JPH10294131A - Lithium battery having polymer electrolyte - Google Patents

Lithium battery having polymer electrolyte

Info

Publication number
JPH10294131A
JPH10294131A JP9101911A JP10191197A JPH10294131A JP H10294131 A JPH10294131 A JP H10294131A JP 9101911 A JP9101911 A JP 9101911A JP 10191197 A JP10191197 A JP 10191197A JP H10294131 A JPH10294131 A JP H10294131A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
lithium salt
lithium
solvent
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9101911A
Other languages
Japanese (ja)
Inventor
Masayuki Tamura
正之 田村
Kazuya Hiratsuka
和也 平塚
Manabu Kazuhara
学 数原
Katsuharu Ikeda
克治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9101911A priority Critical patent/JPH10294131A/en
Publication of JPH10294131A publication Critical patent/JPH10294131A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PROBLEM TO BE SOLVED: To improve holding performance of a solvent of a polymer electrolyte and adhesion of the polymer electrolyte and an electrode active material by forming a copolymer on the basis of a vinylidene fluoride and perfluoro (alkyl vinyl ether) as a matrix, and containing solution composed of a solute of lithium salt and a solvent capable of dissolving the lithium salt. SOLUTION: A matrix is obtained by copolymerizing a polymerization unit on the basis of a vinylidene fluoride and a polymerization unit expressed by formula I or formula II in a range of the weight ratio of 95/5 to 5/95. In the formula, (a) and (d) are an integer of 0 to 3; and (b) and (e) are an integer of 0 to 8; and (c) and (f) are 0 or 1; and X and Y are F, CF3 or Cl. Carbonic ester is desirable as a solvent of a lithium salt solution. One or more kinds of either lithium salt using ClO4 <-> , CF3 SO3 <-> or the like as an anion are used as lithium salt, and are dissolved in the solvent in concentration of 0.2 to 1.5 mol/l, and the lithium salt solution is desirably contained by 30 to 80 wt.% in the matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリマー電解質を使
用したリチウム電池、特にサイクル寿命に優れるリチウ
ム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery using a polymer electrolyte, and more particularly to a lithium secondary battery having excellent cycle life.

【0002】[0002]

【従来の技術】電極活物質としてアルカリ金属、アルカ
リ金属イオンを吸蔵、放出可能な材料を用いる電池が高
エネルギー密度を有するものとして注目されており、な
かでもリチウム二次電池は特にエネルギー密度が高いた
め、電子機器の電源として広く用いられつつある。
2. Description of the Related Art A battery using a material capable of occluding and releasing an alkali metal or an alkali metal ion as an electrode active material has attracted attention as having a high energy density. Among them, a lithium secondary battery has a particularly high energy density. Therefore, it is being widely used as a power source for electronic devices.

【0003】近年、一次電池及び二次電池に液状である
電解液を用いることによって生じる漏液の対策、可燃性
電解液の着火性低減対策、及び電池のフィルム状化によ
る電子機器への組み込み性の向上とスペースの有効利用
等の見地より、ポリマー電解質が提案されている(特表
平8−507407、特表平4−506726)。
In recent years, measures have been taken to prevent liquid leakage caused by using liquid electrolytes for primary batteries and secondary batteries, to reduce the ignitability of flammable electrolytes, and to facilitate the incorporation into electronic devices by forming batteries into films. Polymer electrolytes have been proposed from the standpoints of improvement in space efficiency and effective use of space (Japanese Patent Application Laid-Open Nos. Hei 8-507407 and Hei 4-506726).

【0004】そのなかで、ポリエチレンオキシド系ポリ
マー電解質は電気化学的には安定であるが、有機電解液
の溶媒の保持性が低い難点がある。三次元構造のポリア
クリレート系ポリマー電解質は、溶媒の保持性はよいも
のの電気化学的に不安定で4V級電池には適さない。
Among them, polyethylene oxide-based polymer electrolytes are electrochemically stable, but have a drawback in that the solvent retention of the organic electrolyte is low. The polyacrylate-based polymer electrolyte having a three-dimensional structure has good solvent retention, but is electrochemically unstable and is not suitable for a 4V class battery.

【0005】ポリフッ化ビニリデンからなるポリマー電
解質は電気化学的に安定であり、フッ素原子を含むので
ポリマーが燃えにくい特徴があるが、ポリマー電解質の
温度を上げると電解液がポリマーよりにじみ出る。これ
に対し、フッ化ビニリデン/ヘキサフルオロプロピレン
共重合体を使用することによりこの問題を解決する試み
もある。さらに、従来のポリマー電解質使用リチウム二
次電池は、充放電サイクル耐久性が液体電解質を用いた
電池より劣る欠点があった。
[0005] A polymer electrolyte made of polyvinylidene fluoride is electrochemically stable and has a feature that the polymer is hard to burn because it contains fluorine atoms. However, when the temperature of the polymer electrolyte is increased, the electrolyte oozes out of the polymer. On the other hand, there is an attempt to solve this problem by using a vinylidene fluoride / hexafluoropropylene copolymer. Further, the conventional lithium secondary battery using a polymer electrolyte has a drawback that the charge / discharge cycle durability is inferior to the battery using a liquid electrolyte.

【0006】[0006]

【発明が解決しようとする課題】本発明は特定のポリマ
ー電解質を用いることにより、ポリマー電解質の溶媒の
保持性がよく、安定で、特に二次電池として使用すると
きの充放電サイクル耐久性が優れたリチウム電池を提供
する。
SUMMARY OF THE INVENTION In the present invention, the use of a specific polymer electrolyte makes it possible to maintain a good solvent retention of the polymer electrolyte, to be stable, and to have particularly excellent charge / discharge cycle durability when used as a secondary battery. To provide a lithium battery.

【0007】[0007]

【課題を解決するための手段】本発明は、正極、負極及
び電解質を有するリチウム電池において、前記電解質
が、フッ化ビニリデンに基づく重合単位とパーフルオロ
(アルキルビニルエーテル)に基づく重合単位(ただ
し、フッ素の一部が塩素又は臭素と置換されていてもよ
い)とを含む共重合体をマトリックスとし、リチウム塩
の溶質とリチウム塩を溶解できる溶媒とからなる溶液を
含有するポリマー電解質であることを特徴とするリチウ
ム電池を提供する。
The present invention relates to a lithium battery having a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises a polymerized unit based on vinylidene fluoride and a polymerized unit based on perfluoro (alkyl vinyl ether) (provided that fluorine (A part of which may be substituted with chlorine or bromine) as a matrix, and a polymer electrolyte containing a solution comprising a solute of a lithium salt and a solvent capable of dissolving the lithium salt. To provide a lithium battery.

【0008】本発明のリチウム電池は、一次電池、二次
電池のいずれの電池としても使用できる。特に二次電池
として使用する場合は、負極へのリチウムの析出がなく
安全であることを考慮すると、負極にリチウムの層間化
合物を用いるいわゆるリチウムイオン二次電池が好まし
い。
[0008] The lithium battery of the present invention can be used as either a primary battery or a secondary battery. In particular, when used as a secondary battery, a so-called lithium ion secondary battery using a lithium intercalation compound for the negative electrode is preferable, considering that lithium is not deposited on the negative electrode and safe.

【0009】本発明におけるポリマー電解質のマトリッ
クスは、フッ化ビニリデンに基づく重合単位とパーフル
オロ(アルキルビニルエーテル)に基づく重合単位(た
だし、フッ素の一部が塩素又は臭素と置換されていても
よい)とを含む共重合体である。
The polymer electrolyte matrix of the present invention comprises a polymerized unit based on vinylidene fluoride and a polymerized unit based on perfluoro (alkyl vinyl ether) (provided that part of fluorine may be replaced by chlorine or bromine). It is a copolymer containing.

【0010】フッ化ビニリデンに基づく重合単位とパー
フルオロ(アルキルビニルエーテル)に基づく重合単位
を含む共重合体は、これらと共重合体を形成できる他の
単量体に基づく重合単位を20重量%を超えない範囲で
適宜含有させた共重合体であってもよい。
The copolymer containing a polymerized unit based on vinylidene fluoride and a polymerized unit based on perfluoro (alkyl vinyl ether) contains 20% by weight of a polymerized unit based on another monomer capable of forming a copolymer therewith. It may be a copolymer appropriately contained within a range not exceeding.

【0011】他の単量体としては、例えばテトラフルオ
ロエチレン、クロロトリフルオロエチレン、トリフルオ
ロエチレン、フッ化ビニル、ヘキサフルオロプロピレ
ン、エチレン、プロピレン、イソブチレン、エチルビニ
ルエーテル、クロロエチルビニルエーテル、シクロヘキ
シルビニルエーテル、メチルイソプロピルエーテル、ピ
バリン酸ビニル、酢酸ビニル、安息香酸ビニル、エチル
アリルエーテル、シクロヘキシルアリルエーテル、ノル
ボルナジエン、クロトン酸及びそのエステル、アクリル
酸及びそのアルキルエステル、メタクリル酸及びそのア
ルキルエステル等が挙げられる。
Other monomers include, for example, tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinyl fluoride, hexafluoropropylene, ethylene, propylene, isobutylene, ethyl vinyl ether, chloroethyl vinyl ether, cyclohexyl vinyl ether, methyl Examples include isopropyl ether, vinyl pivalate, vinyl acetate, vinyl benzoate, ethyl allyl ether, cyclohexyl allyl ether, norbornadiene, crotonic acid and its esters, acrylic acid and its alkyl esters, methacrylic acid and its alkyl esters, and the like.

【0012】本発明の電池のポリマー電解質のマトリッ
クスを構成するフッ化ビニリデンに基づく重合単位とパ
ーフルオロ(アルキルビニルエーテル)に基づく重合単
位との重量比、さらには必要に応じて添加される他の成
分の重量比、共重合体の分子量等は、フィルムを形成す
るための有機溶媒へのマトリックスの溶解性又は分散
性、マトリックスのリチウム塩溶液との混和性及びリチ
ウム塩溶液の保持性、ポリマー電解質の集電体金属への
接着性、強度、成形性、ハンドリング性、マトリックス
の入手の容易性などにより適宜選定できる。
The weight ratio of the polymerized units based on vinylidene fluoride to the polymerized units based on perfluoro (alkyl vinyl ether) constituting the matrix of the polymer electrolyte of the battery of the present invention, and other components added as necessary Weight ratio, molecular weight of the copolymer, etc., the solubility or dispersibility of the matrix in an organic solvent to form a film, miscibility of the matrix with the lithium salt solution and retention of the lithium salt solution, the polymer electrolyte It can be appropriately selected depending on the adhesiveness to the current collector metal, strength, moldability, handleability, availability of the matrix, and the like.

【0013】本発明のフッ化ビニリデンに基づく重合単
位とパーフルオロ(アルキルビニルエーテル)に基づく
重合単位とを含む共重合体中のフッ化ビニリデンに基づ
く重合単位とパーフルオロ(アルキルビニルエーテル)
に基づく重合単位との重量比は、1/99〜99/1で
あることが好ましい。
[0013] The vinylidene fluoride-based polymerized unit and perfluoro (alkyl vinyl ether) in the copolymer containing the vinylidene fluoride-based polymerized unit and the perfluoro (alkyl vinyl ether) -based polymerized unit of the present invention.
Is preferably 1/99 to 99/1.

【0014】重量比が99/1を超えると共重合体の結
晶性が高くなり、柔軟性が低下して成形加工性が低下し
たり、リチウム塩溶液がマトリックス中に侵入しにくく
なってポリマー電解質の電気伝導度が低くなり好ましく
ない。また、重量比が1/99未満であるとポリマー電
解質の柔軟性が高くなりすぎ、強度が低下するので好ま
しくない。より好ましくは95/5〜5/95である。
特に強度の高いポリマー電解質を得るために、フッ化ビ
ニリデンに基づく重合単位とパーフルオロ(アルキルビ
ニルエーテル)に基づく重合単位との重量比が40/6
0〜95/5である共重合体が好ましく採用される。
When the weight ratio exceeds 99/1, the crystallinity of the copolymer increases, the flexibility decreases, the moldability decreases, and the lithium salt solution hardly penetrates into the matrix, so that the polymer electrolyte becomes difficult. Is undesirably low in electrical conductivity. On the other hand, if the weight ratio is less than 1/99, the flexibility of the polymer electrolyte becomes too high, and the strength is undesirably reduced. More preferably, it is 95/5 to 5/95.
In order to obtain a particularly strong polymer electrolyte, the weight ratio of the polymerized units based on vinylidene fluoride to the polymerized units based on perfluoro (alkyl vinyl ether) is 40/6.
A copolymer having a ratio of 0 to 95/5 is preferably employed.

【0015】本発明で使用する共重合体の分子量は1万
〜100万が好ましい。分子量が100万を超えると、
溶解粘度が著しく高くリチウム塩溶液との均一混合が困
難となったり、リチウム塩溶液の保持量が少なくなって
ポリマー電解質の電気伝導度が低下したりするので好ま
しくない。一方、1万未満であると、ポリマー電解質の
機械的強度が著しく低下するので好ましくない。特に好
ましくは3万〜50万が採用される。
The molecular weight of the copolymer used in the present invention is preferably 10,000 to 1,000,000. When the molecular weight exceeds 1,000,000,
It is not preferable because the dissolution viscosity is extremely high, making it difficult to uniformly mix with the lithium salt solution, or the holding amount of the lithium salt solution is reduced to lower the electric conductivity of the polymer electrolyte. On the other hand, if it is less than 10,000, the mechanical strength of the polymer electrolyte is significantly reduced, which is not preferable. Particularly preferably, 30,000 to 500,000 is employed.

【0016】本発明で使用する共重合体中のパーフルオ
ロ(アルキルビニルエーテル)に基づく重合単位として
は種々の構造のものが用いられるが、フッ化ビニリデン
に基づく重合単位との共重合性に優れる式1又は式2で
表される重合単位が好ましく採用される。
As the polymer units based on perfluoro (alkyl vinyl ether) in the copolymer used in the present invention, those having various structures are used, and a copolymer having excellent copolymerizability with the polymer units based on vinylidene fluoride is used. The polymerization unit represented by Formula 1 or 2 is preferably employed.

【0017】[0017]

【化2】 Embedded image

【0018】ただし、式1においてaは0〜3の整数
で、bは0〜8の整数で、cは0又は1で、XはF、C
又はClである。式2において、dは0〜3の整
数で、eは0〜8の整数で、fは0又は1で、Y=F、
CF3 又はClである。具体的に例示すれば、式3〜8
で表される重合単位が挙げられる。
In the formula 1, a is an integer of 0 to 3, b is an integer of 0 to 8, c is 0 or 1, and X is F or C.
F is a 3 or Cl. In Formula 2, d is an integer of 0 to 3, e is an integer of 0 to 8, f is 0 or 1, Y = F,
CF 3 or Cl. To give a concrete example, Equations 3 to 8
And a polymerization unit represented by the formula:

【0019】[0019]

【化3】 Embedded image

【0020】本発明におけるリチウム塩溶液の溶媒とし
ては炭酸エステルが好ましい。炭酸エステルは環状、鎖
状いずれも使用できる。環状炭酸エステルとしてはプロ
ピレンカーボネート、エチレンカーボネート等が例示さ
れる。鎖状炭酸エステルとしてはジメチルカーボネー
ト、ジエチルカーボネート、エチルメチルカーボネー
ト、メチルプロピルカーボネート、メチルイソプロピル
カーボネート等が例示される。
As the solvent for the lithium salt solution in the present invention, a carbonate ester is preferable. Carbonate can be used either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.

【0021】本発明では上記炭酸エステルを単独で又は
2種以上を混合して使用できる。他の溶媒と混合して使
用してもよい。また、負極活物質の材料によっては、鎖
状炭酸エステルと環状炭酸エステルを併用すると、放電
特性、サイクル耐久性、充放電効率が改良できる場合が
ある。
In the present invention, the above-mentioned carbonates can be used alone or in combination of two or more. It may be used by mixing with other solvents. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate and a cyclic carbonate may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.

【0022】本発明で使用されるリチウム塩としては、
ClO4 -、CF3 SO3 -、BF4 -、PF6 -、AsF6 -
SbF6 -、CF3 CO2 -、(CF3 SO22- 等を
アニオンとするリチウム塩のいずれか1種以上を使用す
ることが好ましい。
The lithium salt used in the present invention includes:
ClO 4 , CF 3 SO 3 , BF 4 , PF 6 , AsF 6 ,
It is preferable to use at least one of lithium salts having an anion of SbF 6 , CF 3 CO 2 , (CF 3 SO 2 ) 2 N or the like.

【0023】本発明におけるリチウム塩溶液は、リチウ
ム塩を前記溶媒に0.2〜2.0mol/lの濃度で溶
解するのが好ましい。この範囲を逸脱すると、イオン伝
導度が低下し、ポリマー電解質の電気伝導度が低下す
る。より好ましくは0.5〜1.5mol/lが選定さ
れる。
In the lithium salt solution of the present invention, the lithium salt is preferably dissolved in the solvent at a concentration of 0.2 to 2.0 mol / l. Outside this range, the ionic conductivity decreases and the electrical conductivity of the polymer electrolyte decreases. More preferably, 0.5 to 1.5 mol / l is selected.

【0024】本発明では、マトリックス中に前記リチウ
ム塩溶液が均一に分布したポリマー電解質を使用する
が、ポリマー電解質中のリチウム塩溶液の含有量は30
〜80重量%が好ましい。30重量%未満であると電気
伝導度が低くなるので好ましくない。80重量%を超え
るとポリマー電解質が固体状態を保てなくなるので好ま
しくない。特に好ましくは40〜65重量%が採用され
る。
In the present invention, a polymer electrolyte in which the lithium salt solution is uniformly distributed in a matrix is used, and the content of the lithium salt solution in the polymer electrolyte is 30.
~ 80% by weight is preferred. If the content is less than 30% by weight, the electric conductivity is undesirably low. If it exceeds 80% by weight, the polymer electrolyte cannot be maintained in a solid state, which is not preferable. Particularly preferably, 40 to 65% by weight is employed.

【0025】本発明におけるポリマー電解質は種々の方
法で作製できる。例えば、マトリックスを形成する共重
合体を有機溶媒に溶解又は均一に分散させ、リチウム塩
を溶媒に溶解させた溶液と混合する(以下、この混合液
をポリマー電解質形成用混合液という)。この混合液を
ガラス板上にバーコータ又はドクターブレードによる塗
布、キャスト又はスピンコートした後、乾燥して主とし
て前記共重合体を溶解又は分散させた有機溶媒を除去
し、ポリマー電解質フィルムを得る。乾燥時にリチウム
塩溶液に用いた溶媒が一部蒸発する場合は、該フィルム
に新たにその溶媒を含浸させるか又はフィルムをその溶
媒蒸気に暴露して所望の組成にする。
The polymer electrolyte in the present invention can be prepared by various methods. For example, a copolymer forming a matrix is dissolved or uniformly dispersed in an organic solvent, and mixed with a solution in which a lithium salt is dissolved in a solvent (hereinafter, this mixed liquid is referred to as a mixed liquid for forming a polymer electrolyte). The mixed solution is applied, cast or spin-coated on a glass plate with a bar coater or a doctor blade, and then dried to remove mainly the organic solvent in which the copolymer is dissolved or dispersed, thereby obtaining a polymer electrolyte film. If the solvent used in the lithium salt solution partially evaporates during drying, the film is newly impregnated with the solvent or the film is exposed to the solvent vapor to obtain a desired composition.

【0026】前記共重合体を溶解又は分散させる有機溶
媒としては、テトラヒドロフラン(以下、THFとい
う)、メチルエチルケトン、メチルイソブチルケトン、
トルエン、キシレン、N−メチルピロリドン、アセト
ン、アセトニトリル、ジメチルカーボネート、酢酸エチ
ル、酢酸ブチル等が使用できるが、乾燥により選択的に
この有機溶媒を除去するため、THF、アセトン等の沸
点100℃以下の揮発性の有機溶媒が好ましい。
As the organic solvent for dissolving or dispersing the copolymer, tetrahydrofuran (hereinafter referred to as THF), methyl ethyl ketone, methyl isobutyl ketone,
Toluene, xylene, N-methylpyrrolidone, acetone, acetonitrile, dimethyl carbonate, ethyl acetate, butyl acetate, etc. can be used, but in order to selectively remove this organic solvent by drying, THF, acetone or the like having a boiling point of 100 ° C or less Volatile organic solvents are preferred.

【0027】本発明における負極活物質は、一次電池の
場合はリチウムイオンを放出可能な材料であり、二次電
池の場合はリチウムイオンを吸蔵、放出可能な材料であ
る。これらの負極活物質を形成する材料は特に限定され
ないが、例えばリチウム金属、リチウム合金、炭素材
料、周期表14、15族の金属を主体とした酸化物、炭
素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化
チタン、炭化ホウ素化合物等が挙げられる。
The negative electrode active material in the present invention is a material capable of releasing lithium ions in the case of a primary battery, and a material capable of inserting and extracting lithium ions in the case of a secondary battery. Although the material forming these negative electrode active materials is not particularly limited, for example, lithium metal, lithium alloy, carbon material, oxides mainly composed of metals of Groups 14 and 15 of the periodic table, carbon compounds, silicon carbide compounds, silicon oxide compounds , Titanium sulfide, boron carbide compounds and the like.

【0028】炭素材料としては、様々な熱分解条件で有
機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒
鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化
物としては、酸化スズを主体とする化合物が使用でき
る。
As the carbon material, those obtained by thermally decomposing organic substances under various thermal decomposition conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flaky graphite and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used.

【0029】本発明における正極活物質は一次電池の場
合はリチウムイオンを吸蔵可能な物質であり、二次電池
の場合はリチウムイオンを吸蔵、放出可能な物質であ
る。例えば、周期表4族のTi、Zr、Hf、5族の
V、Nb、Ta、6族のCr、Mo、W、7族のMn、
8族のFe、Ru、9族のCo、10族のNi、11族
のCu、12族のZn、Cd、13族のAl、Ga、I
n、14族のSn、Pb、15族のSb、Bi及び16
族のTe等の金属を主成分とする酸化物及び複合酸化
物、硫化物等のカルコゲン化物、オキシハロゲン化物、
前記金属とリチウムとの複合酸化物等が使用できる。ま
た、ポリアニリン誘導体、ポリピロール誘導体、ポリチ
オフェン誘導体、ポリアセン誘導体、ポリパラフェニレ
ン誘導体、又はそれらの共重合体等の導電性高分子材料
も使用できる。
The positive electrode active material in the present invention is a material capable of occluding lithium ions in the case of a primary battery, and a material capable of occluding and releasing lithium ions in the case of a secondary battery. For example, Ti, Zr, Hf of Group 4 of the periodic table, V, Nb, Ta of Group 5, Cr, Mo, W of Group 6, Mn of Group 7,
Group 8 Fe, Ru, Group 9 Co, Group 10 Ni, Group 11 Cu, Group 12 Zn, Cd, Group 13 Al, Ga, I
n, Group 14 Sn, Pb, Group 15 Sb, Bi and 16
Oxides and composite oxides containing a metal such as group Te as a main component, chalcogenides such as sulfides, oxyhalides,
A composite oxide of the metal and lithium can be used. Further, a conductive polymer material such as a polyaniline derivative, a polypyrrole derivative, a polythiophene derivative, a polyacene derivative, a polyparaphenylene derivative, or a copolymer thereof can also be used.

【0030】本発明では、リチウムを吸蔵、放出可能な
物質を負極活物質に使用した二次電池とする場合、負極
及び/又は正極にリチウムを含有させる。一般的には正
極活物質の合成時にリチウム含有化合物とし、正極活物
質の固体マトリックス中にリチウムを含有させておく。
また、電池組立前に負極に化学的又は電気化学的方法で
リチウムを含有させたり、電池組立時にリチウム金属を
負極及び/又は正極に接触させて組み込むといった方法
でリチウムを含有させることもできる。
In the present invention, when a secondary battery uses a material capable of occluding and releasing lithium as a negative electrode active material, lithium is contained in the negative electrode and / or the positive electrode. Generally, a lithium-containing compound is used at the time of synthesis of the positive electrode active material, and lithium is contained in the solid matrix of the positive electrode active material.
Further, lithium can be contained in the negative electrode by a chemical or electrochemical method before assembling the battery, or lithium can be incorporated by bringing lithium metal into contact with the negative electrode and / or the positive electrode when assembling the battery.

【0031】正極活物質に使用するリチウム含有化合物
としては、特にリチウムとマンガンの複合酸化物、リチ
ウムとコバルトの複合酸化物、リチウムとニッケルの複
合酸化物が好ましい。
As the lithium-containing compound used for the positive electrode active material, a composite oxide of lithium and manganese, a composite oxide of lithium and cobalt, and a composite oxide of lithium and nickel are particularly preferable.

【0032】本発明における正極及び負極は、活物質を
有機溶媒と混練してスラリとし、該スラリを金属箔集電
体に塗布、乾燥して得ることが好ましい。より好ましく
は、前記正極及び負極にポリマー電解質形成用混合液を
含浸又は塗布し、電極層の内部までポリマー電解質を浸
透させる。また、ポリマー電解質形成用混合液をスラリ
に混合してから金属箔集電体に塗布して電極を形成して
もよい。
The positive electrode and the negative electrode in the present invention are preferably obtained by kneading an active material with an organic solvent to form a slurry, applying the slurry to a metal foil current collector, and drying. More preferably, the mixed solution for forming a polymer electrolyte is impregnated or applied to the positive electrode and the negative electrode, and the polymer electrolyte penetrates to the inside of the electrode layer. Alternatively, the electrode may be formed by mixing the mixed solution for forming a polymer electrolyte into a slurry and then applying the mixed solution to a metal foil current collector.

【0033】また、本発明では、前記共重合体を有機溶
媒に溶解又は分散させずに、多孔質フィルム状に形成
し、活物質を含むスラリを金属箔集電体に塗布、乾燥し
て得た正極及び負極の間にはさみ、その後にリチウム塩
溶液を吸収せしめて電池素子を形成することもできる。
In the present invention, the copolymer is formed into a porous film without being dissolved or dispersed in an organic solvent, and a slurry containing an active material is applied to a metal foil current collector and dried. Alternatively, the battery element can be formed by sandwiching between the positive electrode and the negative electrode, and then absorbing the lithium salt solution.

【0034】本発明のリチウム電池の形状には特に制約
はない。シート状(いわゆるフィルム状)、折り畳み
状、巻回型有底円筒形、ボタン形等が用途に応じて選択
される。
The shape of the lithium battery of the present invention is not particularly limited. A sheet shape (a so-called film shape), a folded shape, a rolled bottomed cylindrical shape, a button shape, and the like are selected according to the application.

【0035】[0035]

【実施例】以下に実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0036】[例1]内容積1リットルの撹拌機付きス
テンレス製オートクレーブを用い、イオン交換水を54
0g、tert−ブタノールを59.4g、sec−ブ
タノールを0.6g、C817CO2 NH4 を6g、N
2 HPO4 ・12H2 Oを12g、過硫酸アンモニウ
ムを6g、FeSO4 ・7H2 Oを0.009g、ED
TA・2H2 Oを11g、CF2 =CFOCF2 CF
(CF3 )OCF2 CF2 CF3を67.7gを添加
し、気相を窒素置換した後、フッ化ビニリデン99.8
gを仕込んだ。25℃に昇温した後、ホルムアルデヒド
ナトリウムスルホキシラート二水塩の1重量%水溶液を
21ml/hrの速度で添加し、圧力の低下にしたがい
23気圧の圧力を維持するようにフッ化ビニリデンを仕
込みながら重合反応を行った。
Example 1 A 1-liter stainless steel autoclave equipped with a stirrer was used, and ion-exchanged water was added to 54 liters.
0 g, tert-butanol 59.4 g, sec-butanol 0.6 g, C 8 F 17 CO 2 NH 4 6 g, N
a 2 HPO 4 · 12H 2 O and 12 g, 6 g of ammonium persulfate, FeSO 4 · 7H 2 O and 0.009 g, ED
11 g of TA · 2H 2 O, CF 2 = CFOCF 2 CF
After adding 67.7 g of (CF 3 ) OCF 2 CF 2 CF 3 and replacing the gas phase with nitrogen, 99.8 g of vinylidene fluoride
g. After the temperature was raised to 25 ° C., a 1% by weight aqueous solution of formaldehyde sodium sulfoxylate dihydrate was added at a rate of 21 ml / hr, and vinylidene fluoride was charged so as to maintain a pressure of 23 atm. The polymerization reaction was performed while performing.

【0037】5時間後気相をパージして重合を停止し濃
度30重量%のエマルジョンを得た。凝集、洗浄、乾燥
しフッ化ビニリデンに基づく重合単位とCF2 =CFO
CF2 CF(CF3 )OCF2 CF2 CF3 に基づく重
合単位とからなる共重合体を回収した。この共重合体の
組成は、フッ化ビニリデンに基づく重合単位/CF2
CFOCF2 CF(CF3 )OCF2 CF2 CF3 に基
づく重合単位が重量比で82/18であり、THFを溶
媒とした極限粘度は1.2dl/gであった。
After 5 hours, the polymerization was stopped by purging the gas phase to obtain an emulsion having a concentration of 30% by weight. Coagulated, washed, dried and polymerized units based on vinylidene fluoride and CF 2 CFCFO
A copolymer comprising polymerized units based on CF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 was recovered. The composition of this copolymer is as follows: polymerized units based on vinylidene fluoride / CF 2 =
The polymerization unit based on CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 was 82/18 by weight, and the intrinsic viscosity using THF as a solvent was 1.2 dl / g.

【0038】アルゴン雰囲気中で、この共重合体10重
量部をTHF32重量部に撹拌しながら加温して溶解さ
せた。この溶液を溶液1とする。次にエチレンカーボネ
ートとプロピレンカーボネートを体積比で1/1に混合
した溶媒にLiPF6 を1mol/lの濃度でアルゴン
雰囲気下で溶解した。この溶液を溶液2とする。
In an argon atmosphere, 10 parts by weight of this copolymer was dissolved in 32 parts by weight of THF while heating with stirring. This solution is referred to as solution 1. Next, LiPF 6 was dissolved in a solvent obtained by mixing ethylene carbonate and propylene carbonate at a volume ratio of 1/1 at a concentration of 1 mol / l under an argon atmosphere. This solution is referred to as solution 2.

【0039】21重量部の溶液1に5重量部の溶液2を
加え、60℃に加熱し撹拌した。この溶液をガラス板上
にバーコータにて塗布し、40℃で1時間乾燥してアセ
トンを除去し、厚さ100μmの透明なポリマー電解質
フィルムを得た。このフィルムの組成は、共重合体、エ
チレンカーボネート/プロピレンカーボネート混合溶
媒、LiPF6 が重量比で50/44.3/5.7であ
った。
5 parts by weight of solution 2 was added to 21 parts by weight of solution 1 and heated to 60 ° C. with stirring. This solution was applied on a glass plate using a bar coater, and dried at 40 ° C. for 1 hour to remove acetone to obtain a 100 μm thick transparent polymer electrolyte film. The composition of this film was such that the copolymer, ethylene carbonate / propylene carbonate mixed solvent, and LiPF 6 were 50 / 44.3 / 5.7 in weight ratio.

【0040】このフィルムをガラス基板より剥離し、交
流インピーダンス法により電気伝導度を25℃、アルゴ
ン雰囲気中で測定した。電気伝導度は6×10-4S/c
mであった。
This film was peeled from the glass substrate, and the electric conductivity was measured by an AC impedance method at 25 ° C. in an argon atmosphere. Electric conductivity is 6 × 10 -4 S / c
m.

【0041】正極活物質としてLiCoO2 粉末を11
重量部、導電材としてアセチレンブラックを1.5重量
部、上記共重合体6重量部、上記溶液2を11重量部、
及びアセトン70重量部をアルゴン雰囲気下で混合し、
撹拌しながら加温してスラリを得た。このスラリを厚さ
20μmで表面を粗面化したアルミニウム箔にバーコー
タにて塗布、乾燥し、正極を得た。
As a positive electrode active material, LiCoO 2 powder was
Parts by weight, 1.5 parts by weight of acetylene black as a conductive material, 6 parts by weight of the copolymer, 11 parts by weight of the solution 2,
And 70 parts by weight of acetone were mixed under an argon atmosphere,
The slurry was heated with stirring to obtain a slurry. The slurry was applied to an aluminum foil having a thickness of 20 μm and the surface of which was roughened using a bar coater and dried to obtain a positive electrode.

【0042】負極活物質としてメソフェーズカーボンフ
ァイバ粉末(平均直径8μm、平均長さ50μm、(0
02)面間隔0.336nm)12重量部、上記共重合
体6重量部、上記溶液2を11重量部、及びアセトン7
0重量部をアルゴン雰囲気下で混合し、撹拌しながら加
温してスラリを得た。このスラリを厚さ20μmで表面
を粗面化した銅箔にバーコータにて塗布、乾燥し、負極
を得た。
Mesophase carbon fiber powder (average diameter 8 μm, average length 50 μm, (0
02) interplanar spacing 0.336 nm) 12 parts by weight, 6 parts by weight of the copolymer, 11 parts by weight of the solution 2 and 7 parts of acetone
0 parts by weight were mixed under an argon atmosphere and heated with stirring to obtain a slurry. The slurry was applied to a copper foil having a thickness of 20 μm and the surface of which was roughened using a bar coater, and dried to obtain a negative electrode.

【0043】上記ポリマー電解質フィルムを1.5cm
角に成形し、これを介して有効電極面積1cm×1cm
の正極と負極を対向させ、厚さ1.5mmで3cm角の
2枚のポリテトラフルオロエチレン背板で挟み締め付
け、その外側を外装フィルムで覆うことによりリチウム
イオン二次電池素子を組み立てた。この操作もすべてア
ルゴン雰囲気中で行った。
The above-mentioned polymer electrolyte film was 1.5 cm
Formed into corners, through which the effective electrode area 1 cm x 1 cm
The positive electrode and the negative electrode were opposed to each other, sandwiched and clamped between two 1.5 cm-thick 3 cm square polytetrafluoroethylene back plates, and the outside thereof was covered with an exterior film to assemble a lithium ion secondary battery element. This operation was all performed in an argon atmosphere.

【0044】充放電条件は、0.5Cの定電流で、充電
電圧は4.2Vまで、放電電圧は2.5Vまでの電位規
制で充放電サイクル試験を行った。その結果、500サ
イクル後の容量維持率は90%であった。
The charge / discharge cycle test was performed under the conditions of a constant current of 0.5 C, a charge voltage of up to 4.2 V, and a discharge voltage of up to 2.5 V. As a result, the capacity retention after 500 cycles was 90%.

【0045】[例2]CF2 =CFOCF2 CF(CF
3 )OCF2 CF2 CF3 のかわりにCF2=CFOC
2 CF2 CF3 を40.5g仕込む以外は例1と同様
にして、フッ化ビニリデンとCF2 =CFOCF2 CF
2 CF3 との共重合体(重量比で89/11)を得た。
極限粘度は1.4dl/gであった。
[Example 2] CF 2 = CFOCF 2 CF (CF
3 ) Instead of OCF 2 CF 2 CF 3 , CF 2 = CFOC
Except that charged 40.5g of F 2 CF 2 CF 3 in the same manner as Example 1, vinylidene fluoride and CF 2 = CFOCF 2 CF
A copolymer with 2 CF 3 (89/11 by weight) was obtained.
The intrinsic viscosity was 1.4 dl / g.

【0046】この共重合体を用いた以外は例1と同様に
して厚さ100μmのポリマー電解質フィルムを得た。
このフィルムの電気伝導度を例1と同様にして測定した
ところ4×10-4S/cmであった。
A polymer electrolyte film having a thickness of 100 μm was obtained in the same manner as in Example 1 except that this copolymer was used.
The electric conductivity of this film was measured in the same manner as in Example 1 and found to be 4 × 10 −4 S / cm.

【0047】このポリマー電解質を用いた以外は例1と
同様にして電池素子を組み立て、例1と同様に充放電サ
イクル試験を行った。500サイクル後の容量維持率は
89%であった。
A battery element was assembled in the same manner as in Example 1 except that this polymer electrolyte was used, and a charge / discharge cycle test was performed in the same manner as in Example 1. The capacity retention after 500 cycles was 89%.

【0048】[例3]負極として厚さ100μmのリチ
ウム/アルミニウム合金箔を用いた他は例1と同様にし
てリチウム二次電池素子を組み立て、例1と同様に充放
電サイクル試験を行った。500サイクル後の容量維持
率は88%であった。
Example 3 A lithium secondary battery element was assembled in the same manner as in Example 1 except that a lithium / aluminum alloy foil having a thickness of 100 μm was used as a negative electrode, and a charge / discharge cycle test was performed as in Example 1. The capacity retention after 500 cycles was 88%.

【0049】[0049]

【発明の効果】本発明によるリチウム電池は、ポリマー
電解質がリチウム塩溶液の保持性がよく良好な電気伝導
度を保ちつつ、かつポリマー電解質と電極活物質との密
着性がよいので、充放電サイクル耐久性が優れている。
また、本発明のリチウム電池は、正極活物質及び負極活
物質の選択により、一次電池、二次電池両方に適用でき
る。
The lithium battery according to the present invention has a good charge / discharge cycle because the polymer electrolyte has good retention of the lithium salt solution, maintains good electrical conductivity, and has good adhesion between the polymer electrolyte and the electrode active material. Excellent durability.
Further, the lithium battery of the present invention can be applied to both a primary battery and a secondary battery by selecting a positive electrode active material and a negative electrode active material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 克治 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Katsuharu Ikeda 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】正極、負極及び電解質を有するリチウム電
池において、前記電解質が、フッ化ビニリデンに基づく
重合単位とパーフルオロ(アルキルビニルエーテル)に
基づく重合単位(ただし、フッ素の一部が塩素又は臭素
と置換されていてもよい)とを含む共重合体をマトリッ
クスとし、リチウム塩の溶質とリチウム塩を溶解できる
溶媒とからなる溶液を含有するポリマー電解質であるこ
とを特徴とするリチウム電池。
1. A lithium battery having a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises a polymerized unit based on vinylidene fluoride and a polymerized unit based on perfluoro (alkyl vinyl ether), provided that a part of fluorine is chlorine or bromine. And a polymer electrolyte containing a solution comprising a solute of a lithium salt and a solvent capable of dissolving the lithium salt, as a matrix.
【請求項2】前記共重合体中のフッ化ビニリデンに基づ
く重合単位とパーフルオロ(アルキルビニルエーテル)
に基づく重合単位との重量比が95/5〜5/95であ
る請求項1記載のリチウム電池。
2. A polymerized unit based on vinylidene fluoride in the copolymer and perfluoro (alkyl vinyl ether)
2. The lithium battery according to claim 1, wherein the weight ratio with respect to the polymerized unit based on the polymer is 95/5 to 5/95.
【請求項3】ポリマー電解質に含有される溶媒が、炭酸
エステルである請求項1又は2記載のリチウム電池。
3. The lithium battery according to claim 1, wherein the solvent contained in the polymer electrolyte is a carbonate ester.
【請求項4】ポリマー電解質が、リチウム塩を溶解した
溶液を30〜80重量%含有する請求項1、2又は3記
載のリチウム電池。
4. The lithium battery according to claim 1, wherein the polymer electrolyte contains 30 to 80% by weight of a solution in which a lithium salt is dissolved.
【請求項5】ポリマー電解質のマトリックスを形成する
共重合体中のパーフルオロ(アルキルビニルエーテル)
に基づく重合単位が式1又は式2で表される請求項1、
2、3又は4記載のリチウム電池。 【化1】 (ただし、式1においてaは0〜3の整数で、bは0〜
8の整数で、cは0又は1で、XはF、CF3 又はCl
である。式2において、dは0〜3の整数で、eは0〜
8の整数で、fは0又は1で、YはF、CF3 又はCl
である。)
5. A perfluoro (alkyl vinyl ether) in a copolymer forming a matrix of a polymer electrolyte.
The polymerization unit based on is represented by Formula 1 or Formula 2,
The lithium battery according to 2, 3 or 4. Embedded image (However, in Formula 1, a is an integer of 0 to 3, and b is 0 to 3.
An integer of 8, c is 0 or 1, and X is F, CF 3 or Cl
It is. In Formula 2, d is an integer of 0 to 3, and e is 0 to
An integer of 8, f is 0 or 1, Y is F, CF 3 or Cl
It is. )
JP9101911A 1997-04-18 1997-04-18 Lithium battery having polymer electrolyte Pending JPH10294131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9101911A JPH10294131A (en) 1997-04-18 1997-04-18 Lithium battery having polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9101911A JPH10294131A (en) 1997-04-18 1997-04-18 Lithium battery having polymer electrolyte

Publications (1)

Publication Number Publication Date
JPH10294131A true JPH10294131A (en) 1998-11-04

Family

ID=14313102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9101911A Pending JPH10294131A (en) 1997-04-18 1997-04-18 Lithium battery having polymer electrolyte

Country Status (1)

Country Link
JP (1) JPH10294131A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1028479A2 (en) * 1999-02-05 2000-08-16 Ausimont S.p.A. Electrolyte polymers for lithium rechargeable batteries
JP2003518709A (en) * 1999-12-20 2003-06-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Polymer gel electrolyte
WO2012002037A1 (en) 2010-06-30 2012-01-05 ダイキン工業株式会社 Binder composition for electrode
WO2012133701A1 (en) 2011-03-31 2012-10-04 ダイキン工業株式会社 Electric double-layer capacitor and non-aqueous electrolyte for electric double-layer capacitor
WO2013157504A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2014038343A1 (en) 2012-09-04 2014-03-13 ダイキン工業株式会社 Electrolyte solution and electrochemical device
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2015083747A1 (en) 2013-12-05 2015-06-11 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2015083745A1 (en) 2013-12-05 2015-06-11 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2017098850A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
EP3216811A4 (en) * 2014-11-07 2018-06-06 Asahi Glass Company, Limited Fluorine-containing elastomer, fluorine-containing elastomer composition, and fluorine-containing elastomer crosslinked article
DE102017223219A1 (en) 2016-12-26 2018-06-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery and module
WO2018123359A1 (en) 2016-12-27 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018123259A1 (en) 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018179767A1 (en) 2017-03-31 2018-10-04 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2018186068A1 (en) 2017-04-04 2018-10-11 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2019003780A1 (en) 2017-06-30 2019-01-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, secondary battery and module
WO2019003776A1 (en) 2017-06-30 2019-01-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, secondary cell, and module
EP3435472A1 (en) 2014-07-07 2019-01-30 Daikin Industries, Ltd. Liquid electrolyte comprising an alkali metal salt of a phosphate compound
WO2019031315A1 (en) 2017-08-07 2019-02-14 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019039130A1 (en) 2017-08-25 2019-02-28 ダイキン工業株式会社 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
WO2019082543A1 (en) 2017-10-25 2019-05-02 ダイキン工業株式会社 Electrolyte solution, electrochemical device, and lithium ion secondary battery and module
WO2019093161A1 (en) 2017-11-09 2019-05-16 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2019102722A1 (en) 2017-11-21 2019-05-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019106947A1 (en) 2017-12-01 2019-06-06 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
EP3509156A1 (en) 2014-07-16 2019-07-10 Daikin Industries, Ltd. Electrolyte solution
WO2019150895A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019150896A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019159703A1 (en) 2018-02-16 2019-08-22 ダイキン工業株式会社 Electrolysis solution, electrochemical device, lithium-ion secondary battery, and module
WO2019188207A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, module and compound
WO2019188210A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2019208246A1 (en) 2018-04-27 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019207983A1 (en) 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2019220829A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2019220764A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium-ion secondary battery, and module
WO2020017561A1 (en) * 2018-07-20 2020-01-23 株式会社クレハ Particulate vinylidene-fluoride-based polymer and method for producing particulate vinylidene-fluoride-based polymer
EP3667804A1 (en) 2014-11-21 2020-06-17 Daikin Industries, Limited Electrolyte solution containing unsaturated cyclic carbonates, electrochemical device and lithium-ion secondary battery comprising the same
WO2020137367A1 (en) 2018-12-25 2020-07-02 ダイキン工業株式会社 Electrolytic solution for lithium-ion secondary battery, lithium-ion secondary battery, and module
EP3703171A1 (en) 2019-02-27 2020-09-02 Toyota Jidosha Kabushiki Kaisha Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
WO2020175511A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2020175522A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module and compound
WO2020175513A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Compound, electrolytic solution additive, electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2020246579A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution, secondary battery, and module
WO2020246580A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution for alkali metal ion secondary battery, alkali metal ion secondary battery and module
WO2021020005A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Alkali metal electrode treatment agent, electrolytic solution for alkali metal secondary battery, alkali metal electrode, alkali metal secondary battery, and module
WO2021095574A1 (en) 2019-11-13 2021-05-20 ダイキン工業株式会社 Electrode and electrochemical device
EP3849009A1 (en) 2016-07-22 2021-07-14 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
WO2021235357A1 (en) 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2021235358A1 (en) 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound
WO2022172951A1 (en) 2021-02-10 2022-08-18 ダイキン工業株式会社 Compound, composition, electrochemical device, lithium ion secondary battery and module

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1028479A2 (en) * 1999-02-05 2000-08-16 Ausimont S.p.A. Electrolyte polymers for lithium rechargeable batteries
JP2000231936A (en) * 1999-02-05 2000-08-22 Ausimont Spa Electrolyte polymer for rechargeable lithium battery
US6630271B1 (en) * 1999-02-05 2003-10-07 Ausimont S.P.A. Electrolyte polymers for lithium rechargeable batteries
EP1028479A3 (en) * 1999-02-05 2005-07-27 Solvay Solexis S.p.A. Electrolyte polymers for lithium rechargeable batteries
JP2003518709A (en) * 1999-12-20 2003-06-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Polymer gel electrolyte
WO2012002037A1 (en) 2010-06-30 2012-01-05 ダイキン工業株式会社 Binder composition for electrode
WO2012133701A1 (en) 2011-03-31 2012-10-04 ダイキン工業株式会社 Electric double-layer capacitor and non-aqueous electrolyte for electric double-layer capacitor
WO2013157504A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2014038343A1 (en) 2012-09-04 2014-03-13 ダイキン工業株式会社 Electrolyte solution and electrochemical device
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2015083747A1 (en) 2013-12-05 2015-06-11 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2015083745A1 (en) 2013-12-05 2015-06-11 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
EP3435472A1 (en) 2014-07-07 2019-01-30 Daikin Industries, Ltd. Liquid electrolyte comprising an alkali metal salt of a phosphate compound
EP3686205A1 (en) 2014-07-16 2020-07-29 Daikin Industries, Limited Method for producing alkali metal sulfate salt
EP3509156A1 (en) 2014-07-16 2019-07-10 Daikin Industries, Ltd. Electrolyte solution
EP3216811A4 (en) * 2014-11-07 2018-06-06 Asahi Glass Company, Limited Fluorine-containing elastomer, fluorine-containing elastomer composition, and fluorine-containing elastomer crosslinked article
EP3667804A1 (en) 2014-11-21 2020-06-17 Daikin Industries, Limited Electrolyte solution containing unsaturated cyclic carbonates, electrochemical device and lithium-ion secondary battery comprising the same
EP3750884A1 (en) 2014-11-21 2020-12-16 Daikin Industries, Ltd. Novel fluorinated unsaturated cyclic carbonate and process for producing the same
WO2017098850A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
EP3849009A1 (en) 2016-07-22 2021-07-14 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
DE102017223219A1 (en) 2016-12-26 2018-06-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery and module
WO2018123259A1 (en) 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018123359A1 (en) 2016-12-27 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018179767A1 (en) 2017-03-31 2018-10-04 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2018186068A1 (en) 2017-04-04 2018-10-11 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2019003776A1 (en) 2017-06-30 2019-01-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, secondary cell, and module
WO2019003780A1 (en) 2017-06-30 2019-01-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, secondary battery and module
WO2019031315A1 (en) 2017-08-07 2019-02-14 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019039130A1 (en) 2017-08-25 2019-02-28 ダイキン工業株式会社 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
WO2019082543A1 (en) 2017-10-25 2019-05-02 ダイキン工業株式会社 Electrolyte solution, electrochemical device, and lithium ion secondary battery and module
WO2019093161A1 (en) 2017-11-09 2019-05-16 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2019102722A1 (en) 2017-11-21 2019-05-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
EP4053959A1 (en) 2017-11-21 2022-09-07 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019106947A1 (en) 2017-12-01 2019-06-06 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019150896A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019150895A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019159703A1 (en) 2018-02-16 2019-08-22 ダイキン工業株式会社 Electrolysis solution, electrochemical device, lithium-ion secondary battery, and module
WO2019188207A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, module and compound
WO2019188210A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2019207983A1 (en) 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2019208246A1 (en) 2018-04-27 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
EP4060782A1 (en) 2018-05-14 2022-09-21 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2019220764A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium-ion secondary battery, and module
WO2019220829A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2020017561A1 (en) * 2018-07-20 2020-01-23 株式会社クレハ Particulate vinylidene-fluoride-based polymer and method for producing particulate vinylidene-fluoride-based polymer
JPWO2020017561A1 (en) * 2018-07-20 2021-06-24 株式会社クレハ A method for producing a particulate vinylidene fluoride-based polymer and a particulate vinylidene fluoride-based polymer.
KR20210024157A (en) * 2018-07-20 2021-03-04 가부시끼가이샤 구레하 Method for producing particulate vinylidene fluoride polymer and particulate vinylidene fluoride polymer
WO2020137367A1 (en) 2018-12-25 2020-07-02 ダイキン工業株式会社 Electrolytic solution for lithium-ion secondary battery, lithium-ion secondary battery, and module
WO2020175513A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Compound, electrolytic solution additive, electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2020175522A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module and compound
WO2020175511A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
EP3703171A1 (en) 2019-02-27 2020-09-02 Toyota Jidosha Kabushiki Kaisha Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
WO2020246580A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution for alkali metal ion secondary battery, alkali metal ion secondary battery and module
WO2020246579A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution, secondary battery, and module
WO2021020005A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Alkali metal electrode treatment agent, electrolytic solution for alkali metal secondary battery, alkali metal electrode, alkali metal secondary battery, and module
WO2021095574A1 (en) 2019-11-13 2021-05-20 ダイキン工業株式会社 Electrode and electrochemical device
WO2021235357A1 (en) 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2021235358A1 (en) 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound
WO2022172951A1 (en) 2021-02-10 2022-08-18 ダイキン工業株式会社 Compound, composition, electrochemical device, lithium ion secondary battery and module

Similar Documents

Publication Publication Date Title
JPH10294131A (en) Lithium battery having polymer electrolyte
JP5867550B2 (en) Method for producing fluorine-containing copolymer, polymer electrolyte, electrode for lithium battery, and lithium battery
JP4092669B2 (en) Solid electrolyte secondary battery
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
JPH11111265A (en) Polymer electrolyte secondary battery
JP2001093573A (en) Lithium battery
JPH11195419A (en) Depolarizing mix for nonaqueous battery and nonaqueous battery
JP2005142141A (en) Organic electrolyte and lithium battery using the same
JPH1186875A (en) Positive electrode for nonaqueous secondary battery
JPH10284128A (en) Lithium battery
JP2008066047A (en) Nonaqueous electrolyte battery and separator thereof
JP5638224B2 (en) Polymer electrolyte, lithium battery including the same, method for producing polymer electrolyte, and method for producing lithium battery
JP2000150320A (en) Binder solution for non-aqueous electro-chemical element electrode, electrode forming agent, electrode, and electro-chemical element
JP2007226974A (en) Lithium-ion secondary battery
JP2011159503A (en) Lithium ion conductive polymer electrolyte and lithium battery
JPH11329448A (en) Nonaqueous secondary battery positive electrode current collector and nonaqueous secondary battery having this current collector
JPH10284127A (en) Lithium battery
JPH10334945A (en) Improved lithium battery
JPH10334946A (en) Lithium battery
JPH1196832A (en) Polymer electrolyte and lithium battery
JPH10302837A (en) Lithium battery having polymeric electrolyte
JP3757489B2 (en) Lithium battery
JP3539564B2 (en) Polymer electrolyte and non-aqueous electrolyte secondary battery
JPH1116604A (en) Lithium battery
JPH113729A (en) Lithium battery