JPH10289434A - Magnetic disk and magnetic recordor using the magnetic disk - Google Patents

Magnetic disk and magnetic recordor using the magnetic disk

Info

Publication number
JPH10289434A
JPH10289434A JP9934397A JP9934397A JPH10289434A JP H10289434 A JPH10289434 A JP H10289434A JP 9934397 A JP9934397 A JP 9934397A JP 9934397 A JP9934397 A JP 9934397A JP H10289434 A JPH10289434 A JP H10289434A
Authority
JP
Japan
Prior art keywords
magnetic
film
ferromagnetic
layer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9934397A
Other languages
Japanese (ja)
Inventor
Hideo Matsuyama
秀生 松山
Masahiko Ichimura
雅彦 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9934397A priority Critical patent/JPH10289434A/en
Publication of JPH10289434A publication Critical patent/JPH10289434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress thermal fluctuation magnetic after effects and super paramagnetism and to stably hold recording magnetization even in high density recording by forming a multi layer film using respectively one or more layers of a ferromagnetic material and an antiferromagnetic material or the ferromagnetic material and a ferromagnetic material as magnetic layers. SOLUTION: Each one layer of the antiferromagnetic material film 2 and a ferromagnetic material body film 1 is formed on a substrate 3 and further a protective film 4 is applied thereon. The antiferromagnetic material film 2 uses NiO, FeMn or the like having a Neel temp. higher than room temp. and is formed by controlling the film forming condition to have <=10 nm crystal grain. An under layer can be inserted between the antiferromagnetic material film 2 and the substrate 3 to control the crystallinity. The antiferro-magnetic material film 2 is formed by means of sputtering method or the like to make a polycrystal film and the ferromagnetic material film uses a Co-based alloy usually used for a magnetic disk and is formed in a zero magnetic field by means of a sputtering method or the like. An arrow 5 expresses magnetic direction and shows that 0 and 1 are alternately recorded on the medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高密度化に好適な磁
気ディスクおよびこれを利用した磁気記録装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk suitable for high density recording and a magnetic recording apparatus using the same.

【0002】[0002]

【従来の技術】従来磁気ディスクに使われる磁性層は、
たとえばデニスミー、エリック ダニエル著マグネティ
ック レコーディング ハンドブック、テクノロジー ア
ンド アプリケーション(マクグローヒル パブリッシン
グ カンパニー、1990)に示されているように基板
上に下地層を設け、その上に記録層として強磁性体膜を
積層し、さらに保護膜を積層する。現在主流のこのタイ
プの面内媒体では記録密度の上昇に従い媒体の膜厚を薄
くする必要がある。これは、記録ビット自身が生成する
反磁場によりそのビット形状が破壊されることを抑制す
るためである。
2. Description of the Related Art Magnetic layers conventionally used in magnetic disks are:
For example, as shown in Dennis Me, Eric Daniel's Magnetic Recording Handbook, Technology and Applications (McGraw Hill Publishing Company, 1990), an underlayer is provided on a substrate, and a ferromagnetic film is laminated thereon as a recording layer. A protective film is laminated. In this type of in-plane medium, which is currently mainstream, it is necessary to reduce the thickness of the medium as the recording density increases. This is to prevent the bit shape from being destroyed by the demagnetizing field generated by the recording bit itself.

【0003】また高密度化に従って、媒体ノイズを抑え
るため、媒体を構成する結晶粒を微細化する必要があ
る。媒体が薄膜化し、ビットサイズが微小化すると、1
ビットを構成する磁性体の体積が減少し、熱揺らぎ磁気
余効により、ビット内の磁化が時間とともに減少してし
まう。さらにビット内の結晶粒があるサイズ以下になる
と結晶粒内の磁化が熱のため揺らぎはじめ、キュリー温
度以下でも常磁性的な振る舞いをする超常磁性状態とな
る。
Further, as the density increases, it is necessary to make the crystal grains constituting the medium finer in order to suppress medium noise. When the medium becomes thinner and the bit size becomes smaller, 1
The volume of the magnetic material constituting the bit decreases, and the magnetization in the bit decreases with time due to thermal fluctuation magnetic aftereffect. Furthermore, when the crystal grains in the bit become smaller than a certain size, the magnetization in the crystal grains starts to fluctuate due to heat, and becomes a superparamagnetic state that behaves paramagnetically even at a Curie temperature or lower.

【0004】つまり、面内媒体では、高密度化が進むと
長時間記録情報を保持することがむづかしくなる。
That is, as the density of an in-plane medium increases, it becomes difficult to hold recorded information for a long time.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記熱揺ら
ぎ磁気余効、および超常磁性を抑え、高密度記録時でも
記録磁化を安定に保持する磁気ディスクおよびこれを利
用した磁気記録装置を提供することにある。
SUMMARY OF THE INVENTION The present invention provides a magnetic disk which suppresses the above-mentioned thermal fluctuation magnetic aftereffect and superparamagnetism and stably retains recording magnetization even during high-density recording, and a magnetic recording apparatus using the same. Is to do.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する磁気
ディスクは磁性層として強磁性体と反強磁性体をそれぞ
れ1層以上使用した多層膜、あるいは強磁性体とフェリ
磁性体をそれぞれ1層以上使用した多層膜とすることで
達成可能となる。
The magnetic disk for solving the above-mentioned problems is a multilayer film using at least one ferromagnetic material and one antiferromagnetic material as a magnetic layer, or one ferromagnetic material and one ferrimagnetic material. This can be achieved by using the multilayer film used above.

【0007】[0007]

【発明の実施の形態】図1(a)は本発明に関わる磁気
ディスクの断面の基本的な構成を示す図であり、基板3
上に反強磁性体膜2、強磁性体膜1がそれぞれ1層成膜
され、その上にさらに保護膜4が塗布されている状態を
示す。反強磁性体膜2はネール温度が室温以上であるNi
O、FeMn、NiMn等を使用する。結晶性を制御するため反
強磁性体膜2と基板3との間には下地層を入れてもよ
い。反強磁性体膜2は多結晶薄膜となるようにスパッタ
リング法等で成膜し、強磁性体膜1は通常磁気ディスク
に使用されているCo系合金を使用し、スパッタリング法
等でゼロ磁場中で成膜する。ここで反強磁性体膜2の結
晶粒のサイズが10 nm 以下となるように成膜条件を制
御する。図はこの媒体に0、1が交互に記録されている
状態を表しており、強磁性体膜1内の矢印は磁化5を表
している。また反強磁性体膜2内の矢印は内部の磁気モ
ーメント6を模式的に表したものである。強磁性体膜1
と反強磁性体膜2との界面7では、交換相互作用が働
き、界面7に接する強磁性体膜1内の磁気モーメントと
反強磁性体膜2の磁気モーメントとが平行になろうとす
る(交換異方性)。反強磁性体膜2が単結晶であり、界
面が平坦であれば、界面上での磁気モーメントの向きは
1方向になる場合があり、交換異方性が大きくなる。し
かし、反強磁性体膜2は多結晶であり、界面はミクロス
コピックには平坦ではないため、最表面のある方向を向
いた磁気モーメントとそれと反対方向を向いた磁気モー
メントの数はほぼ同数となる。このためマクロな交換異
方性は現れず、磁性膜のヒステリシスループはほぼ原点
対称となる。しかし、界面では交換相互作用が以前とし
て働いているため、強磁性体膜1の保磁力は、強磁性体
膜単独のときと比べ大きくなる。
FIG. 1A is a diagram showing a basic configuration of a cross section of a magnetic disk according to the present invention.
This shows a state in which an antiferromagnetic material film 2 and a ferromagnetic material film 1 are each formed as a single layer, and a protective film 4 is further applied thereon. The antiferromagnetic film 2 is made of Ni having a Neel temperature of room temperature or higher.
O, FeMn, NiMn, etc. are used. An underlayer may be provided between the antiferromagnetic film 2 and the substrate 3 to control the crystallinity. The antiferromagnetic film 2 is formed by a sputtering method or the like so as to become a polycrystalline thin film. The ferromagnetic film 1 is made of a Co-based alloy usually used for a magnetic disk, and is subjected to a zero magnetic field by a sputtering method or the like. To form a film. Here, the film forming conditions are controlled so that the crystal grain size of the antiferromagnetic film 2 is 10 nm or less. The figure shows a state in which 0 and 1 are alternately recorded on this medium, and the arrow in the ferromagnetic film 1 indicates magnetization 5. Arrows in the antiferromagnetic film 2 schematically represent the internal magnetic moment 6. Ferromagnetic film 1
At the interface 7 between the ferromagnetic film 2 and the antiferromagnetic film 2, an exchange interaction acts so that the magnetic moment in the ferromagnetic film 1 in contact with the interface 7 and the magnetic moment of the antiferromagnetic film 2 try to be parallel ( Exchange anisotropy). If the antiferromagnetic film 2 is a single crystal and the interface is flat, the direction of the magnetic moment on the interface may be one direction, and the exchange anisotropy increases. However, since the antiferromagnetic film 2 is polycrystalline and the interface is not flat in microscopic terms, the number of magnetic moments directed in a certain direction on the outermost surface and the opposite direction is almost the same. Become. Therefore, macro exchange anisotropy does not appear, and the hysteresis loop of the magnetic film is almost symmetrical with the origin. However, at the interface, since the exchange interaction works as before, the coercive force of the ferromagnetic film 1 is larger than that of the ferromagnetic film alone.

【0008】GMRヘッドへの応用のために、上記と同
様の反強磁性体膜上に強磁性体膜を成膜した系が研究さ
れている。例えば強磁性体として透磁率の高いパーマロ
イ薄膜を、反強磁性体としてNiOを使用してチーワン
ライらがアイトリプルイートランザクションズ オン
マグネティックス、31巻、6号、1995年、260
9ページから2611ページに報告している。図1
(b)にGMRヘッドの断面構造の模式図を示す。図に
おいて、300は基板であり、基板300上に反強磁性
体膜200および強磁性体膜100がそれぞれ1層成膜
される。その上にさらに非磁性体膜800および強磁性
体膜900がそれぞれ1層成膜される。図1(a)、
(b)を対比してみると、基板300上に反強磁性体膜
200および強磁性体膜100がそれぞれ1層成膜され
た構造は外見上同じ構造であるが、GMRヘッドで使用
される反強磁性体膜200はその上に成膜した強磁性体
膜100の磁化を一方向に向け、これをピン止めするた
めに使用される。これは強磁性体膜100のヒステリシ
スループを磁場軸方向にシフトすることに対応し、その
シフト量を大きくすることが重要な課題となっている。
また保磁力はできるだけ小さくするのが望ましい。これ
に対し、本発明においては、反強磁性体膜2はその上に
成膜した強磁性体膜1の保磁力を大きくする目的で使用
されるものであって、本質的に異なるものである。な
お、GMRのヘッドでは、強磁性体膜900の磁化の方
向は、強磁性体膜100のそれに対して直角方向(図の
例では紙面の裏側に向かう方向)である。
For application to a GMR head, a system in which a ferromagnetic film is formed on the same antiferromagnetic film as described above has been studied. For example, using a permalloy thin film with high magnetic permeability as a ferromagnetic material and NiO as an antiferromagnetic material, Qi Wan Rai et al.
Magnetics, Vol. 31, No. 6, 1995, 260
Reports from pages 9 to 2611. FIG.
FIG. 2B is a schematic diagram of a cross-sectional structure of the GMR head. In the figure, reference numeral 300 denotes a substrate on which one antiferromagnetic film 200 and one ferromagnetic film 100 are formed. A non-magnetic film 800 and a ferromagnetic film 900 are further formed thereon, respectively. FIG. 1 (a),
Compared with (b), the structure in which the antiferromagnetic film 200 and the ferromagnetic film 100 are each formed on the substrate 300 is the same in appearance, but is used in a GMR head. The antiferromagnetic film 200 is used to direct the magnetization of the ferromagnetic film 100 formed thereon in one direction and pin it. This corresponds to shifting the hysteresis loop of the ferromagnetic film 100 in the direction of the magnetic field axis, and increasing the shift amount is an important issue.
It is desirable that the coercive force be as small as possible. On the other hand, in the present invention, the antiferromagnetic film 2 is used for the purpose of increasing the coercive force of the ferromagnetic film 1 formed thereon, and is essentially different. . In the GMR head, the direction of magnetization of the ferromagnetic film 900 is a direction perpendicular to that of the ferromagnetic film 100 (in the example in the drawing, the direction toward the back of the paper).

【0009】図2(a)は前述した磁気ディスク50と
記録再生用の磁気ヘッド9およびレーザー光線8との関
係を断面図で示す。記録に際しては、書き込むビット近
傍をレーザー光線8によってネール温度TN付近まで加熱
し、強磁性体膜1と反強磁性体膜2の間に作用する交換
相互作用を十分小さくする。ここでは基板3は透明とし
ており、レーザー光線8を基板を通して反強磁性体膜2
に照射している。反強磁性体膜2の加熱された部分は常
磁性状態となり、磁気モーメントのオーダーが消失し、
これに伴い交換異方性も消失する。この部分の反強磁性
体膜2に隣接する強磁性体膜1に磁気ヘッド9からの磁
場でビット情報を書き込む。交換異方性が消失している
ので磁気ヘッド9の書き込み磁場は比較的小さなもので
よい。磁化反転後、反強磁性体膜2がTN以下になったと
き、反強磁性体の界面7の磁気モーメントは強磁性体膜
1の磁気モーメントに引きずられ平行に揃い、以下内部
の磁気モーメントも交互に配列することになる。これに
より、図2(b)に示すように交換異方性が回復し記録
ビットは安定化する。図2(b)と図1とを対照して分
かるように、図の右側2番目のビットが書き換えられて
いる。再生動作は通常の磁気記録装置と同様であり、イ
ンダクティブヘッド、MRヘッド等の磁気ヘッドにより媒
体からの漏れ磁場を検出してビット情報とする。
FIG. 2A is a sectional view showing the relationship between the magnetic disk 50, the recording / reproducing magnetic head 9 and the laser beam 8. At the time of recording, the vicinity of the bit to be written is heated to near the Neel temperature TN by the laser beam 8 to sufficiently reduce the exchange interaction acting between the ferromagnetic film 1 and the antiferromagnetic film 2. Here, the substrate 3 is made transparent, and the laser beam 8 is passed through the substrate to form the antiferromagnetic film 2.
Irradiation. The heated portion of the antiferromagnetic film 2 becomes paramagnetic and the order of the magnetic moment disappears,
With this, the exchange anisotropy also disappears. Bit information is written to the ferromagnetic film 1 adjacent to the antiferromagnetic film 2 in this portion by the magnetic field from the magnetic head 9. Since the exchange anisotropy has disappeared, the writing magnetic field of the magnetic head 9 may be relatively small. After the magnetization reversal, when the antiferromagnetic material film 2 becomes T N or less, the magnetic moment at the interface 7 of the antiferromagnetic material is dragged by the magnetic moment of the ferromagnetic material film 1 and is aligned in parallel. Are also arranged alternately. As a result, as shown in FIG. 2B, the exchange anisotropy is recovered, and the recording bit is stabilized. As can be seen by comparing FIG. 2B and FIG. 1, the second bit on the right side of the figure is rewritten. The reproducing operation is the same as that of a normal magnetic recording device, and a magnetic head such as an inductive head or an MR head detects a leakage magnetic field from a medium to generate bit information.

【0010】次に強磁性体と補償温度Tcompの存在する
フェリ磁性体を使用する場合を示す。まず図3(a)に
強磁性体とフェリ磁性体の磁化の温度変化を模式的に示
す。曲線10、11はそれぞれ強磁性体、フェリ磁性体
の磁化曲線である。強磁性体のキュリー温度Tc1はフェ
リ磁性体のキュリー温度Tc2より大きいものとする。こ
こでフェリ磁性体としてTbFeCo等の希土類金属と遷移金
属で構成されたものを、強磁性体としてCo合金等の遷移
金属合金を使用する。フェリ磁性体は遷移金属の磁化と
希土類金属の磁化が逆方向を向いている。このときT
comp以下では遷移金属の磁化が希土類金属の磁化より小
さく、Tcomp以上では大きくなる。
Next, a case will be described in which a ferrimagnetic material and a ferrimagnetic material having a compensation temperature T comp are used. First, FIG. 3A schematically shows the temperature change of the magnetization of the ferromagnetic material and the ferrimagnetic material. Curves 10 and 11 are magnetization curves of a ferromagnetic material and a ferrimagnetic material, respectively. Curie temperature T c1 of the ferromagnetic body is made larger than the Curie temperature T c2 of the ferromagnetic body. Here, a ferrimagnetic material composed of a rare earth metal such as TbFeCo and a transition metal is used, and a ferromagnetic material is a transition metal alloy such as a Co alloy. In the ferrimagnetic material, the magnetization of the transition metal and the magnetization of the rare earth metal are in opposite directions. Then T
Below comp , the magnetization of the transition metal is smaller than that of the rare earth metal, and above T comp , it becomes larger.

【0011】図3(b)は磁気ディスクの断面を表して
おり、図1の反強磁性体膜2をフェリ磁性体膜12に置
き換えた構造となっている。ここで、強磁性体膜1、フ
ェリ磁性体膜12は垂直磁気異方性を持つと仮定した。
強磁性体膜1内の矢印は記録ビットの磁化5を示す。ま
たフェリ磁性体膜12内の細い矢印、および太い矢印は
それぞれ遷移金属と希土類金属のそれぞれの磁気モーメ
ント13、14を模式的に示したものである。遷移金属
の磁性を担う3d電子は、希土類金属の磁性を担う4f電子
より空間的に拡がっているので、界面7では遷移金属の
磁気モーメント13が強磁性体膜1の遷移金属の磁気モ
ーメント(磁化5の源)と相互作用し、図3(b)の左
側に示すようにそれらの向きを揃える。このとき希土類
金属を含んだフェリ磁性体は異方性が大きいので、界面
での相互作用を通して強磁性体の記録ビットを安定化さ
せることになる。今Tcompを室温付近、あるいはTcomp <
室温 < Tc2とすると、図3(a)からわかるように、フ
ェリ磁性体膜12の磁化はほぼゼロ、あるいはある値を
持つ。前者の場合フェリ磁性体膜12は磁化5に静磁的
には影響を与えない。また後者の場合、磁化は強磁性体
1の磁化5と同方向なので強磁性体1単独の場合より静
磁エネルギー的に安定となる。さらにこの場合、漏れ磁
場は磁化5単独より大きくなり、再生時のS/Nを向上さ
せる。
FIG. 3B shows a cross section of the magnetic disk, which has a structure in which the antiferromagnetic film 2 of FIG. Here, it is assumed that the ferromagnetic film 1 and the ferrimagnetic film 12 have perpendicular magnetic anisotropy.
The arrow in the ferromagnetic film 1 indicates the magnetization 5 of the recording bit. Thin arrows and thick arrows in the ferrimagnetic film 12 schematically show the magnetic moments 13 and 14 of the transition metal and the rare earth metal, respectively. Since the 3d electrons that carry the magnetism of the transition metal are more spatially spread than the 4f electrons that carry the magnetism of the rare earth metal, the magnetic moment 13 of the transition metal at the interface 7 changes the magnetic moment (magnetization) of the transition metal of the ferromagnetic film 1. 5 source) and align them as shown on the left side of FIG. 3 (b). At this time, since the ferrimagnetic material containing the rare earth metal has a large anisotropy, the recording bit of the ferromagnetic material is stabilized through the interaction at the interface. Now let T comp near room temperature or T comp <
Assuming that the room temperature is smaller than Tc2, as can be seen from FIG. 3A, the magnetization of the ferrimagnetic film 12 is almost zero or has a certain value. In the former case, the ferrimagnetic film 12 does not magnetostatically affect the magnetization 5. In the latter case, the magnetization is in the same direction as the magnetization 5 of the ferromagnetic material 1, so that the magnetostatic energy is more stable than when the ferromagnetic material 1 is used alone. Further, in this case, the leakage magnetic field is larger than the magnetization 5 alone, and the S / N during reproduction is improved.

【0012】記録時は、図3(c)に示すように図2
(a)と同様透明基板3の下方より、レーザー光線8を
照射してフェリ磁性体12を加熱、Tc2付近、あるいは
それ以上とする。フェリ磁性体膜12の磁気異方性は十
分小さく、あるいはゼロとなるので、磁気ヘッド9で磁
化5を比較的簡単に反転することが可能となる。再生時
はインダクティブヘッド、MRヘッド等の磁気ヘッドによ
り媒体からの漏れ磁場を検出してビット情報とする。T
compを室温付近に設定した場合、上述したようにレーザ
ー光線8でフェリ磁性体膜12をTcomp以上Tc2以下に加
熱することによってビットからの漏れ磁場を増大させ、
再生信号のS/Nを向上させることも可能である。
At the time of recording, as shown in FIG.
As in (a), the ferrimagnetic material 12 is heated by irradiating a laser beam 8 from below the transparent substrate 3 to near Tc2 or higher. Since the magnetic anisotropy of the ferrimagnetic film 12 is sufficiently small or zero, the magnetization 5 can be relatively easily reversed by the magnetic head 9. At the time of reproduction, a magnetic head such as an inductive head or an MR head detects a leakage magnetic field from the medium and converts it into bit information. T
If the comp set to around room temperature, increasing the leakage magnetic field from the bit by heating the ferrimagnetic material film 12 above T comp T c2 following laser 8 as described above,
It is also possible to improve the S / N of the reproduction signal.

【0013】以上、強磁性体膜1と反強磁性体膜2、あ
るいはフェリ磁性体膜12の2層膜で説明したが、多層
膜でも同様である。
Although the above description has been made with reference to the two-layer film of the ferromagnetic film 1 and the antiferromagnetic film 2, or the ferrimagnetic film 12, the same applies to a multilayer film.

【0014】実施例1 本発明の磁気ディスクの実施例を図4により説明する。
図4は断面を表している。ガラス基板15上に直接反強
磁性体NiO16をスパッタ法で20nm 成膜し、その後強
磁性体であるCoTaZr17をスパッタ法で50nm 成膜
し、さらに保護膜としてカーボン膜を成膜する。NiOの
ネール温度は約250度Cである。記録再生動作は通常
の磁気記録装置と同様であり、インダクティブヘッドに
よって記録を行い、インダクティブヘッドあるいはMRヘ
ッド等によって媒体からの漏れ磁場を検出してビット情
報とする。
Embodiment 1 An embodiment of a magnetic disk according to the present invention will be described with reference to FIG.
FIG. 4 shows a cross section. An antiferromagnetic material NiO 16 is formed directly on the glass substrate 15 by sputtering to a thickness of 20 nm, then a ferromagnetic material CoTaZr 17 is formed to a thickness of 50 nm by sputtering, and a carbon film is formed as a protective film. The Neel temperature of NiO is about 250 ° C. The recording / reproducing operation is the same as that of a normal magnetic recording apparatus. Recording is performed by an inductive head, and a leakage magnetic field from a medium is detected by an inductive head or an MR head to generate bit information.

【0015】実施例2 本発明の記録装置の実施例を図5により説明する。図5
は装置の断面を表している。磁気ディスク18、再生用
磁気ヘッド・記録用磁気ヘッドを組み込んだ磁気ヘッド
部19、スライダー20、磁気ヘッド用アーム21、駆
動系22、半導体レーザーと光学系を組み込んだ半導体
レーザーヘッド23、半導体レーザーヘッド用アーム2
4より構成されている。ここでは磁気ディスク駆動系、
電気回路系、支持具等は省いている。磁気ディスク18
の上面には保護膜、強磁性体膜、反強磁性体膜、あるい
はフェリ磁性体膜が積層されている。再生は通常の磁気
記録装置と同様に再生用磁気ヘッドによって媒体からの
漏れ磁場を検出してビット情報とする。
Embodiment 2 An embodiment of the recording apparatus of the present invention will be described with reference to FIG. FIG.
Represents the cross section of the device. Magnetic disk 18, magnetic head unit 19 incorporating a reproducing magnetic head / recording magnetic head, slider 20, arm 21 for magnetic head, drive system 22, semiconductor laser head 23 incorporating a semiconductor laser and an optical system, semiconductor laser head Arm 2
4. Here, the magnetic disk drive system,
Electrical circuits, supports, etc. are omitted. Magnetic disk 18
A protective film, a ferromagnetic film, an antiferromagnetic film, or a ferrimagnetic film is laminated on the upper surface of the substrate. For reproduction, a leakage magnetic field from the medium is detected by a reproducing magnetic head and converted into bit information as in a normal magnetic recording device.

【0016】記録時は以下のような動作となる。まず磁
気ヘッド部19、半導体レーザーヘッド23を駆動系2
2で所定の位置まで移動させる。半導体レーザーヘッド
23内の半導体レーザーから照射されたレーザー光線2
5は光学系によって反強磁性体膜に収束され、反強磁性
体膜はネール点TN付近、あるいはそれ以上に加熱され
る。これと同時に記録用ヘッドを作動させ、ヘッドから
の漏れ磁場で強磁性体膜の微小領域を磁化させる。以上
の動作を磁気ディスク18の回転に従って順次行い一連
の情報を磁気記録する。
At the time of recording, the operation is as follows. First, the magnetic head unit 19 and the semiconductor laser head 23 are connected to the drive system 2.
2 to move to a predetermined position. Laser beam 2 emitted from semiconductor laser in semiconductor laser head 23
5 is converged on the antiferromagnetic film by the optical system, and the antiferromagnetic film is heated to near the Neel point TN or higher. At the same time, the recording head is operated to magnetize a minute region of the ferromagnetic film with a leakage magnetic field from the head. The above operations are sequentially performed according to the rotation of the magnetic disk 18 to magnetically record a series of information.

【0017】反強磁性体膜の代わりにフェリ磁性体膜を
使用する場合も同様である。ただし、さきにも述べたよ
うに、再生時フェリ磁性体をTcomp以上Tc2以下に加熱す
る場合、記録時と同様にレーザー光線で加熱し再生動作
を行う。このときレーザー光線のパワーは強度、あるい
は時間で制御し、最適値にする。
The same applies when a ferrimagnetic film is used in place of the antiferromagnetic film. However, as mentioned earlier, when heating the playback ferrimagnetic material below T comp than T c2, performs heating playback operation with laser beam in the same manner as in the recording. At this time, the power of the laser beam is controlled by the intensity or the time to make it an optimum value.

【0018】以上、強磁性体膜と反強磁性体膜、あるい
はフェリ磁性体膜の2層膜で説明したが、多層膜でも同
様である。
Although the above description has been made with reference to a two-layer film of a ferromagnetic film and an antiferromagnetic film, or a ferrimagnetic film, the same applies to a multilayer film.

【0019】実施例3 本発明の磁気記録装置の他の実施例を図6により説明す
る。図6はヘッド部分の断面を表している。基板26、
保護膜、強磁性体膜、反強磁性体膜、あるいはフェリ磁
性体膜で構成された媒体部27、再生用磁気ヘッド・記
録用磁気ヘッドを組み込んだ磁気ヘッド部19、スライ
ダー20、磁気ヘッド用アーム21、半導体レーザー2
8、ミラー29、レンズ30、ハウジング31、アーム
32より構成されている。ここでは駆動系、電気回路
系、支持具等は省いている。半導体レーザー28、ミラ
ー29、レンズ30はハウジング31に固定されてお
り、このハウジング31はアーム32に固定されてい
る。磁気ヘッド部19はレンズ30、および媒体部27
の近傍に配置する。
Embodiment 3 Another embodiment of the magnetic recording apparatus of the present invention will be described with reference to FIG. FIG. 6 shows a cross section of the head portion. Substrate 26,
A medium unit 27 made of a protective film, a ferromagnetic film, an antiferromagnetic film, or a ferrimagnetic film, a magnetic head unit 19 incorporating a reproducing magnetic head and a recording magnetic head, a slider 20, and a magnetic head unit. Arm 21, semiconductor laser 2
8, a mirror 29, a lens 30, a housing 31, and an arm 32. Here, a drive system, an electric circuit system, a support, and the like are omitted. The semiconductor laser 28, the mirror 29, and the lens 30 are fixed to a housing 31, and the housing 31 is fixed to an arm 32. The magnetic head section 19 includes a lens 30 and a medium section 27.
Is placed in the vicinity of.

【0020】半導体レーザー28から照射されたレーザ
ー光線33はミラー29で反射されレンズ30に入射す
る。レンズ30は凸レンズの一部分であり、レーザー光
線33は媒体部27内の反強磁性体膜、あるいはフェリ
磁性体膜に収束される。磁気ヘッド部19はレーザー光
線33の収束位置の直上に配置するように位置決めす
る。記録・再生は実施例2と同様である。
A laser beam 33 emitted from a semiconductor laser 28 is reflected by a mirror 29 and enters a lens 30. The lens 30 is a part of a convex lens, and the laser beam 33 is focused on an antiferromagnetic film or a ferrimagnetic film in the medium section 27. The magnetic head section 19 is positioned so as to be located immediately above the convergence position of the laser beam 33. Recording and reproduction are the same as in the second embodiment.

【0021】以上、強磁性体膜と反強磁性体膜、あるい
はフェリ磁性体膜の2層膜で説明したが、多層膜でも同
様である。
Although the above description has been made with reference to a two-layer film of a ferromagnetic film and an antiferromagnetic film, or a ferrimagnetic film, the same applies to a multilayer film.

【0022】実施例4 本発明の磁気記録装置の他の実施例を図7により説明す
る。図7はヘッド部分の断面を表している。図7は磁気
ヘッド、および磁気ディスクの断面を表している。磁気
ディスクは基板26、保護膜、強磁性体膜、反強磁性体
膜、あるいはフェリ磁性体膜で構成された媒体部27で
構成されている。磁気ヘッドはポールピース34、コイ
ル35、磁場検出部36、磁気シールド37、ヘッド保
持部38、光ファイバー39、スライダー20、磁気ヘ
ッド用アーム21より構成されている。ここで、ポール
ピース34、コイル35で記録用ヘッドを構成し、磁場
検出部36、磁気シールド37で再生用ヘッドを構成し
ている。また両者は磁気ヘッド保持部38に固定されて
いる。光ファイバー39は、その先端部をポールピース
34間に入るように配置する。磁気ヘッド保持部38は
スライダー20に固定されており、スライダー20は磁
気ヘッド用アーム21に固定されている。ここでは駆動
系、電気回路系、支持具等は省いている。
Embodiment 4 Another embodiment of the magnetic recording apparatus of the present invention will be described with reference to FIG. FIG. 7 shows a cross section of the head portion. FIG. 7 shows a cross section of a magnetic head and a magnetic disk. The magnetic disk includes a substrate 26, a protective film, a ferromagnetic film, an antiferromagnetic film, or a medium unit 27 formed of a ferrimagnetic film. The magnetic head includes a pole piece 34, a coil 35, a magnetic field detection unit 36, a magnetic shield 37, a head holding unit 38, an optical fiber 39, a slider 20, and a magnetic head arm 21. Here, the pole head 34 and the coil 35 constitute a recording head, and the magnetic field detecting unit 36 and the magnetic shield 37 constitute a reproducing head. Both are fixed to the magnetic head holder 38. The optical fiber 39 is disposed such that the tip end thereof is located between the pole pieces 34. The magnetic head holding section 38 is fixed to the slider 20, and the slider 20 is fixed to the magnetic head arm 21. Here, a drive system, an electric circuit system, a support, and the like are omitted.

【0023】反強磁性体膜、あるいはフェリ磁性体膜を
加熱する場合、レーザー光線を光ファイバー39でポー
ルピース34直下に導き、矢印で示すように、媒体へ照
射することで可能となる。記録・再生動作は実施例2と
同じである。
When the antiferromagnetic film or the ferrimagnetic film is heated, a laser beam can be guided under the pole piece 34 by the optical fiber 39 and irradiated on the medium as shown by an arrow. The recording / reproducing operation is the same as in the second embodiment.

【0024】以上、強磁性体膜と反強磁性体膜、あるい
はフェリ磁性体膜の2層膜で説明したが、多層膜でも同
様である。
Although the above description has been made with reference to a two-layer film of a ferromagnetic film and an antiferromagnetic film, or a ferrimagnetic film, the same applies to a multilayer film.

【0025】実施例5 本発明の磁気記録装置の他の実施例を図8により説明す
る。図8はヘッド部分の断面を表している。図8は磁気
ヘッド、および磁気ディスクの断面を表しており、実施
例4(図7)に示した磁気ディスクの光ファイバー39
を高抵抗体薄膜40で置き換えたものである。その他の
要素は同じであるので符合および説明を省略した。反強
磁性体膜、あるいはフェリ磁性体膜を加熱する場合、高
抵抗体薄膜40を通電加熱し、ポールピース直下の媒体
を輻射で加熱する。記録・再生動作は実施例2と同じで
ある。
Embodiment 5 Another embodiment of the magnetic recording apparatus according to the present invention will be described with reference to FIG. FIG. 8 shows a cross section of the head portion. FIG. 8 shows a cross section of the magnetic head and the magnetic disk, and shows the optical fiber 39 of the magnetic disk shown in the fourth embodiment (FIG. 7).
Is replaced by a high-resistance thin film 40. Since the other elements are the same, the symbols and explanations are omitted. When heating the antiferromagnetic film or the ferrimagnetic film, the high-resistance thin film 40 is heated by energization, and the medium immediately below the pole piece is heated by radiation. The recording / reproducing operation is the same as in the second embodiment.

【0026】以上、強磁性体膜と反強磁性体膜、あるい
はフェリ磁性体膜の2層膜で説明したが、多層膜でも同
様である。
Although the above description has been made with reference to a two-layer film of a ferromagnetic film and an antiferromagnetic film, or a ferrimagnetic film, the same applies to a multilayer film.

【0027】実施例6 本発明の磁気ディスクの他の実施例を図9により説明す
る。図9(a)は磁気ディスクの断面を表しており、磁
気ディスクは透明基板3、アレイ状に基板上に配置した
強磁性体41、強磁性体間を埋める反強磁性体42、保
護膜4より構成されている。ここで反強磁性体42で孤
立させられた個々の強磁性体41が、記録の単位となっ
ているので、この磁気ディスクは量子磁気ディスクと呼
ぶことができる。
Embodiment 6 Another embodiment of the magnetic disk according to the present invention will be described with reference to FIG. FIG. 9A shows a cross section of a magnetic disk. The magnetic disk includes a transparent substrate 3, a ferromagnetic material 41 arranged on the substrate in an array, an antiferromagnetic material 42 filling the space between the ferromagnetic materials, and a protective film 4. It is composed of Here, since each ferromagnetic material 41 isolated by the antiferromagnetic material 42 is a unit of recording, this magnetic disk can be called a quantum magnetic disk.

【0028】前述したように強磁性体41と反強磁性体
42の界面には相互作用が働き、強磁性体41内の磁化
5と反強磁性体42内の磁気モーメント6が平行とな
り、磁化5は安定化される。記録動作は実施例1、2と
同様であり、図9(b)、(c)で説明する。図9
(b)は書き込み時の磁気ディスクの断面を表したもの
である。レーザー光線8で強磁性体41に隣接する反強
磁性体42の界面43近傍がネール温度TN以上になるよ
うに加熱する。このとき磁化5は相互作用が消失するた
め、磁気ヘッド9からの比較的小さな磁場でビット情報
を書き込むが可能となる。書き込み直後、反強磁性体4
2がTN以下になったとき、界面43の磁気モーメントは
強磁性体41の磁気モーメントに引きずられ平行に揃
い、以下内部の磁気モーメントも交互に配列することに
なる。これにより、図9(c)に示すように相互作用が
回復し記録ビットは安定化する。本実施例の反強磁性体
42をフェリ磁性体で置き換えたものも、同様に動作す
る。
As described above, an interaction acts on the interface between the ferromagnetic material 41 and the antiferromagnetic material 42, and the magnetization 5 in the ferromagnetic material 41 and the magnetic moment 6 in the antiferromagnetic material 42 become parallel, 5 is stabilized. The recording operation is the same as in the first and second embodiments, and will be described with reference to FIGS. FIG.
(B) shows a cross section of the magnetic disk at the time of writing. The laser beam 8 is heated so that the vicinity of the interface 43 of the antiferromagnetic material 42 adjacent to the ferromagnetic material 41 becomes higher than the Neel temperature T N. At this time, since the interaction of the magnetization 5 disappears, bit information can be written with a relatively small magnetic field from the magnetic head 9. Immediately after writing, antiferromagnetic material 4
When 2 becomes equal to or less than T N , the magnetic moment of the interface 43 is dragged by the magnetic moment of the ferromagnetic material 41 and is aligned in parallel, and the internal magnetic moments are alternately arranged below. As a result, the interaction is restored as shown in FIG. 9C, and the recording bit is stabilized. A device in which the antiferromagnetic material 42 of this embodiment is replaced with a ferrimagnetic material operates in the same manner.

【0029】その他の実施例 図10、11に強磁性体をアレイ状に配置したものを示
す。これらは、基板46に反強磁性体45、あるいはフ
ェリ磁性体48、強磁性体44を積層し、アレイ状に整
形したものである。各磁区の間は非磁性材料47で区分
される。ここで、保護膜は省略している。これらは強磁
性体膜と反強磁性体膜、あるいはフェリ磁性体膜の2層
膜で説明したが、多層膜でも同様である。
Other Embodiments FIGS. 10 and 11 show ferromagnetic materials arranged in an array. These are obtained by laminating an antiferromagnetic material 45 or a ferrimagnetic material 48 and a ferromagnetic material 44 on a substrate 46 and shaping them into an array. Each magnetic domain is separated by a non-magnetic material 47. Here, the protective film is omitted. These are described as a two-layer film of a ferromagnetic film and an antiferromagnetic film, or a ferrimagnetic film, but the same applies to a multilayer film.

【0030】[0030]

【発明の効果】本発明によれば、熱揺らぎ磁気余効、お
よび超常磁性を抑え、高密度記録時でも記録磁化を安定
化させることが可能となり、面内磁気記録、垂直磁気記
録の高密度化が実現できる。
According to the present invention, it is possible to suppress the thermal fluctuation magnetic after-effect and superparamagnetism and to stabilize the recording magnetization even at the time of high-density recording. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に関わる磁気ディスクの断面の
基本的な構成を示す図。(b)はGMRヘッドの断面構
造の模式図を示す図。
FIG. 1A is a diagram showing a basic configuration of a cross section of a magnetic disk according to the present invention. (B) is a diagram showing a schematic diagram of a cross-sectional structure of the GMR head.

【図2】(a)は前述した磁気ディスク50と記録再生
用の磁気ヘッド9およびレーザー光線8との関係を示す
断面図。(b)は書き込み後の磁気ディスクの記録状態
を示す断面図。
FIG. 2A is a cross-sectional view showing a relationship between the magnetic disk 50 described above, a recording / reproducing magnetic head 9 and a laser beam 8; FIG. 3B is a cross-sectional view illustrating a recording state of the magnetic disk after writing.

【図3】(a)は強磁性体とフェリ磁性体の磁化の温度
変化を示す模式図、(b)は磁気ディスクの記録状態を
示す断面図、(c)は書き込み時の磁気ディスクの記録
状態の変化を示す断面図。
3A is a schematic diagram showing a temperature change of magnetization of a ferromagnetic material and a ferrimagnetic material, FIG. 3B is a cross-sectional view showing a recording state of a magnetic disk, and FIG. Sectional drawing which shows a change of a state.

【図4】本発明の実施例の磁気ディスクを示す断面図。FIG. 4 is a sectional view showing a magnetic disk according to an embodiment of the present invention.

【図5】本発明の記録装置の概要の実施例を示す断面
図。
FIG. 5 is a sectional view showing an embodiment of the outline of the recording apparatus of the present invention.

【図6】本発明の磁気記録装置の他の実施例のヘッド部
分を示す断面図。
FIG. 6 is a sectional view showing a head portion of another embodiment of the magnetic recording apparatus of the present invention.

【図7】本発明の磁気記録装置の他の実施例のヘッド部
分を示す断面図。
FIG. 7 is a sectional view showing a head portion of another embodiment of the magnetic recording apparatus of the present invention.

【図8】本発明の磁気記録装置の他の実施例のヘッド部
分を示す断面図。
FIG. 8 is a sectional view showing a head portion of another embodiment of the magnetic recording apparatus of the present invention.

【図9】(a)は本発明の磁気ディスクのの他の実施例
を示す断面図、(b)は書き込み時の磁気ディスクの記
録状態の変化を示す断面図、(c)は磁気ディスクの記
録状態を示す断面図。
9A is a cross-sectional view illustrating another embodiment of the magnetic disk of the present invention, FIG. 9B is a cross-sectional view illustrating a change in the recording state of the magnetic disk during writing, and FIG. Sectional drawing which shows a recording state.

【図10】本発明の他の実施例の磁気ディスクを示す断
面図。
FIG. 10 is a sectional view showing a magnetic disk according to another embodiment of the present invention.

【図11】本発明の他の実施例の磁気ディスクを示す断
面図。
FIG. 11 is a sectional view showing a magnetic disk according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,100,900:強磁性体膜、2,200:反強磁
性体膜、3,300:基板、4:保護膜、5:磁化、
6:磁気モーメント、7:界面、8:レーザー光線、
9:磁気ヘッド、10:磁化曲線、11:磁化曲線、1
2:フェリ磁性体膜、13:磁気モーメント、14:磁
気モーメント、15:ガラス基板、16:NiO、1
7:CoTaZr、18:磁気ディスク、19:磁気ヘ
ッド部、20:スライダー、21:磁気ヘッド用アー
ム、22:駆動系、23:半導体レーザーヘッド、2
4:半導体レーザーヘッド用アーム、25:レーザー光
線、26:基板、27:媒体部、28:半導体レーザ
ー、29:ミラー、30:レンズ、31:ハウジング、
32:アーム、33:レーザー光線、34:ポールピー
ス、35:コイル、36:磁場検出部、37:磁気シー
ルド、38:磁気ヘッド保持部、39:光ファイバー、
40:高抵抗体薄膜、41:強磁性体、42:反強磁性
体、43:界面、44:強磁性体、45:反強磁性体、
46:基板、47:非磁性体、48:フェリ磁性体、5
0:磁気ディスク、800:非磁性体膜。
1,100,900: ferromagnetic film, 2,200: antiferromagnetic film, 3,300: substrate, 4: protective film, 5: magnetization,
6: magnetic moment, 7: interface, 8: laser beam,
9: magnetic head, 10: magnetization curve, 11: magnetization curve, 1
2: ferrimagnetic film, 13: magnetic moment, 14: magnetic moment, 15: glass substrate, 16: NiO, 1
7: CoTaZr, 18: magnetic disk, 19: magnetic head, 20: slider, 21: arm for magnetic head, 22: drive system, 23: semiconductor laser head, 2
4: arm for semiconductor laser head, 25: laser beam, 26: substrate, 27: medium, 28: semiconductor laser, 29: mirror, 30: lens, 31: housing,
32: arm, 33: laser beam, 34: pole piece, 35: coil, 36: magnetic field detector, 37: magnetic shield, 38: magnetic head holder, 39: optical fiber,
40: high-resistance thin film, 41: ferromagnetic, 42: antiferromagnetic, 43: interface, 44: ferromagnetic, 45: antiferromagnetic,
46: substrate, 47: non-magnetic material, 48: ferrimagnetic material, 5
0: magnetic disk, 800: non-magnetic film.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板、下地層、磁性層、保護膜からなる磁
気ディスクにおいて、磁性層として強磁性体と反強磁性
体をそれぞれ1層以上使用した多層膜、あるいは強磁性
体とフェリ磁性体をそれぞれ1層以上使用した多層膜と
することを特徴とする磁気ディスク。
1. A magnetic disk comprising a substrate, an underlayer, a magnetic layer, and a protective film, a multilayer film using at least one ferromagnetic material and an antiferromagnetic material as a magnetic layer, or a ferromagnetic material and a ferrimagnetic material. A multi-layer film using at least one layer of each of the following.
【請求項2】室温以上の磁気転移温度を持つ反強磁性体
あるいはフェリ磁性体の平均結晶粒径を10nm以下とす
る請求項1記載の磁気ディスク。
2. The magnetic disk according to claim 1, wherein the average crystal grain size of the antiferromagnetic material or ferrimagnetic material having a magnetic transition temperature of room temperature or higher is 10 nm or less.
【請求項3】強磁性体をアレイ状に基板上に配置した請
求項1または2記載の磁気ディスク。
3. The magnetic disk according to claim 1, wherein the ferromagnetic materials are arranged on the substrate in an array.
【請求項4】情報を磁気的に記録する磁性層を持った磁
気ディスクと、その駆動手段と、磁性層に情報を記録す
る記録用磁気ヘッドと、再生時 磁性層 からの漏れ磁場
を検出する再生用磁気ヘッドと、記録・再生用磁気ヘッ
ドを保持する手段と、ヘッドを保持する手段を駆動する
手段から構成される磁気記録装置において、前記磁気デ
ィスクは基板、下地層、磁性層、保護膜からなる磁気デ
ィスクにおいて、磁性層として強磁性体と反強磁性体を
それぞれ1層以上使用した多層膜、あるいは強磁性体と
フェリ磁性体をそれぞれ1層以上使用した多層膜である
ことを特徴とする磁気記録装置。
4. A magnetic disk having a magnetic layer for magnetically recording information, driving means for the magnetic disk, a recording magnetic head for recording information on the magnetic layer, and detecting a leakage magnetic field from the magnetic layer during reproduction. In a magnetic recording apparatus including a reproducing magnetic head, a unit for holding a recording / reproducing magnetic head, and a unit for driving a unit for holding the head, the magnetic disk includes a substrate, an underlayer, a magnetic layer, and a protective film. A magnetic layer comprising a ferromagnetic material and at least one ferromagnetic material as a magnetic layer, or a multi-layer film using at least one ferromagnetic material and a ferrimagnetic material as a magnetic layer. Magnetic recording device.
【請求項5】前記磁気ディスクが室温以上の磁気転移温
度を持つ反強磁性体あるいはフェリ磁性体の平均結晶粒
径を10nm以下とした請求項4記載の磁気記録装置。
5. The magnetic recording apparatus according to claim 4, wherein the magnetic disk has an average crystal grain size of an antiferromagnetic material or a ferrimagnetic material having a magnetic transition temperature equal to or higher than room temperature of 10 nm or less.
【請求項6】前記磁気ディスクの強磁性体をアレイ状に
基板上に配置した請求項4または5記載の磁気記録装
置。
6. The magnetic recording apparatus according to claim 4, wherein the ferromagnetic materials of the magnetic disk are arranged on a substrate in an array.
【請求項7】磁性層を局所的に加熱する手段が付加され
た請求項4ないし6のいずれかに記載の磁気記録装置。
7. The magnetic recording apparatus according to claim 4, further comprising means for locally heating the magnetic layer.
【請求項8】磁性層としてキュリー温度Tcの強磁性体と
Tc以下のネール温度TNを持つ反強磁性体を使用し、記録
時、ビット近傍をTN付近、あるいはそれ以上に加熱する
請求項7記載の磁気記録装置。
8. A ferromagnetic material having a Curie temperature Tc as a magnetic layer.
8. The magnetic recording apparatus according to claim 7, wherein an antiferromagnetic material having a Neel temperature TN equal to or lower than Tc is used, and during recording, the bit vicinity is heated to near TN or higher.
【請求項9】磁性層としてキュリー温度Tc1の強磁性体
とTc1以下のキュリー温度Tc2を持つフェリ磁性体を使用
し、記録時、磁性層をTc2近傍に加熱し、再生時、記録
層を加熱しない、あるいはフェリ磁性体の補償温度以上
Tc2以下に加熱する請求項7記載の磁気記録装置。
9. Using the ferrimagnetic material having ferromagnetic and T c1 below the Curie temperature T c2 of the Curie temperature T c1 as a magnetic layer, and heating time of recording, a magnetic layer in the vicinity of T c2, during reproduction, Do not heat the recording layer or exceed the compensation temperature of the ferrimagnetic material
The magnetic recording apparatus according to claim 7, wherein the magnetic recording apparatus is heated to Tc2 or less.
【請求項10】磁性層を局所的に加熱する手段として半
導体レーザーを備えた請求項7記載の磁気記録装置。
10. The magnetic recording apparatus according to claim 7, wherein a semiconductor laser is provided as means for locally heating the magnetic layer.
【請求項11】磁性層を局所的に加熱する手段として高
抵抗体の通電加熱手段を備えた請求項7記載の磁気記録
装置。
11. The magnetic recording apparatus according to claim 7, further comprising a high-resistance current-carrying means as a means for locally heating the magnetic layer.
JP9934397A 1997-04-16 1997-04-16 Magnetic disk and magnetic recordor using the magnetic disk Pending JPH10289434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9934397A JPH10289434A (en) 1997-04-16 1997-04-16 Magnetic disk and magnetic recordor using the magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9934397A JPH10289434A (en) 1997-04-16 1997-04-16 Magnetic disk and magnetic recordor using the magnetic disk

Publications (1)

Publication Number Publication Date
JPH10289434A true JPH10289434A (en) 1998-10-27

Family

ID=14244979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9934397A Pending JPH10289434A (en) 1997-04-16 1997-04-16 Magnetic disk and magnetic recordor using the magnetic disk

Country Status (1)

Country Link
JP (1) JPH10289434A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200411A (en) * 1998-11-05 2000-07-18 Hitachi Maxell Ltd Magnetic recording medium, recording and reproducing head and magnetic recording and reproducing method
EP1037198A2 (en) * 1999-03-15 2000-09-20 Kabushiki Kaisha Toshiba Magnetic recording apparatus and method of magnetic recording
WO2002095739A1 (en) * 2001-05-23 2002-11-28 Fujitsu Limited Vertical recording type magnetic recording medilim and magnetic memory device using the medium
US6534203B2 (en) * 1998-04-02 2003-03-18 Sony Corporation Magnetic recording medium
US6602612B2 (en) 1999-06-08 2003-08-05 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6645646B1 (en) 1999-06-08 2003-11-11 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6689495B1 (en) 1999-06-08 2004-02-10 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6743528B2 (en) 1998-03-20 2004-06-01 Komag, Inc. Magnetic recording medium
US6753101B1 (en) 1999-06-08 2004-06-22 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus, recording method and method of producing magnetic recording medium
US6754020B1 (en) * 1999-09-02 2004-06-22 Kabushiki Kaisha Toshiba Magnetic recording media and magnetic recording/reproduction apparatuses
US6821652B1 (en) 1999-06-08 2004-11-23 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6830824B2 (en) 2000-06-12 2004-12-14 Kabushiki Kaisha Toshiba Magnetic recording medium with multiple magnetic layers capable of being exchange coupled at elevated temperatures and magnetic recording apparatus
US6893746B1 (en) 1999-10-29 2005-05-17 Hitachi Maxell, Ltd. Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
JP2008210447A (en) * 2007-02-26 2008-09-11 Fujitsu Ltd Perpendicular magnetic recording medium, magnetic storage device, and magnetic recording method
US7556870B2 (en) 2005-08-15 2009-07-07 Hitachi Global Storage Technologies Netherlands B.V. Antiferromagnetically coupled media for magnetic recording with weak coupling layer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743528B2 (en) 1998-03-20 2004-06-01 Komag, Inc. Magnetic recording medium
US7166374B2 (en) 1998-03-20 2007-01-23 Komag, Inc. Magnetic recording medium
US6534203B2 (en) * 1998-04-02 2003-03-18 Sony Corporation Magnetic recording medium
JP2000200411A (en) * 1998-11-05 2000-07-18 Hitachi Maxell Ltd Magnetic recording medium, recording and reproducing head and magnetic recording and reproducing method
EP1037198A3 (en) * 1999-03-15 2002-04-10 Kabushiki Kaisha Toshiba Magnetic recording apparatus and method of magnetic recording
US6493164B1 (en) 1999-03-15 2002-12-10 Kabushiki Kaisha Toshiba Magnetic recording apparatus and method of magnetic recording
EP1037198A2 (en) * 1999-03-15 2000-09-20 Kabushiki Kaisha Toshiba Magnetic recording apparatus and method of magnetic recording
US6645646B1 (en) 1999-06-08 2003-11-11 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6689495B1 (en) 1999-06-08 2004-02-10 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6602612B2 (en) 1999-06-08 2003-08-05 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6753101B1 (en) 1999-06-08 2004-06-22 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus, recording method and method of producing magnetic recording medium
US6821652B1 (en) 1999-06-08 2004-11-23 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6754020B1 (en) * 1999-09-02 2004-06-22 Kabushiki Kaisha Toshiba Magnetic recording media and magnetic recording/reproduction apparatuses
US6893746B1 (en) 1999-10-29 2005-05-17 Hitachi Maxell, Ltd. Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
US6830824B2 (en) 2000-06-12 2004-12-14 Kabushiki Kaisha Toshiba Magnetic recording medium with multiple magnetic layers capable of being exchange coupled at elevated temperatures and magnetic recording apparatus
WO2002095739A1 (en) * 2001-05-23 2002-11-28 Fujitsu Limited Vertical recording type magnetic recording medilim and magnetic memory device using the medium
KR100757816B1 (en) 2001-05-23 2007-09-11 후지쯔 가부시끼가이샤 Vertical recording type magnetic recording medium and magnetic memory device using the medium
US7295404B2 (en) 2001-05-23 2007-11-13 Fujitsu Limited Magnetic recording medium for perpendicular recording and magnetic storage apparatus using the same
US7525762B2 (en) 2001-05-23 2009-04-28 Fujitsu Limted Magnetic recording medium for perpendicular recording
US7556870B2 (en) 2005-08-15 2009-07-07 Hitachi Global Storage Technologies Netherlands B.V. Antiferromagnetically coupled media for magnetic recording with weak coupling layer
JP2008210447A (en) * 2007-02-26 2008-09-11 Fujitsu Ltd Perpendicular magnetic recording medium, magnetic storage device, and magnetic recording method
JP4711984B2 (en) * 2007-02-26 2011-06-29 昭和電工株式会社 Perpendicular magnetic recording medium, magnetic storage device, and magnetic recording method

Similar Documents

Publication Publication Date Title
JP4800896B2 (en) Magnetic sensor element and manufacturing method thereof, magnetic head, magnetic reproducing apparatus, and magnetic reproducing method
Tsunashima Magneto-optical recording
US6834026B2 (en) Method for thermally-assisted recording on a magnetic recording disk
US6818330B2 (en) Perpendicular recording medium with antiferromagnetic exchange coupling in soft magnetic underlayers
US8089829B2 (en) Thermally assisted recording media and system
JP4842940B2 (en) Multi-state (MULTI-STATE) magnetic memory and logic device based on exchange bias (EXCHANGE-BIAS), and magnetically stable magnetic storage
US6650598B2 (en) Magnetic head having magnetoresistance device and recording/reproducing apparatus incorporating the same
US20140085753A1 (en) Spin-torque oscillator for microwave assisted magnetic recording
JPH01248578A (en) Magnetoresistance converter element and its manufacture
JPH10289434A (en) Magnetic disk and magnetic recordor using the magnetic disk
US5726838A (en) Magnetic disc apparatus with head having magneto-resistance effect
US9922674B2 (en) Magnetic recording and reproducing device and magnetic recording and reproducing method
JPH028364B2 (en)
US7110327B2 (en) Magneto-optical recording and reproducing method, using reproducing layer with high saturation magnetization
US20060062132A1 (en) Thermally-assisted recording medium with a storage layer of antiferromagnetic double-layer structure with anti-parallel orientation of magnetization
JP2002074647A (en) Magnetic recording medium and magnetic recording apparatus using the same
JPWO2002027713A1 (en) Information recording medium, information recording device and recording method
KR20050008492A (en) Magnetic recording disk drive with laminated media and improved media signal-to-noise ratio
KR100625706B1 (en) Magnetic recording medium and magnetic recording method
WO1999052101A1 (en) Magnetic recording medium and method of recording
JP2000200411A (en) Magnetic recording medium, recording and reproducing head and magnetic recording and reproducing method
US20050243705A1 (en) Magneto-optical recording medium with anti-ferromagnetically couple domain-expansion double-layer structure
JPH10334443A (en) Vertical magnetic recording medium and recording and reproducing device
JP2004531845A (en) Antiferromagnetic layer system and method for magnetic data storage in this type of antiferromagnetic layer system
JP2002298325A (en) Magnetic recording medium and magnetic recorder having the same