtained by processing any of the above-described composite magnetic materials into an arbitrary shape and having a magnetic loss in a microwave band.

【0013】[0013]

【発明の実施の形態】以下,本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本発明の実施の形態による複合磁性
体の構造を模式的に示す断面図である。図1を参照する
と,複合磁性体1は,針状のFe3 4 (マグネタイ
ト)粒子からなる磁性粉末2を有機結着剤3の層の中に
分散し結着してなるものである。ここで,図中の符号4
は,取扱上で強度を必要とする場合,或いは電磁干渉抑
制体として高周波磁気損失特性の他にシールド特性を必
要とする場合に設けられる支持体で,機械的強度の改善
を目的とする場合には絶縁板でよいが,シールド特性を
必要とする場合には電気的特性を考慮して導電性の良い
材料を選択する必要がある。尚,後述する図3における
銅板も導電性の高いシールド材として使われている。
FIG. 1 is a sectional view schematically showing a structure of a composite magnetic body according to an embodiment of the present invention. Referring to FIG. 1, a composite magnetic body 1 is formed by dispersing and binding a magnetic powder 2 composed of acicular Fe 3 O 4 (magnetite) particles in a layer of an organic binder 3. Here, reference numeral 4 in FIG.
This is a support provided when the strength is required in handling or when the electromagnetic interference suppressor needs shielding properties in addition to the high-frequency magnetic loss properties, and the purpose is to improve the mechanical strength. May be an insulating plate, but if shielding characteristics are required, it is necessary to select a material having good conductivity in consideration of the electrical characteristics. Note that a copper plate in FIG. 3 described later is also used as a highly conductive shielding material.

【0015】磁性粉末2としては,保磁力Hcが10〜
300OeのFe3 4 (マグネタイト)を原料素材と
して用いる。このFe3 4 (マグネタイト)粉末は,
α−Fe2 3 (ヘマタイト)粉末やγ−Fe2
3 (マグヘマイト)粉末を還元することにより直接微細
な寸法の粉末として得られる。複合磁性体1は,この磁
性粉末2を有機結着剤3で結着することによりを得るこ
とができる。
The magnetic powder 2 has a coercive force Hc of 10 to 10.
300 Oe Fe 3 O 4 (magnetite) is used as a raw material. This Fe 3 O 4 (magnetite) powder
α-Fe 2 O 3 (hematite) powder or γ-Fe 2 O
3 By reducing (maghemite) powder, it can be obtained directly as a fine-sized powder. The composite magnetic body 1 can be obtained by binding the magnetic powder 2 with the organic binder 3.

【0016】上記複合磁性体1において,より大きな虚
数部透磁率μ''を得るためには,磁性粉を針状ないし板
状にすることで形状異方性を付与し,その厚みを表皮深
さと同等以下にすると共に,反磁界係数Ndをほぼ1に
近づけるために,針状ないし板状粉末のアスペクト比を
概ね10以上とすると共に,磁性粉を複合磁性体中で配
向,配列させるとよい。ここで,表皮深さδは,次の数
1式により与えられる。
In the composite magnetic body 1, in order to obtain a larger imaginary part magnetic permeability μ ″, the magnetic powder is made acicular or plate-like to give shape anisotropy, and its thickness is increased by the skin depth. In order to make the demagnetizing factor Nd close to 1, the aspect ratio of the acicular or plate-like powder should be approximately 10 or more, and the magnetic powder should be oriented and arranged in the composite magnetic material. . Here, the skin depth δ is given by the following equation (1).

【0017】[0017]

【数1】 (Equation 1)

【0018】上述の数1式において,ρは比抵抗,μは
透磁率,fは周波数を夫々表す。ここで,目的の周波数
によってその値が異なってくるが,粉末合成のしかたや
反応条件の設定を変えることで,所望の表皮深さとアス
ペクト比を有する磁性粉末を得ることが出来る。
In the above equation 1, ρ represents specific resistance, μ represents magnetic permeability, and f represents frequency. Here, the value varies depending on the target frequency. By changing the method of powder synthesis and the setting of the reaction conditions, a magnetic powder having a desired skin depth and aspect ratio can be obtained.

【0019】上記複合磁性体1に用いる有機結着剤3と
しては,ポリエステル系樹脂,ポリエチレン系樹脂,ポ
リ塩化ビニル系樹脂,ポリビニルブチラール樹脂,ポリ
ウレタン樹脂,セルロース系樹脂,ABS樹脂,ニトリ
ル−ブタジエン系ゴム,スチレン−ブタジエン系ゴム,
エポキシ樹脂,フェノール樹脂,アミド系樹脂,イミド
系樹脂,或いはそれらの共重合体を挙げることが出来
る。
The organic binder 3 used in the composite magnetic body 1 includes polyester resin, polyethylene resin, polyvinyl chloride resin, polyvinyl butyral resin, polyurethane resin, cellulose resin, ABS resin, nitrile-butadiene resin. Rubber, styrene-butadiene rubber,
An epoxy resin, a phenol resin, an amide resin, an imide resin, or a copolymer thereof can be used.

【0020】以上に述べたFe3 4 (マグネタイト)
からなる磁性粉末2と有機結着剤3とを混練・分散し複
合磁性体1を得る手段には,特に制限はなく,用いる結
着剤の性質や工程の容易さを基準に好ましい方法を選択
すればよい。
The above-mentioned Fe 3 O 4 (magnetite)
The means for obtaining the composite magnetic material 1 by kneading and dispersing the magnetic powder 2 comprising the organic binder 3 and the organic binder 3 is not particularly limited, and a preferable method is selected based on the properties of the binder used and the ease of the process. do it.

【0021】この混練・分散された磁性体混合物中の磁
性粒子を配向・配列させる手段としては,剪断応力によ
る方法と磁場配向による方法があり,いずれの方法を用
いても良い。
As means for orienting and arranging the magnetic particles in the kneaded and dispersed magnetic substance mixture, there are a method based on shear stress and a method based on magnetic field orientation, and any method may be used.

【0022】尚,本発明の実施の形態による複合磁性体
及びそれを用いた電磁干渉抑制体は,その構成要素から
判るように容易に可撓性を付与することが可能であり,
複雑な形状への対応や,厳しい耐振動,衝撃要求への対
応が可能である。
It should be noted that the composite magnetic body and the electromagnetic interference suppressor using the same according to the embodiment of the present invention can easily be provided with flexibility as can be seen from the components thereof.
It can respond to complicated shapes and meet severe vibration and shock requirements.

【0023】以下,本発明の実施の形態による複合磁性
体の製造の具体例について述べる。
Hereinafter, a specific example of the production of the composite magnetic material according to the embodiment of the present invention will be described.

【0024】まず,水熱合成法により,保磁力Hcと粉
末形状の異なる各種のFe3 O4 粉末を作成し,これら
を磁性粉末試料とした。。
First, various Fe 3 O 4 powders having different coercive forces Hc and powder shapes were prepared by a hydrothermal synthesis method, and these were used as magnetic powder samples. .

【0025】これらの各種粉末を用いて以下に述べる複
合磁性体試料を作製し,μ−f特性を調べた。
Using these various powders, composite magnetic material samples described below were prepared, and their μ-f characteristics were examined.

【0026】μ−f特性の測定には,トロイダル形状に
加工された複合磁性体試料を用いた。これを1ターンコ
イルを形成するテストフィクスチャに挿入し,インピー
ダンスを計測することにより,μ' 及びμ''を求めた。
For the measurement of the μ-f characteristic, a composite magnetic material sample processed into a toroidal shape was used. This was inserted into a test fixture forming a one-turn coil, and μ ′ and μ ″ were determined by measuring the impedance.

【0027】(試料1)以下の表1の配合からなる磁性
体ペーストを調合し,これをドクターブレード法により
製膜し,熱プレスを施した後に85℃にて24時間キュ
アリングを行い試料1を得た。
(Sample 1) A magnetic paste having the composition shown in Table 1 below was prepared, formed into a film by the doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain Sample 1. I got

【0028】[0028]

【表1】 [Table 1]

【0029】(試料2)以下の表2の配合からなる磁性
体ペーストを調合し,これをドクターブレード法により
製膜し,熱プレスを施した後に85℃にて24時間キュ
アリングを行い試料2を得た。
(Sample 2) A magnetic paste having the composition shown in Table 2 below was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a sample 2 I got

【0030】[0030]

【表2】 [Table 2]

【0031】(試料3)以下の表3の配合からなる磁性
体ペーストを調合し,これをドクターブレード法により
製膜し,熱プレスを施した後に85℃にて24時間キュ
アリングを行い試料3を得た。
(Sample 3) A magnetic paste having the composition shown in Table 3 below was prepared, formed into a film by the doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain Sample 3. I got

【0032】尚,得られた試料3を走査型電子顕微鏡を
用いて解析したところ,粒子配列方向は試料膜面内の長
手方向であった。
When the obtained sample 3 was analyzed using a scanning electron microscope, the particle arrangement direction was the longitudinal direction in the sample film plane.

【0033】[0033]

【表3】 [Table 3]

【0034】上記の試料1〜3について測定された磁気
共鳴周波数frおよび周波数2GHzのときの虚数部透
磁率μ''を下記表4に示す。
Table 4 shows the magnetic resonance frequency fr and the imaginary part magnetic permeability μ ″ at a frequency of 2 GHz measured for the above-mentioned samples 1 to 3.

【0035】[0035]

【表4】 [Table 4]

【0036】また,図2は,試料1のμ−f特性を示す
もので,他の試料についても表1に示すfrの大きさか
ら判るように,高周波数領域に磁気共鳴が認められた。
FIG. 2 shows the μ-f characteristic of the sample 1. As can be seen from the magnitude of fr shown in Table 1, magnetic resonance was observed in the high frequency region of the other samples.

【0037】前記表1および図2からわかるように,本
発明によれば,マイクロ波帯で磁気損失の高い複合磁性
材料が得られる。
As can be seen from Table 1 and FIG. 2, according to the present invention, a composite magnetic material having a high magnetic loss in a microwave band can be obtained.

【0038】又,上記試料を用いて,その電磁干渉抑制
効果を図3のような評価系を用いて測定した。
Further, the effect of suppressing electromagnetic interference was measured using the above-mentioned sample using an evaluation system as shown in FIG.

【0039】ここで,厚さが2mmで一辺の長さが20
cmの複合磁性体10の裏に銅板11を裏打ちして電磁
干渉抑制体試料を作成した。この試料に対し,電磁界波
源用発信器12からループ径1mmの送信用微小ループ
アンテナ13を介して,電磁波を放射し,電磁干渉抑制
体試料からの反射波を同じ寸法形状の受信用微小ループ
アンテナ14で受信して,反射波の強度ネットワークア
ナライザ(電磁界強度測定器)15で測定した。
Here, the thickness is 2 mm and the length of one side is 20
A copper plate 11 was backed on the back of the composite magnetic body 10 cm to prepare an electromagnetic interference suppressor sample. An electromagnetic wave is radiated from the electromagnetic wave source oscillator 12 through the transmitting minute loop antenna 13 having a loop diameter of 1 mm to the sample, and the reflected wave from the electromagnetic interference suppressing body sample is received by the receiving minute loop having the same size and shape. The signal was received by the antenna 14 and the intensity of the reflected wave was measured by a network analyzer (electromagnetic field intensity measuring device) 15.

【0040】その結果を表面抵抗と共に下記表5に示
す。
The results are shown in Table 5 below together with the surface resistance.

【0041】[0041]

【表5】 [Table 5]

【0042】ここで,表面抵抗はASTM−D−257
法による測定値である。電磁干渉抑制効果の値は,銅板
を基準(0dB)としたときの信号減衰量である。
Here, the surface resistance is ASTM-D-257.
It is a measured value by the method. The value of the electromagnetic interference suppression effect is the signal attenuation when the copper plate is set as a reference (0 dB).

【0043】前記表2により以下に述べる効果が明白で
ある。
The following effects are apparent from Table 2 above.

【0044】即ち,本発明の複合磁性体によれば,表面
抵抗の値が107 〜108 Ωとなっており,導体やバル
クの金属磁性体等にみられるようなインピーダンス不整
合による電磁波の表面反射を抑制出来る。
That is, according to the composite magnetic material of the present invention, the value of the surface resistance is 10 7 to 10 8 Ω, and the electromagnetic wave due to the impedance mismatch as seen in a conductor, a bulk metal magnetic material, or the like. Surface reflection can be suppressed.

【0045】更に,本発明の複合磁性体は,マイクロ波
帯で良好な電磁干渉抑制効果を有することが理解出来
る。
Further, it can be understood that the composite magnetic material of the present invention has a good effect of suppressing electromagnetic interference in the microwave band.

【0046】[0046]

【発明の効果】以上述べたように,本発明によれば,F
3 4 (マグネタイト)からなる磁性粉末が有機結着
剤で結着されてなり,マイクロ波帯で高い磁気損失を有
し,従ってマイクロ波帯の電磁波を抑制できる複合磁性
体が提供できる。
As described above, according to the present invention, F
It is possible to provide a composite magnetic material in which a magnetic powder made of e 3 O 4 (magnetite) is bound with an organic binder, has high magnetic loss in a microwave band, and can suppress electromagnetic waves in the microwave band.

【0047】また,本発明によれば,前記複合磁性体を
用いてマイクロ波帯で有効な薄厚の電磁干渉抑制体を提
供することが出来る。
Further, according to the present invention, it is possible to provide a thin electromagnetic interference suppressor which is effective in a microwave band by using the composite magnetic material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による複合磁性体の構造を
模式的に示す断面を図である。
FIG. 1 is a cross-sectional view schematically showing a structure of a composite magnetic body according to an embodiment of the present invention.

【図2】本発明の実施の形態による複合磁性体の試料1
のμ−f特性を示す図である。
FIG. 2 shows a sample 1 of a composite magnetic material according to the embodiment of the present invention.
FIG. 4 is a diagram showing the μ-f characteristic of FIG.

【図3】本発明の実施の形態による複合磁性体試料を用
いた電磁干渉抑制体の特性評価に用いた評価系を示す概
略図である。
FIG. 3 is a schematic diagram showing an evaluation system used for evaluating characteristics of an electromagnetic interference suppressor using a composite magnetic material sample according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 複合磁性体 2 磁性粉末(針状Fe3 4 (マグネタイト)
磁性体粒子) 3 有機結着剤 4 支持体 10 複合磁性体 11 銅板 12 電磁界波源用発信器 13 送信用微小ループアンテナ 14 受信用微小ループアンテナ 15 電磁界強度測定器
1 composite magnetic body 2 magnetic powder (needle-like Fe 3 O 4 (magnetite)
Magnetic Particles) 3 Organic Binder 4 Support 10 Composite Magnetic Material 11 Copper Plate 12 Transmitter for Electromagnetic Wave Source 13 Micro Loop Antenna for Transmission 14 Micro Loop Antenna for Reception 15 Electromagnetic Field Strength Measuring Instrument

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 保磁力Hcが10〜300OeのFe3
4 (マグネタイト)からなる磁性粉末と前記磁性粉末
を結着する有機結合剤とを備えた複合磁性体であって,
VHF帯乃至マイクロ波帯において,磁気共鳴を有する
ことを特徴とする複合磁性体。
1. An Fe 3 having a coercive force Hc of 10 to 300 Oe.
A composite magnetic material comprising a magnetic powder made of O 4 (magnetite) and an organic binder binding the magnetic powder,
A composite magnetic material having magnetic resonance in a VHF band or a microwave band.
【請求項2】 請求項1記載の複合磁性体において,前
記磁性粉末粒子が球状又は八面体状の形状を有すること
を特徴とする複合磁性体。
2. The composite magnetic body according to claim 1, wherein said magnetic powder particles have a spherical or octahedral shape.
【請求項3】 請求項1記載の複合磁性体において,前
記磁性粉末粒子が形状磁気異方性を有することを特徴と
する複合磁性体。
3. The composite magnetic body according to claim 1, wherein said magnetic powder particles have shape magnetic anisotropy.
【請求項4】 請求項3記載の複合磁性体において,前
記磁性粉末粒子が針状の形状を有し,前記複合磁性体中
で配向もしくは配列されていることを特徴とする複合磁
性体。
4. The composite magnetic body according to claim 3, wherein said magnetic powder particles have a needle-like shape and are oriented or arranged in said composite magnetic body.
【請求項5】 請求項1乃至請求項4の内のいずれかに
記載の複合磁性体を任意の形状に加工してなり,マイク
ロ波帯に磁気損失を有することを特徴とする電磁干渉抑
制体。
5. An electromagnetic interference suppressor obtained by processing the composite magnetic body according to claim 1 into an arbitrary shape and having a magnetic loss in a microwave band. .
JP11716497A 1997-05-07 1997-05-07 Composite magnetic body and electromagnetic interference suppressing body Withdrawn JPH10308592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11716497A JPH10308592A (en) 1997-05-07 1997-05-07 Composite magnetic body and electromagnetic interference suppressing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11716497A JPH10308592A (en) 1997-05-07 1997-05-07 Composite magnetic body and electromagnetic interference suppressing body

Publications (1)

Publication Number Publication Date
JPH10308592A true JPH10308592A (en) 1998-11-17

Family

ID=14705043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11716497A Withdrawn JPH10308592A (en) 1997-05-07 1997-05-07 Composite magnetic body and electromagnetic interference suppressing body

Country Status (1)

Country Link
JP (1) JPH10308592A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271468A (en) * 2001-03-09 2002-09-20 Nec Tokin Corp Electromagnetic wave protective device and portable communication apparatus fixed with that device
JP2002280208A (en) * 2001-03-22 2002-09-27 Mitsubishi Cable Ind Ltd Wave absorber
JP2008103691A (en) * 2006-09-05 2008-05-01 Matsushita Electric Ind Co Ltd Magnetic substance striped array sheet, rfid magnetic sheet, electromagnetic shield sheet, and manufacturing methods for them
RU2713365C1 (en) * 2019-04-01 2020-02-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method of producing composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271468A (en) * 2001-03-09 2002-09-20 Nec Tokin Corp Electromagnetic wave protective device and portable communication apparatus fixed with that device
JP4598975B2 (en) * 2001-03-09 2010-12-15 Necトーキン株式会社 Portable communication equipment with an electromagnetic wave protection device
JP2002280208A (en) * 2001-03-22 2002-09-27 Mitsubishi Cable Ind Ltd Wave absorber
JP2008103691A (en) * 2006-09-05 2008-05-01 Matsushita Electric Ind Co Ltd Magnetic substance striped array sheet, rfid magnetic sheet, electromagnetic shield sheet, and manufacturing methods for them
RU2713365C1 (en) * 2019-04-01 2020-02-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method of producing composite material

Similar Documents

Publication Publication Date Title
JP3812977B2 (en) Electromagnetic interference suppressor
JP3401650B2 (en) Electromagnetic interference suppressor
JPH0935927A (en) Composite magnetic body and electromagnetic interference suppressor using the same
CN1097270C (en) Synthetic body magnetic particle for electromagnetic interference suppressing body
US6972097B2 (en) Composite magnetic material and electromagnetic interference suppressor member using the same
WO2001056043A1 (en) Soft magnetic powder and composite magnetic material using the same
JPH10308592A (en) Composite magnetic body and electromagnetic interference suppressing body
JPH10106839A (en) Multilayer high-frequency inductor
JPH1083911A (en) Composite magnetic material and electromagnetic interference inhibition body using that
JPH1097913A (en) Compound magnetic body, its manufacture and electromagnetic interference restraint
JPH1079302A (en) Composite magnetic body and electromagnetic interference supressor provided therhwith
KR100755775B1 (en) Electromagnetic noise supression film and process of production thereof
US6521140B2 (en) Composite magnetic body and electromagnetic interference suppressing body using the same
JPH10229292A (en) Electromagnetic wave interference suppressor
JP3528255B2 (en) Hybrid integrated circuit device and method of manufacturing the same
JP3528257B2 (en) Printed wiring board
JPH0818271A (en) Electronic device and noise suppressing method
JP2007173859A (en) Method for manufacturing electromagnetic interference suppressor
JPH08204380A (en) Noise suppressing method for electric apparatus and noise suppressed electronic apparatus using this method
JP2752846B2 (en) Radio wave absorber
KR102495696B1 (en) Electromagnetic wave shielding sheet and electronic device comprising the same
JP3979541B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JPH1097912A (en) Composite magnetic element, manufacture thereof and electromagnetic interference suppressor
JPH11112185A (en) Fixing method of noise absorption core
JP2001126904A (en) Electromagnetic interference restraining member and manufacturing method therefor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060421