JPH10302775A - Negative electrode for lithium secondary battery and lithium secondary battery using the same - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery using the same

Info

Publication number
JPH10302775A
JPH10302775A JP9107560A JP10756097A JPH10302775A JP H10302775 A JPH10302775 A JP H10302775A JP 9107560 A JP9107560 A JP 9107560A JP 10756097 A JP10756097 A JP 10756097A JP H10302775 A JPH10302775 A JP H10302775A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
secondary battery
lithium secondary
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9107560A
Other languages
Japanese (ja)
Other versions
JP3456363B2 (en
Inventor
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10756097A priority Critical patent/JP3456363B2/en
Publication of JPH10302775A publication Critical patent/JPH10302775A/en
Application granted granted Critical
Publication of JP3456363B2 publication Critical patent/JP3456363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To :provide a negative electrode for a lithium secondary battery having high discharging capacity and output density, and excellent cycle and low temperature characteristics, and a lithium secondary battery using it by using a carbon material with a graphitic part and an amorphous part chemically bonded to each other. SOLUTION: Graphitic carbon is chemically bonded with low crystalline carbon to ensure the sufficient contact between them to and facilitate the migration of lithium ions between the both. Alternatively, by covering the graphitic carbon with the low crystalline carbon, separation between the both is prevented a stable characteristic for a long-term service is maintained causing only the low crystalline carbon to come in contact with an electrolyte. As a possible method for preparing the carbon material, the low crystalline carbon is directly bonded to graphite powder surface, or after a material suitable for the low crystalline carbon is bonded, carbonization reaction is promoted. Artificial graphite produced by the thermal treatment of easily graphitizable carbon obtainable from natural graphite or the like can be used as the graphic carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放電容量、出力密度
が大であってサイクル特性、低温特性にも優れたリチウ
ム二次電池用負極およびそれを用いたリチウム二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium secondary battery having a large discharge capacity, a high output density, and excellent cycle characteristics and low-temperature characteristics, and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】リチウム二次電池の負極として、従来は
リチウム金属およびリチウム合金が用いられてきたが、
樹枝状リチウムの析出による正負極の短絡やエネルギ−
密度が低くなるという欠点があった。最近ではこれらの
問題点を解決するために炭素材を負極に用いる研究が活
発である。炭素材料は大きく分けて、黒鉛質炭素と呼ば
れるものと、非晶質ないしは低結晶性炭素と呼ばれるも
のとがある。前者は結晶性が高く、炭素原子の形成する
正六角形の網目構造が規則的に層状積層された構造が発
達しており、結晶学的な因子としては(001)面の層
間距離が短く、その層の積層数の多いことで特徴付けら
れる。後者は、それに対して結晶性が低く、炭素原子の
形成する正六角形の層状積層構造の発達が不十分であ
り、結晶学的な因子としては(001)面の層間距離が
長く、その層の積層数の少ないことで特徴付けられる。
これらの炭素材料を用いたリチウム二次電池用負極は、
それぞれ特徴的な挙動を示す。黒鉛質炭素は平坦な放電
電位を示し、LiC6の組成まで完全充電されたときの
理論容量の372mAh/gに近い放電容量が比較的容
易に得られる。また、高い結晶性の構造を有するために
その結晶内でのリチウムイオンの移動速度が大きく、高
率放電特性に優れるという特徴もある。しかし、放電末
期の電位の変化が急峻であるため過放電を避けるため
に、電池として実質的に利用できる放電容量は250〜
320mAh/g程度である。一方、低結晶性炭素は黒
鉛の理論容量の372mAh/gに制約されることな
く、黒鉛よりも高い放電容量が得られるものも可能であ
るものの、黒鉛よりも平坦性の悪い放電電位であって、
得られる電池電圧が低くなる。
2. Description of the Related Art Conventionally, lithium metal and lithium alloy have been used as a negative electrode of a lithium secondary battery.
Short-circuit and energy of the positive and negative electrodes due to precipitation of dendritic lithium
There was a disadvantage that the density was low. Recently, research on using a carbon material for a negative electrode to solve these problems has been actively conducted. Carbon materials are roughly divided into those called graphitic carbon and those called amorphous or low-crystalline carbon. The former has a high crystallinity, a structure in which regular hexagonal network structures formed by carbon atoms are regularly layered and laminated, and the crystallographic factor is that the interlayer distance of the (001) plane is short. It is characterized by a large number of layers. In the latter, on the other hand, the crystallinity is low, the regular hexagonal layered laminated structure formed by carbon atoms is insufficiently developed, and the interlayer distance of the (001) plane is long as a crystallographic factor. It is characterized by a small number of layers.
A negative electrode for a lithium secondary battery using these carbon materials,
Each shows a characteristic behavior. Graphitic carbon exhibits a flat discharge potential, and a discharge capacity close to the theoretical capacity of 372 mAh / g when fully charged to the composition of LiC 6 can be obtained relatively easily. In addition, since it has a highly crystalline structure, there is a feature that the moving speed of lithium ions in the crystal is high and the high rate discharge characteristics are excellent. However, since the change in potential at the end of discharge is sharp, the discharge capacity that can be substantially used as a battery is 250 to avoid overdischarge.
It is about 320 mAh / g. On the other hand, low-crystalline carbon is not limited to the theoretical capacity of graphite of 372 mAh / g, and although it is possible to obtain a discharge capacity higher than graphite, the discharge potential is less flat than graphite. ,
The resulting battery voltage will be lower.

【0003】このように大きく異なる負極特性を示す両
者炭素材料を使いこなす方法として、単に両者を混合す
る方法が考えられるが、それだけでは不十分であり、そ
のための工夫として例えば、特開平7−326343号
公報があり、その構成は黒鉛質炭素と低結晶性炭素を混
合し、さらに両者を融合させることであり、それにより
高容量かつ低温特性の優れた電池が得られるという。し
かしながら二種類の炭素は単に物理的に接合させられた
だけであり、両者の性質が相補的に十分に作用している
とはいい難い。そのため、両者の間のリチウムイオンの
移動も円滑でなくなり、また充放電の繰り返しなどの長
期の使用後に剥離などが生じやすく、その機能を長期に
亘って維持しにくい。
As a method of utilizing both carbon materials exhibiting such greatly different negative electrode characteristics, a method of simply mixing both carbon materials is conceivable, but this alone is not sufficient. There is a gazette that the composition is to mix graphitic carbon and low-crystalline carbon, and to fuse them together, whereby a battery having high capacity and excellent low-temperature characteristics is obtained. However, the two types of carbon are merely physically bonded, and it is difficult to say that the properties of both are complementary and sufficiently functioning. Therefore, the movement of lithium ions between the two is not smooth, and peeling is likely to occur after long-term use such as repetition of charge and discharge, and it is difficult to maintain the function for a long time.

【0004】[0004]

【発明が解決しようとする課題】より良い炭素材料は、
上記の黒鉛質炭素と低結晶性炭素のそれぞれの特徴を活
かしながら、しかもその特性を長期に亘り安定に維持で
きることが望ましい。また、黒鉛質炭素では非水溶媒と
して優れた性質を有するプロピレンカ−ボネ−ト(P
C)を電解液に使用できないが、これが解決されれば電
解液組成の選択の幅が非常に広くなり、実用上きわめて
有用である。
A better carbon material is
It is desirable that the characteristics of the above-mentioned graphitic carbon and low-crystalline carbon be utilized while maintaining the characteristics stably for a long period of time. Graphite carbon has excellent properties as a non-aqueous solvent, such as propylene carbonate (P
C) cannot be used for the electrolytic solution, but if this is solved, the range of choice of the electrolytic solution composition becomes very wide, and it is extremely useful in practice.

【0005】[0005]

【課題を解決するための手段】本発明の要点は、黒鉛質
炭素と低結晶性炭素の間に化学結合を生じさせて両者の
接触を十分にし両者の間のリチウムイオンの移動を円滑
にすること、あるいはさらに前者を後者が被覆すること
などにより両者の間の剥離を防止し長期の使用に安定し
た特性を維持すること、電解液との接触を後者にのみ負
わせることなどである。
The gist of the present invention is to form a chemical bond between the graphitic carbon and the low-crystalline carbon so that the two can be sufficiently contacted and the lithium ions can smoothly move between the two. In addition, the former is coated with the latter to prevent peeling between the two to maintain stable characteristics for long-term use, and that only the latter is brought into contact with the electrolytic solution.

【0006】[0006]

【発明の実施の形態】本発明に関わる炭素材を得るに
は、黒鉛質炭素を化学結合で低結晶性炭素と結合させ
る。そのためには、黒鉛粉末粒子の表面に低結晶性炭素
を直接結合させるか、あるいは低結晶性炭素になりうる
材料を結合させた後に炭素化反応を促進する方法が可能
である。化学結合を形成するための試薬としては、たと
えばシランカップリング剤、あるいはグリニヤ−ル試薬
などを用いることができる。黒鉛質炭素としては、たと
えば天然黒鉛、キッシュグラファイト、あるいは石炭コ
−クスあるいは石油ピッチコ−クス等から得られる易黒
鉛化炭素を2500℃以上の高温で熱処理して得られる
人造黒鉛が利用できる。それらの平均粒径は50μm以
下、好ましくは1〜20μmが好適である。また、形状
は球状、塊状、鱗片状、繊維状、あるいはそれらの粉砕
品であっても良い。低結晶性炭素になりうる材料として
は種々の炭素化可能な有機化合物が使用可能であり。そ
の有機化合物が易黒鉛化炭素になるのか難黒鉛化炭素に
なるのかに応じて焼成温度を選定する。前者であれば1
000℃以下が好ましく、後者であれば1000℃以
上、2000℃以下が望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to obtain a carbon material according to the present invention, graphitic carbon is bonded to low-crystalline carbon by a chemical bond. For this purpose, a method of directly bonding low-crystalline carbon to the surface of the graphite powder particles or a method of promoting a carbonization reaction after bonding a material that can be low-crystalline carbon is possible. As a reagent for forming a chemical bond, for example, a silane coupling agent or a Grignard reagent can be used. As the graphitic carbon, for example, natural graphite, quiche graphite, or artificial graphite obtained by heat-treating easily graphitized carbon obtained from coal coke or petroleum pitch coke at a high temperature of 2500 ° C. or more can be used. Their average particle size is preferably 50 μm or less, and more preferably 1 to 20 μm. The shape may be spherical, massive, scale-like, fibrous, or a crushed product thereof. Various carbonizable organic compounds can be used as the material that can be low-crystalline carbon. The firing temperature is selected depending on whether the organic compound is to be graphitizable carbon or non-graphitizable carbon. 1 for the former
The temperature is preferably 000 ° C or less, and in the case of the latter, it is preferably from 1000 ° C to 2000 ° C.

【0007】以上の方法により得られた炭素材を用いて
負極を作製するのに用いられる結着剤としては、たとえ
ばEPDMゴム、ポリ二フッ化ビニリデン(以下「PV
DF」と略記する)、ポリテトラフルオロエチレンなど
の電解液と反応しないものであれば特に限定されない。
結着剤の配合量は炭素材に対し1〜30重量%、好まし
くは5〜15重量%が好適である。前記の合剤を用いた
負極形状としては、シ−ト状、フィルム状の電極基体
に、塗布あるいは充填するなどして電池形状に適応させ
ることが可能である。合剤層の厚さは10〜200μm
の範囲が望ましい。
[0007] As a binder used for producing a negative electrode using the carbon material obtained by the above method, for example, EPDM rubber, polyvinylidene difluoride (hereinafter referred to as “PV
DF "), as long as it does not react with an electrolytic solution such as polytetrafluoroethylene.
The amount of the binder is 1 to 30% by weight, preferably 5 to 15% by weight, based on the carbon material. The shape of the negative electrode using the above mixture can be adapted to the shape of a battery by coating or filling a sheet-like or film-like electrode substrate. The thickness of the mixture layer is 10 to 200 μm
Is desirable.

【0008】このようにして得られた負極は、通常用い
られる正極活物質、セパレ−タ、および電解液と組合せ
ることにより最適なリチウム二次電池とすることができ
る。セパレ−タとしては、ポリプロピレン、ポリエチレ
ンなどのポリオレフィン、あるいはポリエステルなどの
多孔質膜が用いられる。また電解液としては、プロピレ
ンカ−ボネ−ト(PC)、エチレンカ−ボネ−ト(EC)、
1,2−ジメトキシエタン(DME)、ジエチルカ−ボネ−
ト(DEC)、ジメチルカ−ボネ−ト(DMC)、メチルエ
チルカ−ボネ−ト(MEC)などの2種類以上の混合溶媒
が用いられる。電解質としては、LiPF6、LiBF4
どがあり、上記溶媒に溶解したものが用いられる。
[0008] By combining the negative electrode thus obtained with a commonly used positive electrode active material, separator and electrolyte solution, an optimum lithium secondary battery can be obtained. As the separator, a polyolefin such as polypropylene or polyethylene, or a porous film such as polyester is used. As the electrolyte, propylene carbonate (PC), ethylene carbonate (EC),
1,2-dimethoxyethane (DME), diethyl carbonate
Two or more types of mixed solvents such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and the like are used. Examples of the electrolyte include LiPF 6 and LiBF 4, and those dissolved in the above solvents are used.

【0009】[0009]

【実施例】【Example】

実施例1 天然黒鉛(粒径11μm)の100gをシランカップリン
グ剤を用いて表面処理したのち、25gのフェノ−ルと
縮合反応させ、黒鉛粒子の表面にフェノ−ルを化学結合
により固定した。得られた生成物を不活性雰囲気中80
0℃で焼成し、所期の炭素材を得た。得られた粉末は元
素分析によれば、炭素/水素=1/0.06の組成であ
った。また、CuKα線を用いたX線回折により、低結
晶性の炭素に由来すると考えられる回折角(2θ)=23
°付近のブロ−ドな回折線のみが検出され、黒鉛に由来
する回折角(2θ)=26°付近の回折線の強度は非常に
弱く、黒鉛粒子が低結晶性炭素に十分に被覆されている
ものと考えられた。さらに走査型電子顕微鏡で炭素粒子
を観察したところ、天然黒鉛に特有な層状構造は観察さ
れず、上記のX線回折結果からの推察を支持していた。
Example 1 After 100 g of natural graphite (particle diameter: 11 μm) was subjected to a surface treatment using a silane coupling agent, a condensation reaction was performed with 25 g of phenol, and phenol was fixed to the surface of the graphite particles by a chemical bond. The product obtained is placed in an inert atmosphere at 80
It was fired at 0 ° C. to obtain the expected carbon material. According to elemental analysis, the obtained powder had a composition of carbon / hydrogen = 1 / 0.06. Further, by X-ray diffraction using CuKα ray, a diffraction angle (2θ) = 23 considered to be derived from low-crystalline carbon was obtained.
Only a broad diffraction line near ° is detected, and the intensity of the diffraction line near diffraction angle (2θ) = 26 ° derived from graphite is very weak, and the graphite particles are sufficiently covered with low crystalline carbon. Was thought to be. Further, when the carbon particles were observed with a scanning electron microscope, no layered structure peculiar to natural graphite was observed, supporting the inference from the above X-ray diffraction results.

【0010】上記の操作により得られた炭素粉末を結着
剤としてのPVDFの2−メチルピロリドン溶液と混合
し、炭素とPVDFが9:1の重量比になるようにした
ペ−ストを厚さ20μmの銅箔に塗布した。風乾後に8
0℃で3時間真空乾燥し、0.5t/cm2の圧力で成
型したのち、さらに150℃で2時間真空乾燥し、負極
とした。
[0010] The carbon powder obtained by the above operation is mixed with a 2-methylpyrrolidone solution of PVDF as a binder to form a paste in which the weight ratio of carbon to PVDF is 9: 1. It was applied to a 20 μm copper foil. 8 after air drying
After vacuum drying at 0 ° C. for 3 hours and molding at a pressure of 0.5 t / cm 2 , vacuum drying was further performed at 150 ° C. for 2 hours to obtain a negative electrode.

【0011】この負極をポリエチレン製微孔膜のセパレ
−タを介してリチウム金属の対極と組合せ、電解液に1
MLiPF6/PC+DMC、参照極にリチウム金属を用
いた試験セルを組立てた。充放電速度は炭素1g当たり
120mA、充放電の上下限電位は、それぞれ1.0V
と0.01Vとした。得られた結果を図1のAに示す。
図1のAは5サイクル目の充放電電位曲線である。また
充電速度は120mA/gのまま一定で放電速度を変化
させたときの放電容量の変化つまり放電レ−ト特性を図
2のBに示す。
This negative electrode is combined with a lithium metal counter electrode through a polyethylene microporous membrane separator, and 1
A test cell using MLiPF 6 / PC + DMC and lithium metal as a reference electrode was assembled. The charge and discharge rate was 120 mA per gram of carbon, and the upper and lower limit potentials of charge and discharge were 1.0 V, respectively.
And 0.01V. The results obtained are shown in FIG.
A in FIG. 1 is a charge / discharge potential curve at the fifth cycle. FIG. 2B shows a change in the discharge capacity, that is, a discharge rate characteristic when the discharge rate is changed while the charge rate is kept constant at 120 mA / g.

【0012】実施例2 実施例1と同様にして製作した負極を用いて単三型の電
池を製作した。対極にコバルト酸リチウムからなる正極
を用いた他は、セパレ−タ、電解液とも実施例1と同じ
である。電池の容量は500mAhあった。この電池を
用いて充放電のサイクル寿命試験をした。充電モ−ド
は、定電流−定電圧充電であり、充電電流150mA
で、充電の上限電圧4.2Vで定電圧充電に移行し、5
時間で充電終了とした。放電電流150mAで、放電の
下限電圧は2.8Vとした。得られた結果を図3のCに
示す。
Example 2 An AA battery was manufactured using the negative electrode manufactured in the same manner as in Example 1. The separator and the electrolyte are the same as in the first embodiment except that a positive electrode made of lithium cobalt oxide is used as the counter electrode. The capacity of the battery was 500 mAh. Using this battery, a charge / discharge cycle life test was performed. The charging mode is a constant current-constant voltage charging, and a charging current of 150 mA.
Then, it shifts to constant voltage charging at the upper limit voltage of 4.2V for charging.
Charging was completed in time. At a discharge current of 150 mA, the lower limit voltage of the discharge was 2.8 V. The obtained result is shown in FIG.

【0013】比較例1 フェノ−ル樹脂を不活性雰囲気中800℃で焼成して得
られた炭素材を用いた負極を製作し、それを用いた試験
セルを実施例1のように製作し、充放電試験およびレ−
ト試験をした。電池の製作条件、および測定条件はすべ
て、実施例1と同じとした。また実施例2と同様に単三
型の電池を製作し、充放電サイクル寿命試験をした。得
られた結果を図1のA1、図2のB1および図3のC1
示す。
Comparative Example 1 A negative electrode was manufactured using a carbon material obtained by firing phenol resin at 800 ° C. in an inert atmosphere, and a test cell using the same was manufactured as in Example 1. Charge / discharge test and laser
Test. The manufacturing conditions and measurement conditions of the battery were all the same as in Example 1. AA batteries were manufactured in the same manner as in Example 2, and a charge / discharge cycle life test was performed. The obtained results are shown in A 1 in FIG. 1 , B 1 in FIG. 2, and C 1 in FIG.

【0014】比較例2 比較のために天然黒鉛を用いた負極を製作しそれらの特
性を測定した。負極の製法および特性の測定方法は、す
べて実施例1と同じにした。得られた結果のうち5サイ
クル目の充放電電位曲線を図1のA2に示す。また、電
解液に1MLiPF6/EC+DMCを用いた場合の電極
特性も同様に測定した。その結果をそれぞれ図1のA3
に、また放電レ−ト特性を図2のB3に示す。さら上記
の負極を用いた単三型の電池を製作し、充放電サイクル
寿命試験をした。電解液に1MLiPF6/EC+DMC
を用いた以外の電池の製作条件、および測定条件はすべ
て、実施例2と同じとした。得られた結果を図3のC3
に示す。
Comparative Example 2 For comparison, a negative electrode using natural graphite was manufactured and its characteristics were measured. The method for producing the negative electrode and the method for measuring the characteristics were all the same as in Example 1. Charge-discharge potential curve at the fifth cycle of the obtained results are shown in A 2 in FIG. 1. In addition, the electrode characteristics when 1 MLiPF 6 / EC + DMC was used as the electrolyte were measured in the same manner. A 3 The results of FIG. 1, respectively
To also discharge Le - show bets characteristics B 3 in FIG. 2. Further, an AA battery using the above negative electrode was manufactured, and a charge / discharge cycle life test was performed. 1 MLiPF 6 / EC + DMC for electrolyte
The manufacturing conditions and measurement conditions of the battery were the same as those in Example 2 except for using. C 3 of FIG. 3 the results obtained
Shown in

【0015】図1から本発明による負極はAに示すよう
に、低い放電電位と高い放電容量を示しながら、放電末
期の電位の立上りが緩やかである。一方、従来技術によ
る低結晶性炭素を用いた負極はA1に示すように、本発
明による負極Aより若干大きい放電容量を示すものの、
電位の平坦性が悪くしかも平均放電電位が高い。また、
従来技術による黒鉛を用いた負極はA2、A3に示すよう
に、(PC+DMC)系の電解液中では充放電が殆どで
きず、(EC+DMC)系の電解液中でのみ本発明による
負極A1と同等の放電容量が得られ、電解液の制約が大
きく、A3に示すように放電末期の電位の立上りが急峻
である。
As shown in FIG. 1, the negative electrode according to the present invention has a low discharge potential and a high discharge capacity as shown in A, and the potential rise at the end of discharge is gradual. Meanwhile, the negative electrode using a low-crystalline carbon according to the prior art as shown in A 1, while indicating slightly greater discharge capacity than the negative electrode A according to the present invention,
Poor flatness of potential and high average discharge potential. Also,
As shown in A 2 and A 3 , the negative electrode using graphite according to the prior art can hardly charge and discharge in a (PC + DMC) -based electrolyte, and the negative electrode A according to the present invention only in a (EC + DMC) -based electrolyte. 1 equivalent discharge capacity is obtained and a large restriction of electrolyte, the rise of the potential of the discharge ending, as shown in a 3 is steep.

【0016】図2から本発明による負極の放電レ−ト特
性はBに示すように、従来技術による低結晶性炭素を用
いた負極B1よりも優れた特性を示しており、従来技術
による黒鉛を用いた負極はB3とほぼ同等の特性であ
る。
The negative electrode of the discharge les according to the invention from FIG. 2 - DOO characteristics as shown in B, and shows better performance than the negative electrode B 1 using a low-crystalline carbon according to the prior art, graphite according to the prior art The negative electrode using has almost the same characteristics as B 3 .

【0017】図3から本発明による電池の充放電サイク
ル寿命特性はCに示すように、従来技術による低結晶性
炭素を用いた電池C1とほぼ同等の特性であり、従来技
術による黒鉛を用いた電池C3よりも優れた特性を示し
ている。
As shown in FIG. 3, the charge / discharge cycle life characteristics of the battery according to the present invention are almost the same as those of the battery C 1 using low-crystalline carbon according to the prior art. shows a better performance than cell C 3 in which are.

【0018】[0018]

【発明の効果】以上から、本発明による負極およびそれ
を用いたリチウム二次電池では、黒鉛並みの平坦な放電
電位と放電レ−ト特性を示し、かつ低結晶炭素並みの緩
やかな放電末期電位上昇と充放電サイクル特性を有し、
さらにPC系の電解液が使用できるという効果が得られ
る。これは、従来技術の低結晶性炭素と黒鉛質炭素のそ
れぞれの長所を有しながら、しかも、それら二種類の炭
素を単に物理的に接触あるいは単に融合させた場合と異
なり、化学結合を生じさせることによるものであって、
そのため、両者の間のリチウムイオンの移動が円滑にな
り、高率放電特性が改善された。さらに充放電の繰り返
しなどの長期の使用後に剥離なども不具合も生じにくく
なり、そのため、上記の優れた特性を特性を長期に亘り
安定に維持できた。また、誘電率が高く利用温度範囲が
広いなどの非水溶媒として優れた性質を有するPCの利
用が可能となり、電解液組成の選択の幅が非常に広くな
るという長所も併せ持った優れたリチウム二次電池用負
極とそれを用いたリチウム二次電池が可能となることで
あり、その工業的価値は大きい。
As described above, the negative electrode according to the present invention and the lithium secondary battery using the same exhibit a flat discharge potential and discharge rate characteristics comparable to graphite, and a gradual terminal discharge potential similar to low crystalline carbon. With rising and charge / discharge cycle characteristics,
Further, an effect that a PC-based electrolytic solution can be used is obtained. This has the advantages of the low-crystalline carbon and graphitic carbon of the prior art, but also creates a chemical bond unlike the case where the two types of carbon are simply physically contacted or simply fused. Because of
Therefore, the movement of lithium ions between the two became smooth, and the high-rate discharge characteristics were improved. Further, after long-term use such as repetition of charge and discharge, peeling and other troubles are unlikely to occur, and therefore, the above excellent characteristics can be maintained stably for a long period of time. In addition, it is possible to use a PC having excellent properties as a non-aqueous solvent, such as a high dielectric constant and a wide use temperature range. A negative electrode for a secondary battery and a lithium secondary battery using the same are made possible, and their industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる負極と従来技術になる負極の5サ
イクル目の充放電電位曲線図である。
FIG. 1 is a diagram showing charge and discharge potential curves at the fifth cycle of a negative electrode according to the present invention and a negative electrode according to the prior art.

【図2】本発明になる負極と従来技術になる負極の放電
レ−ト特性図である。
FIG. 2 is a discharge rate characteristic diagram of a negative electrode according to the present invention and a negative electrode according to the prior art.

【図3】本発明になる単三型電池と従来技術になる単三
型電池の充放電サイクル寿命特性図である。
FIG. 3 is a charge / discharge cycle life characteristic diagram of an AA battery according to the present invention and an AA battery according to the related art.

【符号の説明】[Explanation of symbols]

A:本発明になる負極の充放電電位 B:本発明になる負極の放電レ−ト特性 C:本発明になる単三型電池の充放電サイクル寿命特性 A: Charge / discharge potential of the negative electrode according to the present invention B: Discharge rate characteristic of the negative electrode according to the present invention C: Charge / discharge cycle life characteristic of the AA battery according to the present invention

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】黒鉛質の部分と非晶質の部分が化学結合で
結合されている炭素材を用いたことを特徴とするリチウ
ム二次電池用負極。
1. A negative electrode for a lithium secondary battery, wherein a carbon material in which a graphitic portion and an amorphous portion are bonded by a chemical bond is used.
【請求項2】非晶質の部分が黒鉛質の部分を被覆してい
ることを特徴とする請求項1記載のリチウム二次電池用
負極。
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the amorphous portion covers the graphite portion.
【請求項3】請求項1または2記載のリチウム二次電池
用負極を用いたリチウム二次電池。
3. A lithium secondary battery using the negative electrode for a lithium secondary battery according to claim 1.
JP10756097A 1997-04-24 1997-04-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP3456363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10756097A JP3456363B2 (en) 1997-04-24 1997-04-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10756097A JP3456363B2 (en) 1997-04-24 1997-04-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH10302775A true JPH10302775A (en) 1998-11-13
JP3456363B2 JP3456363B2 (en) 2003-10-14

Family

ID=14462278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10756097A Expired - Fee Related JP3456363B2 (en) 1997-04-24 1997-04-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3456363B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110240A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium secondary battery
JP2002110242A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium polymer secondary battery
JP2002110241A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium polymer secondary battery and its production method
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
US9979007B2 (en) 2013-12-30 2018-05-22 Samsung Electronics Co., Ltd. Negative electrode material for lithium secondary battery, production method for same, and lithium secondary battery comprising same as negative electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110240A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium secondary battery
JP2002110242A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium polymer secondary battery
JP2002110241A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium polymer secondary battery and its production method
JP4748840B2 (en) * 2000-09-29 2011-08-17 シャープ株式会社 Lithium polymer secondary battery
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
US9979007B2 (en) 2013-12-30 2018-05-22 Samsung Electronics Co., Ltd. Negative electrode material for lithium secondary battery, production method for same, and lithium secondary battery comprising same as negative electrode

Also Published As

Publication number Publication date
JP3456363B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
US8158282B2 (en) Method of producing prelithiated anodes for secondary lithium ion batteries
KR101038637B1 (en) Negative Active Material, Negative Electrode Using the Same, Non-Aqueous Electrolyte Battery Using the Same, and Manufacturing Method for Negative Active Material
EP2503626B1 (en) Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
TWI482346B (en) Method of manufacturing cathode material for lithium secondary battery
US20090162751A1 (en) Lithium ion secondary battery
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
KR20190028244A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
CN102683696A (en) Positive active material, positive electrode and rechargeable lithium battery
US10403885B2 (en) Active material for batteries
KR20190041420A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
TW201306363A (en) Method of producing cathode active material for lithium secondary battery, cathode active material for lithium secondary battery, and lithium secondary battery
JP5992198B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JPH1040914A (en) Manufacture of nonaqueous secondary battery and negative pole active substance
KR20180027873A (en) Negative active material, negative electrode and lithium secondary battery including the same, and method of preparing the negative active material
JP2012204003A (en) Positive electrode active material, positive electrode, and nonaqueous secondary battery
KR20140041312A (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery system
US11171325B2 (en) Optimized electrode design for graphene based anodes
KR20190044451A (en) Method for preparing positive electrode active material for secondary battery and secondary battery using the same
JP3456363B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
KR20150063265A (en) ZnO-MnO-C COMPOSITE, MANUFACTURING METHOD OF COMPOSITE CONTAINING ZINC OXIDE AND MANGANESE OXIDE AND ANODE ACTIVE MATERIAL CONTAINING THE SAME
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
KR101748914B1 (en) Lithium electrode, method for the same and lithium battery compring the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees