JPH10291899A - Production of silicon carbide single crystal and apparatus for production therefor - Google Patents

Production of silicon carbide single crystal and apparatus for production therefor

Info

Publication number
JPH10291899A
JPH10291899A JP11881797A JP11881797A JPH10291899A JP H10291899 A JPH10291899 A JP H10291899A JP 11881797 A JP11881797 A JP 11881797A JP 11881797 A JP11881797 A JP 11881797A JP H10291899 A JPH10291899 A JP H10291899A
Authority
JP
Japan
Prior art keywords
silicon carbide
graphite
single crystal
raw material
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11881797A
Other languages
Japanese (ja)
Other versions
JP3898278B2 (en
Inventor
Naoki Koyanagi
直樹 小柳
Isamu Yamamoto
勇 山本
Kunio Komaki
邦雄 小巻
Shigehiro Nishino
茂弘 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11881797A priority Critical patent/JP3898278B2/en
Publication of JPH10291899A publication Critical patent/JPH10291899A/en
Application granted granted Critical
Publication of JP3898278B2 publication Critical patent/JP3898278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily producing high-quality silicon carbide single crystal which is free from crystal defects, etc. SOLUTION: At the time of sublimating silicon carbide raw materials 4, introducing the same onto a seed crystal 2 and depositing the single crystal 5, a sublimating gas is brought into contact with an activated graphite body or is brought into contact with the graphite body held at a temp. higher than the temp. of the raw materials and thereafter, the sublimating gas is introduced to the seed crystal 2. The apparatus for production consists of the constitution obtd. by loading a graphite capsule 3 housing the raw materials into a graphite crucible 1, forming the cap plate or bottom plate of the capsule of a porous graphite body, arranging the seed crystal 2 above the cap plate 11 or below the bottom plate 12, housing the graphite crucible 1 into a reaction tube 7 reducible in its pressure and providing this reaction tube 7 with a heater 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化ケイ素原料を昇
華させ炭化ケイ素単結晶を製造する方法に係わり、結晶
欠陥の少ない品質安定性に優れた炭化ケイ素単結晶を高
い歩留まりで製造する方法及びその製造装置に関する。
炭化ケイ素(SiC)は熱的、化学的に非常に安定であ
り且つ電子エネルギーバンドギャップが広い特徴があ
り、高温高圧下でも使用可能な耐環境素子材料、耐放射
線素子材料、パワー素子材料や短波長発光素子材料とし
て期待されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide single crystal by sublimating a silicon carbide raw material, a method for producing a silicon carbide single crystal having few crystal defects and excellent quality stability and a high yield. It relates to a manufacturing device.
Silicon carbide (SiC) is very stable thermally and chemically and has a wide electron energy band gap, and can be used under high temperature and high pressure. It is expected as a wavelength light emitting element material.

【0002】[0002]

【従来の技術】半導体材料として期待されている炭化ケ
イ素単結晶は炭化ケイ素粉末を原料とする昇華法で通常
作製される。昇華法においては原料炭化ケイ素粉末と単
結晶の種結晶を対向させて黒鉛製ルツボ内に配置し、不
活性雰囲気中で2000〜2400℃に加熱する。加熱
により炭化ケイ素原料粉末の分解、昇華により発生した
昇華蒸気は搬送され成長温度域に保持された種結晶表面
に結晶方位を揃えて析出し、単結晶としてエピタキシャ
ル成長する。炭化ケイ素原料が加熱され昇華する際、昇
華ガスの組成は変動が生じ易い。成分が変動すると炭化
ケイ素単結晶の結晶欠陥、転位等が生じる原因となる。
そのため昇華ガス成分の変動を抑制、補正する種々の方
法が提案されている。例えば炭化ケイ素原料粉末に窒化
ケイ素を添加する方法(特開平6−56596)、昇華
初期にプロパン等の炭素成分ガスを導入し、後期にシラ
ン等のケイ素成分ガスを導入する方法(特開平6−12
8094)などがある。
2. Description of the Related Art A silicon carbide single crystal expected as a semiconductor material is usually produced by a sublimation method using silicon carbide powder as a raw material. In the sublimation method, a raw material silicon carbide powder and a single crystal seed crystal are placed in a graphite crucible facing each other, and heated to 2000 to 2400 ° C. in an inert atmosphere. The sublimation vapor generated by the decomposition and sublimation of the silicon carbide raw material powder by heating is conveyed and deposited on the surface of the seed crystal held in the growth temperature range with a uniform crystal orientation and epitaxially grows as a single crystal. When the silicon carbide raw material is heated and sublimated, the composition of the sublimation gas tends to fluctuate. Variations in the components cause crystal defects, dislocations, and the like in the silicon carbide single crystal.
Therefore, various methods have been proposed for suppressing and correcting the fluctuation of the sublimation gas component. For example, a method of adding silicon nitride to silicon carbide raw material powder (JP-A-6-56596), a method of introducing a carbon component gas such as propane at an early stage of sublimation, and a process of introducing a silicon component gas such as silane at a later stage (JP-A-6-56596). 12
8094).

【0003】[0003]

【発明が解決しようとする課題】炭化ケイ素原料からの
昇華ガスとしてはSiCの外SiCの分解、複反応等に
よりSi、Si2 C、SiC2 等のガスが含まれてい
る。これらのガス成分は昇華初期から後期になるにつれ
て変動する。その一般的な傾向としては初期はSiの濃
度が高く、後期になるにつれて低くなる。しかしいずれ
の場合も全体のSiとCの原子比はSiCの化学量論比
である1:1よりSiが過剰になる傾向がある。これは
SiCの分解により生成する炭素はSiより蒸気圧が低
いためと考えられる。昇華ガス中のSi原子の含有量が
SiCのSiとCの原子比より多いと生成するSiCの
単結晶に結晶欠陥等が生じる原因になる。
The sublimation gas from the silicon carbide raw material includes gases such as Si, Si 2 C, and SiC 2 due to decomposition of SiC and double reaction of SiC. These gas components fluctuate from the early stage to the late stage of sublimation. As a general tendency, the concentration of Si is high in the initial stage, and decreases in the later stage. However, in any case, the total atomic ratio of Si and C tends to be excessive Si from the stoichiometric ratio of SiC of 1: 1. This is presumably because carbon generated by the decomposition of SiC has a lower vapor pressure than Si. If the content of Si atoms in the sublimation gas is larger than the atomic ratio of Si to C in SiC, a crystal defect or the like may occur in the generated SiC single crystal.

【0004】昇華ガスの成分変動を抑制する上記特許の
方法において、窒化ケイ素を添加する方法は、昇華ガス
中に炭素が過剰に存在する場合でないと効果がない。ま
た昇華の初期と後期で添加ガスを分ける方法は、切換え
時の把握や昇華ガスの変動に合せて添加するガス量を抑
制するのが難しいなどの問題がある。本発明は昇華ガス
中のSiとCの成分変動をできるだけ少なくする新規な
方法により、品質のよい炭化ケイ素単結晶を得る方法を
提供することを目的とする。
[0004] In the method of the above patent for suppressing the fluctuation of the components of the sublimation gas, the method of adding silicon nitride has no effect unless carbon is excessively present in the sublimation gas. Further, the method of separating the additional gas in the initial stage and the latter stage of the sublimation has problems such as difficulty in grasping at the time of switching and suppressing the amount of gas to be added in accordance with the fluctuation of the sublimation gas. An object of the present invention is to provide a method for obtaining a high-quality silicon carbide single crystal by a novel method for minimizing fluctuations in the components of Si and C in a sublimation gas.

【0005】[0005]

【課題を解決するための手段】本発明者は昇華ガスを特
定の条件下の黒鉛体に接触させることにより、昇華ガス
の成分変動、特にSi成分が過剰になるのを抑制できる
ことを知見し、本発明に到達した。即ち本発明の第1
は、炭化ケイ素原料を昇華させ種結晶上に炭化ケイ素単
結晶を成長させる際、炭化ケイ素原料からの昇華ガスを
賦活化した多孔質黒鉛体に接触させた後、前記種結晶上
に到達させることを特徴とする炭化ケイ素単結晶の製造
方法である。
Means for Solving the Problems The present inventor has found that by bringing a sublimation gas into contact with a graphite body under specific conditions, it is possible to suppress fluctuations in the components of the sublimation gas, in particular, an excess of the Si component. The present invention has been reached. That is, the first of the present invention
When sublimating a silicon carbide raw material and growing a silicon carbide single crystal on a seed crystal, the sublimation gas from the silicon carbide raw material is brought into contact with the activated porous graphite body and then reaches the seed crystal. A method for producing a silicon carbide single crystal characterized by the following.

【0006】本発明の第2は、炭化ケイ素原料を昇華さ
せ種結晶上に炭化ケイ素単結晶を成長させる際、炭化ケ
イ素原料からの昇華ガスを、炭化ケイ素原料の温度より
も高い温度の多孔質黒鉛体に接触させた後、前記種結晶
上に到達させることを特徴とする炭化ケイ素単結晶の製
造方法である。
In the second aspect of the present invention, when a silicon carbide raw material is sublimated to grow a silicon carbide single crystal on a seed crystal, a sublimation gas from the silicon carbide raw material is converted into a porous material having a temperature higher than the temperature of the silicon carbide raw material. A method for producing a silicon carbide single crystal, characterized in that the silicon carbide single crystal is brought into contact with a graphite body and then reaches the seed crystal.

【0007】製造装置の発明は、不活性ガス導入口及び
内部を減圧にする排気口を有し、かつ加熱装置を備えた
反応管内に、黒鉛ルツボが設置され、該黒鉛ルツボ内に
炭化ケイ素原料を収納する黒鉛カプセルが装填され、黒
鉛カプセルの蓋板又は底板は多孔質黒鉛体からなり、該
黒鉛カプセルの蓋板の上方又は底板の下方に炭化ケイ素
種結晶を配置してなる炭化ケイ素単結晶の製造装置であ
る。上記の装置において、黒鉛カプセルの蓋板又は底板
は多孔質黒鉛体であることが好ましい。
[0007] The invention of the manufacturing apparatus is characterized in that a graphite crucible is installed in a reaction tube having an inert gas inlet and an exhaust port for reducing the pressure inside the reactor and having a heating device, and a silicon carbide raw material is contained in the graphite crucible. , A lid plate or a bottom plate of the graphite capsule is made of a porous graphite body, and a silicon carbide single crystal is disposed above or below the bottom plate of the graphite capsule. Manufacturing apparatus. In the above device, the lid plate or the bottom plate of the graphite capsule is preferably a porous graphite body.

【0008】昇華ガスを多孔質黒鉛体を通した後、炭化
ケイ素単結晶上に導く方法は、上記した特開平6−12
8094にも図示されている。しかしこの特許では黒鉛
体は本発明のような目的で使用するものではなく、した
がって黒鉛体も通常のものが使用されている。またその
黒鉛体の温度は原料の温度より高くはない。
A method of introducing a sublimation gas onto a silicon carbide single crystal after passing through a porous graphite body is described in the above-mentioned JP-A-6-12.
8094. However, in this patent, the graphite body is not used for the purpose of the present invention, and therefore, the usual graphite body is used. The temperature of the graphite body is not higher than the temperature of the raw material.

【0009】[0009]

【発明の実施の形態】本発明は上記したように炭化ケイ
素昇華ガスを賦活した多孔質黒鉛体に接触させた後、あ
るいは原料の加熱温度より高い温度にある多孔質黒鉛体
に炭化ケイ素昇華ガスを接触させた後、炭化ケイ素単結
晶上に到達させ、炭化ケイ素単結晶を析出させることを
特徴とする。後者の場合は通常の多孔質黒鉛体も使用可
能であるが、望ましくは賦活した多孔質黒鉛体を用い
る。炭化ケイ素原料は高純度の微粉あるいはその成形体
を用いる。微粉の粒度は昇華反応面積を大きくするため
の240メッシュ以下が好ましい。その微粉を用いた圧
粉体あるいは焼結体のような成形体とすれば、原料粉末
の飛散防止等取扱いが容易となり、また原料充填密度が
高まり装置の効率的運転が可能となる。圧粉体や焼結体
でもあまり緻密にしなければ表面積が大きい微粉の作用
機能は失われない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing silicon carbide sublimation gas after contacting the porous graphite body activated with silicon carbide sublimation gas as described above or at a temperature higher than the heating temperature of the raw material. Is brought into contact with the silicon carbide single crystal to precipitate the silicon carbide single crystal. In the latter case, an ordinary porous graphite body can be used, but an activated porous graphite body is preferably used. As the silicon carbide raw material, high-purity fine powder or a compact thereof is used. The particle size of the fine powder is preferably 240 mesh or less to increase the sublimation reaction area. If a compact such as a green compact or a sintered body using the fine powder is formed, handling such as prevention of scattering of the raw material powder is facilitated, and the raw material packing density is increased, thereby enabling efficient operation of the apparatus. Unless the compact or the sintered body is made very dense, the function of the fine powder having a large surface area is not lost.

【0010】炭化ケイ素は高純度であればその結晶形の
制限はないが、高純度で細かいものが、例えばシランガ
スと炭化水素ガスを用いたCVD法で容易に得られるβ
−SiCが好ましい。炭化ケイ素原料は加熱して昇華さ
せ、そのガスが原料と対向して設けられている炭化ケイ
素種結晶上に到達する。上記の対向させる方法としては
原料が下部に配置され種結晶が上部に配置されても、ま
たその逆であってもよい。原料から種結晶までは所定の
温度勾配があり、種結晶領域は原料領域より低温になっ
ている。通常種結晶の領域は1800〜2300℃に保
持される。
The crystal form of silicon carbide is not limited as long as it has high purity. However, high purity and fine silicon carbide can be easily obtained by, for example, a CVD method using silane gas and hydrocarbon gas.
-SiC is preferred. The silicon carbide raw material is heated and sublimated, and the gas reaches a silicon carbide seed crystal provided opposite to the raw material. As a method of facing the above, the raw material may be arranged at the bottom and the seed crystal may be arranged at the top, or vice versa. There is a predetermined temperature gradient from the raw material to the seed crystal, and the temperature of the seed crystal region is lower than that of the raw material region. Usually, the seed crystal region is kept at 1800 to 2300 ° C.

【0011】本発明は炭化ケイ素昇華ガスが種結晶上に
到達させる前に特定の条件下にある黒鉛体に接触させる
ことが重要である。その条件として本発明の第1は、黒
鉛体に賦活化した黒鉛を用いるものである。賦活化する
のはSiガスとの反応性を高めるためである。賦活方法
は特に限定されるものではないが、黒鉛を酸素又は水蒸
気含有雰囲気中で700〜950℃の温度で熱処理し、
酸化及びエロージョンを行なうのが代表的な方法であ
る。黒鉛体の形態は黒鉛粉粒体を賦活化し、これを成
形、焼結したブロック状とするか、粉粒体をそのまま堆
積させた層状でもよい。また多孔質の黒鉛成形体を賦活
して用いることもできる。粉粒体の堆積層はそのままで
通気性を有するが、成形体の場合は気孔率10〜70%
程度にして通気性とする。
In the present invention, it is important that the silicon carbide sublimation gas is brought into contact with the graphite body under specific conditions before reaching the seed crystal. The first condition of the present invention is to use graphite activated on a graphite body. The activation is for increasing the reactivity with the Si gas. Although the activation method is not particularly limited, graphite is heat-treated at a temperature of 700 to 950 ° C. in an atmosphere containing oxygen or water vapor,
Oxidation and erosion are typical methods. The form of the graphite body may be a block-like form obtained by activating graphite granules and molding and sintering them, or a layered form in which the granules are deposited as they are. Further, a porous graphite molded body can be activated and used. Although the deposited layer of the granular material has air permeability as it is, the porosity of the molded product is 10 to 70%.
To make it air permeable.

【0012】黒鉛体を特定の条件におく第2の方法は、
黒鉛体の温度を原料の温度よりも高くすることである。
黒鉛体の温度が原料より低いか、あるいは同等だと昇華
ガスの沈積が起ったり、また昇華ガス中の過剰なSiガ
スを抑制する作用が劣る。またあまり高過ぎると昇華ガ
ス中の成分が炭素リッチ側に偏り、その結果結晶欠陥が
生じるなどの問題がある。これらのことから黒鉛体の温
度は原料温度よりも30〜80℃高いことが望ましい。
この第2の方法では多孔質黒鉛をそのまま用いることも
できるが、望ましくは前記した賦活化多孔質黒鉛体を用
いる。
A second method of placing the graphite body under specific conditions is as follows:
The purpose is to make the temperature of the graphite body higher than the temperature of the raw material.
If the temperature of the graphite body is lower than or equal to that of the raw material, the sublimation gas is deposited, and the effect of suppressing excess Si gas in the sublimation gas is inferior. On the other hand, if the temperature is too high, there is a problem that the components in the sublimation gas are biased toward the carbon-rich side, resulting in crystal defects. For these reasons, it is desirable that the temperature of the graphite body be 30 to 80 ° C. higher than the raw material temperature.
In the second method, porous graphite can be used as it is, but preferably, the above-mentioned activated porous graphite body is used.

【0013】昇華ガスを黒鉛体に接触させる方法は、昇
華ガスを多孔質黒鉛体に通すのが最も接触が効率的であ
り望ましい方法である。黒鉛体の層の厚さは装置の大き
さによるが、一般的には5〜30mm程度あればよい。
種結晶となる炭化ケイ素の形態は特に制限はないが、一
般的には板状(基板)である。そして基板の成長面方位
を例えば<0001>方向にして配置する。また傾斜基
板を用いる場合はその傾斜面の方向に配置する。
The method of bringing a sublimation gas into contact with a graphite body is the most efficient and desirable method of passing the sublimation gas through a porous graphite body. The thickness of the graphite body layer depends on the size of the apparatus, but generally it may be about 5 to 30 mm.
The form of the silicon carbide serving as the seed crystal is not particularly limited, but is generally plate-shaped (substrate). Then, the substrate is arranged with the growth plane orientation set to, for example, the <0001> direction. When an inclined substrate is used, it is arranged in the direction of the inclined surface.

【0014】黒鉛体と接触させることにより昇華ガス中
の過剰なSi成分が抑制され、SiCとしての化学量論
比のずれの発生頻度が低減し、その結果結晶欠陥が少な
く表面が平滑な単結晶をより安定して得ることができ
る。本発明は昇華ガスに他の成分を添加するなどの方法
に比べて成長系の制御が極めて容易である。昇華ガス中
にSiガスが多く含まれる成長初期の段階では黒鉛との
反応がそれだけ多くなり、Siガスが少なくなれば反応
も少なくなる。即ち、Siガス量に応じた反応が自動的
に行なわれ、いわば黒鉛は昇華ガスを適正に保つ自己制
御的な作用をしており、難しい操作を必要としない。
The contact with the graphite body suppresses an excessive Si component in the sublimation gas, reduces the frequency of occurrence of a stoichiometric deviation as SiC, and as a result, a single crystal having few crystal defects and a smooth surface. Can be obtained more stably. In the present invention, the control of the growth system is extremely easy as compared with the method of adding other components to the sublimation gas. In the early stage of growth when the sublimation gas contains a large amount of Si gas, the reaction with graphite increases accordingly, and the reaction decreases as the amount of Si gas decreases. That is, the reaction according to the amount of the Si gas is automatically performed. In other words, the graphite has a self-controlling action of properly maintaining the sublimation gas, and does not require a difficult operation.

【0015】次に図面を参考に製造装置の発明を説明す
る。図1において1が黒鉛ルツボで蓋板11、底板12
を有する。黒鉛ルツボ内に炭化ケイ素原料4を充填した
黒鉛カプセル3が装填される。31は黒鉛カプセルの蓋
板であり、同時に昇華ガスが通り、反応を行なうための
多孔質黒鉛体となる。この多孔質黒鉛体は賦活化したも
のが好ましい。黒鉛ルツボの中に黒鉛カプセルを装填す
ることにより原料の補充をカプセル毎交換して行なうこ
とができ、原料補充に際して黒鉛ルツボを損傷すること
がない。
Next, the invention of the manufacturing apparatus will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a graphite crucible, a lid plate 11 and a bottom plate 12.
Having. A graphite capsule 3 filled with a silicon carbide raw material 4 is loaded in a graphite crucible. Numeral 31 is a cover plate of the graphite capsule, and at the same time, a sublimation gas passes therethrough to form a porous graphite body for performing a reaction. This porous graphite body is preferably activated. By loading the graphite capsule into the graphite crucible, the refilling of the raw material can be performed by exchanging the whole capsule, so that the refilling of the raw material does not damage the graphite crucible.

【0016】黒鉛カプセルの蓋板31の上方の黒鉛ルツ
ボの蓋板下面に炭化ケイ素種結晶基板2を装着する。5
は基板上に成長した炭化ケイ素単結晶である。反応管7
の外側に高周波等の加熱炉6が装備される。加熱炉にお
いて黒鉛カプセルの蓋体の温度を原料温度より高くする
場合は、例えば高周波炉では蓋体の側面部分に当る高周
波のコイルの巻回し密度を上げるか、あるいは図1のよ
うに高周波コイルを原料加熱部分、蓋体の部分、種結晶
の部分に分割して設け、全体の温度勾配を所望の値にな
るように制御することもできる。
The silicon carbide seed crystal substrate 2 is mounted on the lower surface of the graphite crucible cover plate above the cover plate 31 of the graphite capsule. 5
Is a silicon carbide single crystal grown on a substrate. Reaction tube 7
A heating furnace 6 for high-frequency waves or the like is provided on the outside. When the temperature of the graphite capsule lid is set higher than the raw material temperature in the heating furnace, for example, in a high-frequency furnace, the winding density of a high-frequency coil that hits the side surface of the lid is increased, or as shown in FIG. It is also possible to control the temperature gradient so as to have a desired value as a whole by separately providing a raw material heating portion, a lid portion, and a seed crystal portion.

【0017】加熱装置を装備した黒鉛ルツボは石英等の
反応管7内に装入されている。8は熱を遮断するための
黒鉛フェルト等の断熱材である。反応管7は、排気口7
1より吸引され、それに伴なって黒鉛ルツボ内が減圧状
態になる。72はアルゴン等の不活性ガスの導入口であ
る。図1は原料が下部に、種結晶が上部に配置されてい
るが、両者の配置は逆であってもよい。この場合は黒鉛
カプセルの底板を多孔質黒鉛体とする。要は原料と種結
晶が黒鉛体を挟んで対向して配置されていればよい。
A graphite crucible equipped with a heating device is placed in a reaction tube 7 made of quartz or the like. Reference numeral 8 denotes a heat insulating material such as graphite felt for blocking heat. The reaction tube 7 has an exhaust port 7
1 and the inside of the graphite crucible is depressurized. Reference numeral 72 denotes an inlet for an inert gas such as argon. In FIG. 1, the raw material is arranged at the bottom and the seed crystal is arranged at the top, but the arrangement may be reversed. In this case, the bottom plate of the graphite capsule is made of a porous graphite body. In short, it is only necessary that the raw material and the seed crystal are arranged to face each other with the graphite body interposed therebetween.

【0018】[0018]

【実施例】以下実施例により具体的に説明するが、本発
明は実施例に限定されるものではない。 (実施例1)6H−SiC単結晶(0001)面の炭素
面を成長面とした種結晶(径25mm、厚さ1.5m
m)を図1の黒鉛ルツボ蓋板の下面に装着した。黒鉛ル
ツボ内に工業用グリーンSiC(400メッシュ下)を
王水処理した高純度のSiCの多孔質焼結体を収納した
黒鉛カプセルを装填した。カプセルの蓋板黒鉛体(径8
0mm、厚さ15mm)は賦活してないもので気孔率は
約27%である。この黒鉛ルツボを図1に示す3分割高
周波炉を外側に有する石英製の反応管内にセットした。
高周波炉により温度を調節し、原料温度を2300℃、
黒鉛体(カプセルの上蓋)の温度を2350℃、種結晶
の温度を2000℃に調整した。装置内をアルゴン雰囲
気の50torrとし、12時間運転した。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples. (Example 1) Seed crystal (diameter 25 mm, thickness 1.5 m) with a carbon surface of 6H-SiC single crystal (0001) plane as a growth plane
m) was mounted on the lower surface of the graphite crucible lid plate of FIG. A graphite capsule containing a porous sintered body of high-purity SiC obtained by treating industrial green SiC (under 400 mesh) with aqua regia was loaded into a graphite crucible. Capsule graphite plate (diameter 8)
(0 mm, thickness 15 mm) is not activated and has a porosity of about 27%. This graphite crucible was set in a quartz reaction tube having the three-piece high-frequency furnace shown in FIG. 1 on the outside.
The temperature is adjusted by a high frequency furnace, the raw material temperature is 2300 ° C,
The temperature of the graphite body (cap top) was adjusted to 2350 ° C, and the temperature of the seed crystal was adjusted to 2000 ° C. The apparatus was operated for 12 hours under an argon atmosphere of 50 torr.

【0019】その結果、種結晶上に図1に示すような先
端部が円形に近い形状でその径が45.3mm、種結晶
からの高さが11.4mmの単結晶が得られた。この結
晶の成長方向の断面を切断、研磨により磨き出し、顕微
鏡観察を行なった結果、成長面は平坦であり、結晶欠陥
は2.2×102 /cm2 あった。またイオンエッチン
グにより電子顕微鏡試料を作製し、高分解能観察の結
果、種結晶との界面、先端近傍とも6H−SiCの格子
間隔を有することが確認されエピタキシャル成長が保た
れていることが分かった。
As a result, a single crystal was obtained on the seed crystal, as shown in FIG. 1, having a tip with a shape close to a circle, a diameter of 45.3 mm and a height from the seed crystal of 11.4 mm. A cross section of the crystal in the growth direction was cut, polished and polished, and observed with a microscope. As a result, the growth surface was flat and the crystal defects were 2.2 × 10 2 / cm 2 . An electron microscope sample was prepared by ion etching, and as a result of high-resolution observation, it was confirmed that the interface with the seed crystal and the vicinity of the tip had a lattice spacing of 6H-SiC, and it was found that epitaxial growth was maintained.

【0020】(実施例2)カプセル上蓋の黒鉛体として
賦活した黒鉛を用いた。実施例1の黒鉛体を空気中、8
50℃で30分間加熱し、その後水蒸気で800℃、1
0分間処理して賦活した。この黒鉛体を用い、黒鉛体の
温度を2250℃とした以外は実施例1と同様にして単
結晶を析出させた。その単結晶を実施例1と同様に観察
した結果、成長面は平坦であり、結晶欠陥は2.0×1
2 /cm2 あった。単結晶は種結晶との界面、先端近
傍とも6H−SiCの格子間隔を有することが確認され
エピタキシャル成長が保たれていることが分かった。
(Example 2) Activated graphite was used as a graphite body for the capsule lid. The graphite body of Example 1 was put in air for 8 hours.
Heat at 50 ° C for 30 minutes and then steam at 800 ° C, 1
It was activated by treating for 0 minutes. Using this graphite body, a single crystal was precipitated in the same manner as in Example 1 except that the temperature of the graphite body was 2250 ° C. As a result of observing the single crystal as in Example 1, the growth surface was flat and the crystal defect was 2.0 × 1.
0 2 / cm 2 . It was confirmed that the single crystal had a lattice spacing of 6H-SiC both at the interface with the seed crystal and near the tip, and it was found that the epitaxial growth was maintained.

【0021】(実施例3)実施例2と同じ賦活黒鉛体を
用いた以外は実施例1と同様にして単結晶を析出させ
た。その単結晶を上記と同様に観察した結果、成長面は
平坦であり、また結晶は6H−SiCの格子間隔を有
し、エピタキシャル成長が保たれていた。そして結晶欠
陥は1.5×102 /cm2 と上記実施例1,2よりさ
らに少なく極めて良好な単結晶であった。
Example 3 A single crystal was deposited in the same manner as in Example 1 except that the same activated graphite body as in Example 2 was used. As a result of observing the single crystal in the same manner as described above, the growth surface was flat, and the crystal had a lattice spacing of 6H—SiC, and epitaxial growth was maintained. The crystal defect was 1.5 × 10 2 / cm 2 , which was much smaller than that of Examples 1 and 2, and was a very good single crystal.

【0022】(比較例)実施例2において、賦活黒鉛体
の代わりに実施例1の黒鉛体を用いた以外は実施例2と
同様にして単結晶を析出させた。実施例と同様に観察し
た結果、成長面の凹凸が大きく、結晶欠陥は5.1×1
2 /cm2 であった。
Comparative Example A single crystal was precipitated in the same manner as in Example 2 except that the graphite body of Example 1 was used instead of the activated graphite body. As a result of observation in the same manner as in the example, the unevenness of the growth surface was large and the crystal defect was 5.1 × 1.
0 2 / cm 2 .

【0023】[0023]

【発明の効果】本発明により、面倒な操作や昇華ガスの
制御等を必要とせず、成長面は平坦で結晶欠陥の少ない
炭化ケイ素単結晶を容易に製造することができる。また
本発明においては繰り返し運転する場合に黒鉛カプセル
を交換するだけでよく、操作が容易であるばかりでな
く、黒鉛ルツボを長期間使用できる。
According to the present invention, a silicon carbide single crystal having a flat growth surface and few crystal defects can be easily produced without requiring a troublesome operation or control of a sublimation gas. Further, in the present invention, it is only necessary to replace the graphite capsule when repeatedly operating, and not only the operation is easy, but also the graphite crucible can be used for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭化ケイ素単結晶の製造装置の断面図
である。
FIG. 1 is a sectional view of an apparatus for producing a silicon carbide single crystal of the present invention.

【符号の説明】[Explanation of symbols]

1 黒鉛ルツボ 2 種結晶 3 黒鉛カプセル 4 炭化ケイ素原料 5 炭化ケイ素単結晶 6 高周波加熱炉 7 石英製反応管 8 黒鉛フェルト 11 蓋板 12 底板 31 蓋板(多孔質黒鉛体) DESCRIPTION OF SYMBOLS 1 Graphite crucible 2 seed crystal 3 Graphite capsule 4 Silicon carbide raw material 5 Silicon carbide single crystal 6 High frequency heating furnace 7 Quartz reaction tube 8 Graphite felt 11 Cover plate 12 Bottom plate 31 Cover plate (porous graphite body)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西野 茂弘 京都市伏見区深草関屋敷町32 ルネ墨染2 番館307号 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigehiro Nishino 32 Fukakuseki Sekiyashiki-cho, Fushimi-ku, Kyoto Rene Sumizome 2 Bldg. 307

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素原料を昇華させ種結晶上に炭
化ケイ素単結晶を成長させる際、炭化ケイ素原料からの
昇華ガスを賦活化した多孔質黒鉛体に接触させた後、前
記種結晶上に到達させることを特徴とする炭化ケイ素単
結晶の製造方法。
When a silicon carbide raw material is sublimated to grow a silicon carbide single crystal on a seed crystal, the silicon carbide raw material is brought into contact with a porous graphite body activated with a sublimation gas from the silicon carbide raw material. A method for producing a silicon carbide single crystal.
【請求項2】 炭化ケイ素原料を昇華させ種結晶上に炭
化ケイ素単結晶を成長させる際、炭化ケイ素原料からの
昇華ガスを、炭化ケイ素原料の温度よりも高い温度の多
孔質黒鉛体に接触させた後、前記種結晶上に到達させる
ことを特徴とする炭化ケイ素単結晶の製造方法。
2. When sublimating a silicon carbide raw material to grow a silicon carbide single crystal on a seed crystal, a sublimation gas from the silicon carbide raw material is brought into contact with a porous graphite body at a temperature higher than the temperature of the silicon carbide raw material. And then reaching the seed crystal.
【請求項3】 多孔質黒鉛体が賦活したものである請求
項2記載の炭化ケイ素単結晶の製造方法。
3. The method for producing a silicon carbide single crystal according to claim 2, wherein the porous graphite body is activated.
【請求項4】 炭化ケイ素原料が240メッシュ以下の
細粒又は該細粒の成形体である請求項1〜3記載の炭化
ケイ素単結晶の製造方法。
4. The method for producing a silicon carbide single crystal according to claim 1, wherein the silicon carbide raw material is a fine grain having a size of 240 mesh or less or a compact of the fine grain.
【請求項5】 炭化ケイ素原料がβ−SiCである請求
項1〜4記載の炭化ケイ素単結晶の製造方法。
5. The method for producing a silicon carbide single crystal according to claim 1, wherein the silicon carbide raw material is β-SiC.
【請求項6】 不活性ガス導入口及び内部を減圧にする
排気口を有し、かつ加熱装置を備えた反応管内に、黒鉛
ルツボが設置され、該黒鉛ルツボ内に炭化ケイ素原料を
収納する黒鉛カプセルが装填され、黒鉛カプセルの蓋板
又は底板は多孔質黒鉛体からなり、該黒鉛カプセルの蓋
板の上方又は底板の下方に炭化ケイ素種結晶を配置して
なる炭化ケイ素単結晶の製造装置。
6. A graphite crucible having an inert gas introduction port and an exhaust port for reducing the pressure inside thereof, and a graphite crucible installed in a reaction tube provided with a heating device, and containing a silicon carbide raw material in the graphite crucible. An apparatus for producing a silicon carbide single crystal, wherein a capsule is loaded, a lid plate or a bottom plate of a graphite capsule is made of a porous graphite body, and a silicon carbide seed crystal is arranged above the lid plate of the graphite capsule or below the bottom plate.
【請求項7】 黒鉛カプセルの蓋板又は底板が賦活化し
た多孔質黒鉛体である請求項6記載の炭化ケイ素単結晶
の製造装置。
7. The apparatus for producing a silicon carbide single crystal according to claim 6, wherein the lid plate or the bottom plate of the graphite capsule is an activated porous graphite body.
JP11881797A 1997-04-21 1997-04-21 Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same Expired - Fee Related JP3898278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11881797A JP3898278B2 (en) 1997-04-21 1997-04-21 Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11881797A JP3898278B2 (en) 1997-04-21 1997-04-21 Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10291899A true JPH10291899A (en) 1998-11-04
JP3898278B2 JP3898278B2 (en) 2007-03-28

Family

ID=14745882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11881797A Expired - Fee Related JP3898278B2 (en) 1997-04-21 1997-04-21 Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3898278B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039371A1 (en) * 1998-12-25 2000-07-06 Showa Denko K. K. Method of manufacturing single-crystal silicon carbide
JP2003002794A (en) * 2001-06-15 2003-01-08 Bridgestone Corp Silicon carbide single crystal and method for producing the same
US6770136B2 (en) 1999-07-07 2004-08-03 Siemens Aktiengesellschaft Device having a foil-lined crucible for the sublimation growth of an SiC single crystal
WO2005012602A1 (en) * 2003-07-31 2005-02-10 Sicrystal Aktiengesellschaft Method and device for aln single crystal production with gas-permeable crucible walls
JP2006069851A (en) * 2004-09-02 2006-03-16 Bridgestone Corp Method and device for manufacturing silicon carbide single crystal
WO2008056761A1 (en) * 2006-11-09 2008-05-15 Bridgestone Corporation Process for producing single crystal of silicon carbide
KR100848810B1 (en) 2007-08-03 2008-07-28 한국전기연구원 Method and apparatus for manufacturing single crystal
US7553373B2 (en) 2001-06-15 2009-06-30 Bridgestone Corporation Silicon carbide single crystal and production thereof
JP2009280431A (en) * 2008-05-21 2009-12-03 Bridgestone Corp Production method of silicon carbide single crystal
DE102009009614A1 (en) 2008-12-24 2010-07-01 Sicrystal Ag Producing a silicon carbide volume single crystal, comprises producing silicon carbide growth gas phase in crystal growing area of culture crucible and growing-off the silicon carbide volume single crystal from the gas phase by deposition
JP4514339B2 (en) * 1998-12-25 2010-07-28 昭和電工株式会社 Method and apparatus for growing silicon carbide single crystal
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot
JP2011256096A (en) * 2010-06-07 2011-12-22 Sicrystal Ag METHOD OF PRODUCING SiC BULK SINGLE CRYSTAL HAVING NO FACET, AND SINGLE CRYSTAL SiC SUBSTRATE HAVING HOMOGENEOUS RESISTANCE DISTRIBUTION
JP2012036088A (en) * 2000-02-15 2012-02-23 Fox Group Inc Method and apparatus for growing low defect density silicon carbide and resulting material
US20120103249A1 (en) * 2009-03-26 2012-05-03 Ii-Vi Incorporated Sic single crystal sublimation growth method and apparatus
CN102534763A (en) * 2012-01-17 2012-07-04 山东天岳先进材料科技有限公司 Graphite crucible for growing large-size silicon carbide single crystal by physical vapor deposition method and application thereof
KR20130074714A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus for fabricating ingot
US20140190412A1 (en) * 2011-05-24 2014-07-10 Lg Innotek Co., Ltd. Apparatus for fabricating ingot
US20140202389A1 (en) * 2011-06-08 2014-07-24 Lg Innotek Co., Ltd. Apparatus for fabricating ingot
US20140216330A1 (en) * 2011-06-20 2014-08-07 Lg Innotek Co., Ltd. Apparatus for fabricating ingot and method for fabricating ingot
US20140216348A1 (en) * 2011-06-15 2014-08-07 Lg Innotek Co., Ltd. Apparatus for fabricating ingot
KR101537385B1 (en) * 2013-12-05 2015-07-17 재단법인 포항산업과학연구원 method for growing SiC single crystal
US20160122903A1 (en) * 2014-10-31 2016-05-05 Sumitomo Electric Industries, Ltd. Device of manufacturing silicon carbide single crystal
JP2016088805A (en) * 2014-11-05 2016-05-23 住友電気工業株式会社 Device and method for producing silicon carbide single crystal
JP2016531836A (en) * 2013-09-06 2016-10-13 ジーティーエイティー コーポレーションGtat Corporation Method for producing bulk silicon carbide
JP2016532629A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Method and apparatus for producing bulk silicon carbide from silicon carbide precursor
CN106544724A (en) * 2016-12-09 2017-03-29 河北同光晶体有限公司 A kind of preparation method of the graphite plate coating in silicon carbide monocrystal growth thermal field structure
WO2020045833A1 (en) * 2018-08-30 2020-03-05 에스케이씨 주식회사 Method of growing semi-insulating silicon carbide single crystal ingot and apparatus for growing silicon carbide single crystal ingot
CN113122916A (en) * 2021-04-25 2021-07-16 哈尔滨科友半导体产业装备与技术研究院有限公司 Batch preparation device and method for PVT method single crystals
CN113445121A (en) * 2021-06-25 2021-09-28 哈尔滨科友半导体产业装备与技术研究院有限公司 Growth method of silicon carbide crystal with reduced graphite inclusions
US20210332497A1 (en) * 2018-10-17 2021-10-28 Fujian Beidian Material Technologies Co., Ltd. High-purity semi-insulating silicon carbide crystal growing apparatus and method therefor
CN114990689A (en) * 2022-04-28 2022-09-02 中电化合物半导体有限公司 Synthetic method and application of silicon carbide powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241628A (en) * 2009-04-03 2010-10-28 Bridgestone Corp Apparatus for producing silicon carbide single crystal

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039371A1 (en) * 1998-12-25 2000-07-06 Showa Denko K. K. Method of manufacturing single-crystal silicon carbide
JP4514339B2 (en) * 1998-12-25 2010-07-28 昭和電工株式会社 Method and apparatus for growing silicon carbide single crystal
US6770136B2 (en) 1999-07-07 2004-08-03 Siemens Aktiengesellschaft Device having a foil-lined crucible for the sublimation growth of an SiC single crystal
JP2012036088A (en) * 2000-02-15 2012-02-23 Fox Group Inc Method and apparatus for growing low defect density silicon carbide and resulting material
JP2003002794A (en) * 2001-06-15 2003-01-08 Bridgestone Corp Silicon carbide single crystal and method for producing the same
US7553373B2 (en) 2001-06-15 2009-06-30 Bridgestone Corporation Silicon carbide single crystal and production thereof
WO2005012602A1 (en) * 2003-07-31 2005-02-10 Sicrystal Aktiengesellschaft Method and device for aln single crystal production with gas-permeable crucible walls
JP2007500664A (en) * 2003-07-31 2007-01-18 エスアイクリスタル アクチエンゲゼルシャフト Method and apparatus for producing AlN single crystal with gas permeable crucible wall
KR101146050B1 (en) * 2003-07-31 2012-05-14 시크리스탈 아게 Method and device for ain single crystal production with gas-permeable crucible walls
JP2006069851A (en) * 2004-09-02 2006-03-16 Bridgestone Corp Method and device for manufacturing silicon carbide single crystal
WO2008056761A1 (en) * 2006-11-09 2008-05-15 Bridgestone Corporation Process for producing single crystal of silicon carbide
KR100848810B1 (en) 2007-08-03 2008-07-28 한국전기연구원 Method and apparatus for manufacturing single crystal
JP2009280431A (en) * 2008-05-21 2009-12-03 Bridgestone Corp Production method of silicon carbide single crystal
DE102009009614A1 (en) 2008-12-24 2010-07-01 Sicrystal Ag Producing a silicon carbide volume single crystal, comprises producing silicon carbide growth gas phase in crystal growing area of culture crucible and growing-off the silicon carbide volume single crystal from the gas phase by deposition
US20120103249A1 (en) * 2009-03-26 2012-05-03 Ii-Vi Incorporated Sic single crystal sublimation growth method and apparatus
JP2012521948A (en) * 2009-03-26 2012-09-20 トゥー‐シックス・インコーポレイテッド Method and apparatus for sublimation growth of SiC single crystal
US10294584B2 (en) * 2009-03-26 2019-05-21 Ii-Vi Incorporated SiC single crystal sublimation growth method and apparatus
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot
JP2011256096A (en) * 2010-06-07 2011-12-22 Sicrystal Ag METHOD OF PRODUCING SiC BULK SINGLE CRYSTAL HAVING NO FACET, AND SINGLE CRYSTAL SiC SUBSTRATE HAVING HOMOGENEOUS RESISTANCE DISTRIBUTION
DE102010029755B4 (en) 2010-06-07 2023-09-21 Sicrystal Gmbh Manufacturing process for a SiC bulk single crystal without facet and single crystal SiC substrate with homogeneous resistance distribution
US20140190412A1 (en) * 2011-05-24 2014-07-10 Lg Innotek Co., Ltd. Apparatus for fabricating ingot
US20140202389A1 (en) * 2011-06-08 2014-07-24 Lg Innotek Co., Ltd. Apparatus for fabricating ingot
US20140216348A1 (en) * 2011-06-15 2014-08-07 Lg Innotek Co., Ltd. Apparatus for fabricating ingot
US20140216330A1 (en) * 2011-06-20 2014-08-07 Lg Innotek Co., Ltd. Apparatus for fabricating ingot and method for fabricating ingot
US9540744B2 (en) * 2011-06-20 2017-01-10 Lg Innotek Co., Ltd. Apparatus for fabricating silicon carbide single crystal ingot and method for fabricating ingot
KR20130074714A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus for fabricating ingot
CN102534763A (en) * 2012-01-17 2012-07-04 山东天岳先进材料科技有限公司 Graphite crucible for growing large-size silicon carbide single crystal by physical vapor deposition method and application thereof
US11434582B2 (en) 2013-09-06 2022-09-06 Gtat Corporation Method for producing bulk silicon carbide by sublimation of a silicon carbide precursor prepared from silicon and carbon particles or particulate silicon carbide
JP2016531836A (en) * 2013-09-06 2016-10-13 ジーティーエイティー コーポレーションGtat Corporation Method for producing bulk silicon carbide
JP2016532629A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Method and apparatus for producing bulk silicon carbide from silicon carbide precursor
US10633762B2 (en) 2013-09-06 2020-04-28 GTAT Corporation. Method for producing bulk silicon carbide by sublimation of a silicon carbide precursor prepared from silicon and carbon particles or particulate silicon carbide
KR101537385B1 (en) * 2013-12-05 2015-07-17 재단법인 포항산업과학연구원 method for growing SiC single crystal
US10724151B2 (en) * 2014-10-31 2020-07-28 Sumitomo Electric Industries, Ltd. Device of manufacturing silicon carbide single crystal
US20160122903A1 (en) * 2014-10-31 2016-05-05 Sumitomo Electric Industries, Ltd. Device of manufacturing silicon carbide single crystal
JP2016088805A (en) * 2014-11-05 2016-05-23 住友電気工業株式会社 Device and method for producing silicon carbide single crystal
CN106544724A (en) * 2016-12-09 2017-03-29 河北同光晶体有限公司 A kind of preparation method of the graphite plate coating in silicon carbide monocrystal growth thermal field structure
WO2020045833A1 (en) * 2018-08-30 2020-03-05 에스케이씨 주식회사 Method of growing semi-insulating silicon carbide single crystal ingot and apparatus for growing silicon carbide single crystal ingot
US11846038B2 (en) 2018-08-30 2023-12-19 Senic Inc. Method of growing semi-insulating silicon carbide single crystal using dopant coated with a carbon-based material
US11859305B2 (en) 2018-08-30 2024-01-02 Senic Inc. Apparatus for growing a SiC single crystal ingot comprising a filter unit having a porous body surrounding an opening unit that is located under a seed crystal
US20210332497A1 (en) * 2018-10-17 2021-10-28 Fujian Beidian Material Technologies Co., Ltd. High-purity semi-insulating silicon carbide crystal growing apparatus and method therefor
US11851784B2 (en) * 2018-10-17 2023-12-26 Fujian Beidian Material Technologies Co., Ltd. Apparatus and method for growing high-purity semi-insulating silicon carbide crystal
CN113122916A (en) * 2021-04-25 2021-07-16 哈尔滨科友半导体产业装备与技术研究院有限公司 Batch preparation device and method for PVT method single crystals
CN113445121A (en) * 2021-06-25 2021-09-28 哈尔滨科友半导体产业装备与技术研究院有限公司 Growth method of silicon carbide crystal with reduced graphite inclusions
CN114990689A (en) * 2022-04-28 2022-09-02 中电化合物半导体有限公司 Synthetic method and application of silicon carbide powder
CN114990689B (en) * 2022-04-28 2024-03-22 中电化合物半导体有限公司 Synthesis method and application of silicon carbide powder

Also Published As

Publication number Publication date
JP3898278B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3898278B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP3165685B2 (en) Sublimation growth of silicon carbide single crystal
JP4122548B2 (en) Method for producing silicon carbide single crystal
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
JP7029467B2 (en) How to grow a silicon carbide substrate and a SiC single crystal boule
EP1803840A2 (en) Method for growing single crystal of silicon carbide
CN110396717B (en) High-quality high-purity semi-insulating silicon carbide single crystal, substrate and preparation method thereof
KR20120082873A (en) Sublimation growth of sic single crystals
CN101233265B (en) AIN crystal and method for growing the same, and AIN crystal substrate
EP1026290B1 (en) Method and apparatus for producing silicon carbide single crystal
JPS6357400B2 (en)
JPH06316499A (en) Production of sic single crystal
JP2020511391A (en) Silicon carbide substrate and method for growing SiC single crystal boule
JP4819069B2 (en) Method for producing silicon carbide single crystal
WO2019095634A1 (en) Method for synthesizing high-purity silicon carbide raw material and application thereof
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
Hartmann et al. Homoepitaxial seeding and growth of bulk AlN by sublimation
TWI675946B (en) Device for growing carbides of a specific shape
JP7023542B2 (en) Silicon Carbide Ingot Manufacturing Method and Silicon Carbide Ingot Manufacturing System
JPH11199395A (en) Production of silicon carbide single crystal
JP2009184897A (en) Method for manufacturing silicon carbide single crystal
JP4736365B2 (en) Method for producing aluminum nitride single crystal
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees