JPH10284051A - Electrode used for nonaqueous secondary battery and manufacture thereof - Google Patents

Electrode used for nonaqueous secondary battery and manufacture thereof

Info

Publication number
JPH10284051A
JPH10284051A JP9090477A JP9047797A JPH10284051A JP H10284051 A JPH10284051 A JP H10284051A JP 9090477 A JP9090477 A JP 9090477A JP 9047797 A JP9047797 A JP 9047797A JP H10284051 A JPH10284051 A JP H10284051A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
thermoplastic binder
active material
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9090477A
Other languages
Japanese (ja)
Inventor
Yujiro Yamamoto
裕二郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9090477A priority Critical patent/JPH10284051A/en
Publication of JPH10284051A publication Critical patent/JPH10284051A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode capable of recycling and increasing capacity by heating, compressing, molding a mixture of an electrode active material and a thermoplastic binder in a mold heated at a temperature or higher of melting or softening of the thermoplastic binder in the electrode. SOLUTION: Lithium cobaltate of an electrode active material and the equal weight mixture of graphite fine powder and acetylene black of a conductive auxiliary material are mixed in the ratio of 100 pts.wt. to 5 pts.wt. to prepare an electrode compound. 16 pts.wt. polyvinylidene fluoride powder serving as a thermoplastic binder and 24 pts.wt. dibutyl phthalate are added to 100 pts.wt. electrode compound to prepare an electrode mixture. The electrode mixture is put in a mold heated at 200 deg.C, and heated, compressed, and molded to form a sheet-shaped electrode, then the electrode is immersed in methylene chloride to extract the dibutyl phthalate. Then the electrode is passed through a roll press to increase the bulk density, and the electrode is cut in a suitable size for use.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池用
電極及びその製法に関する。
TECHNICAL FIELD The present invention relates to an electrode for a non-aqueous secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】近年、パーソナルコンピューター、電
話、ビデオカメラ、音響機器などの電子機器の携帯化要
求に対し、それらの小型化、軽量化がめざましく、機器
本体の小型軽量化を実現するためにその電源となる電池
に対する小型化、軽量化の要求が非常に大きく、また電
池の容量の大容量化も望まれている。
2. Description of the Related Art In recent years, in response to the demand for portable electronic devices such as personal computers, telephones, video cameras, and audio equipment, the size and weight of these electronic devices have been remarkably reduced. There is a great demand for miniaturization and weight reduction of a battery serving as a power supply, and it is also desired to increase the capacity of the battery.

【0003】かかる小型、軽量、大容量化を満たす電池
は、従来の水系電解液を用いる電池では不可能なことか
ら、非水系電池が注目されている。非水系電池は、小型
軽量化、大容量化という点で優れた性能を有している。
また、近年、資源の有効利用と廃棄物による環境汚染の
問題があり、使い捨ての一次電池より再充電可能な二次
電池が注目されており、高性能化の要望が強い。なかで
もリチウムイオン二次電池は小型、軽量、大容量のもの
として多くの電子機器に採用されはじめ、その市場拡大
のスピードは驚くべきものががある。
[0003] Non-aqueous batteries have attracted attention because batteries that satisfy such small size, light weight, and large capacity cannot be achieved with conventional batteries using aqueous electrolytes. Non-aqueous batteries have excellent performance in terms of reduction in size and weight and increase in capacity.
Further, in recent years, there has been a problem of effective use of resources and environmental pollution due to waste, and a secondary battery that can be recharged rather than a disposable primary battery has attracted attention, and there is a strong demand for higher performance. Above all, lithium-ion secondary batteries have begun to be used in many electronic devices as small, lightweight and large-capacity batteries, and the speed of their market expansion has been surprising.

【0004】なお、電池には、集電体、セパレータなど
の電極以外の要素が用いられているので、電極を厚くし
た場合、集電体やセパレータが電極の厚みに占める比率
が小さくなり、結局は電池の容量を上げることになるの
で、高容量化するため電極を厚くする要望が強い。この
ような二次電池は、従来、電極活物質とポリテトラフル
オロエチレン粉末やポリエチレン粉末などの熱可塑性バ
インダーとを混合し、圧縮することによって得られた電
極を用いていた。
[0004] Since elements other than the electrodes, such as the current collector and the separator, are used in the battery, when the electrode is made thicker, the ratio of the current collector or the separator to the thickness of the electrode becomes smaller, and eventually the electrode becomes thicker. Since the capacity of the battery increases, there is a strong demand for increasing the thickness of the electrode in order to increase the capacity. Conventionally, such a secondary battery uses an electrode obtained by mixing and compressing an electrode active material and a thermoplastic binder such as a polytetrafluoroethylene powder or a polyethylene powder.

【0005】上記の電極活物質と熱可塑性バインダーと
を混合して圧縮成形する電極の製法は、乾燥が不必要と
いう利点があった。また、デイスパージョンを使う製法
は、分散媒体として水を用いているが、乾燥の際の排気
ガスによる環境汚染の心配がないという利点があった。
しかしながら、上記の利点の反面、ポリテトラフルオロ
エチレンを用いて圧縮成形する方法は、ポリテトラフル
オロエチレンがフィブリル化することにより活物質粒子
をつなぎ止めるため、圧縮による圧力で活物質とポリテ
トラフルオロエチレンとが強固に絡み合い、一体化して
しまい、工程途中で不良品が発生した場合に、成形した
不良品を再利用することは不可能であった。
[0005] The above-mentioned method for producing an electrode by compression molding by mixing an electrode active material and a thermoplastic binder has the advantage that drying is unnecessary. In addition, the production method using the dispersion uses water as a dispersion medium, but has the advantage that there is no concern about environmental pollution due to exhaust gas during drying.
However, on the other hand, the method of compression molding using polytetrafluoroethylene, on the other hand, uses polytetrafluoroethylene to fibrillate the active material particles, so that the active material and the polytetrafluoroethylene are compressed by pressure. Are strongly entangled and integrated, and when a defective product is generated during the process, it is impossible to reuse the molded defective product.

【0006】また、電極活物質と熱可塑性バインダーと
を混合して圧縮成形する電極の製法は、電極を大面積
化、厚膜化することが極めて困難であり、電池を大容量
化することができなかった。また、二次電池に用いられ
る電極の製法には、ポリフッ化ビニリデンや、フッ化ビ
ニリデンとヘキサフルオロプロピレンの共重合体やフッ
素ゴムを溶剤に溶解し、電極活物質が分散したスラリー
を調整し、塗工乾燥する製法もある。この製法は、一般
的には分散溶剤として有機溶剤が用いられるため、作業
環境を確保するため電極製造設備への投資が大きくコス
トアップにつながっていた。また、有機溶剤としてはN
メチルピロリドンが広く用いられているが、該溶剤は焼
却により窒素酸化物を発生するため、一般には水などを
介して回収されているが、回収のためのコストアップが
避けられないという問題があった。
Further, in the method of producing an electrode by compression molding by mixing an electrode active material and a thermoplastic binder, it is extremely difficult to increase the area and the thickness of the electrode, and it is difficult to increase the capacity of the battery. could not. In addition, in the method of manufacturing an electrode used in a secondary battery, polyvinylidene fluoride or a copolymer of vinylidene fluoride and hexafluoropropylene or a fluororubber is dissolved in a solvent, and a slurry in which an electrode active material is dispersed is prepared. There is also a manufacturing method of coating and drying. In this production method, an organic solvent is generally used as a dispersing solvent, so that investment in electrode manufacturing equipment has been greatly increased in order to secure a working environment, which has led to an increase in cost. Further, as the organic solvent, N
Methylpyrrolidone is widely used, but since the solvent generates nitrogen oxides by incineration, it is generally recovered via water or the like, but there is a problem that the cost for recovery cannot be avoided. Was.

【0007】また、二次電池に用いられる電極の製法に
は、有機溶剤を使わずにスチレン/ブタジエンゴム等の
水系乳化分散液に電極活物質を分散してスラリーを調整
し、塗工乾燥する製法もある。水系乳化分散液は、作業
環境面の懸念はなく、回収の必要はないものの、乾燥不
十分等の原因による電極からの水分の解離により電池性
能が劣化するのを防止するため、品質管理面でかなりの
工数を割かざるを得ないという問題があった。
[0007] In a method of manufacturing an electrode used in a secondary battery, an electrode active material is dispersed in an aqueous emulsified dispersion such as styrene / butadiene rubber without using an organic solvent to prepare a slurry, and the slurry is coated and dried. There is also a manufacturing method. The aqueous emulsified dispersion has no concern about the working environment and does not need to be collected.However, in order to prevent the battery performance from deteriorating due to the dissociation of water from the electrode due to insufficient drying, etc. There was a problem that considerable man-hours had to be allocated.

【0008】また、水系、有機系を問わず、塗工乾燥す
る製造法は、電極を厚膜化した場合、乾燥時に電極表面
にクラックが入ったり、電極表面と裏面とでのバインダ
ー分布を均一化することが困難で、リチウムイオン二次
電池で言えば、せいぜい200μmの膜厚が限界であっ
た。さらに塗工乾燥する製法は、周辺の塗工エッジに塗
工斑が発生するため、耳落としと呼ばれる工程でスリッ
トされ除去されていた。また、有機系水系を問わず、い
ったん塗工乾燥された電極は、電極活物質とバインダー
が強固に結合しており仮に再度溶剤を加えて再分散した
としても新たな材料から調合した分散体と同じものを得
ることができないため、塗工開始直後の電極、不良品な
どは製品とならず廃棄物となっていた。
Further, regardless of the aqueous or organic type, the method of coating and drying is such that when the electrode is thickened, cracks are formed on the electrode surface during drying, and the binder distribution between the electrode surface and the back surface is uniform. It is difficult to form the film, and in the case of a lithium ion secondary battery, a film thickness of at most 200 μm is the limit. Further, in the manufacturing method of coating and drying, since coating unevenness occurs on the surrounding coating edge, it is slit and removed in a process called ear dropping. In addition, regardless of the organic water system, once coated and dried, the electrode active material and the binder are firmly bound, and even if the solvent is added again and redispersed, a dispersion prepared from a new material is used. Since the same product cannot be obtained, electrodes, defective products, etc. immediately after the start of coating were not products but wastes.

【0009】なお、上記のような塗工乾燥で得られた電
極は、異形な電極を切り出した場合、切り出しによるロ
スが多く、前述の通り、再利用ができないため、事実
上、電極形状としては方形のものでしか実用性がなかっ
た。また、非水系二次電池のなかで固体電解質を用いた
電池は、形状の自由度、薄型化の観点から注目されてい
る。形状の自由度を確保するために固体電解質電池で
は、目的形状に成形された電極を積層した形で電池を形
成することが多い。
[0009] The electrode obtained by coating and drying as described above has a large loss due to cutting out an odd-shaped electrode, and as described above, cannot be reused. It was practical only with a square one. Also, among non-aqueous secondary batteries, batteries using a solid electrolyte have attracted attention from the viewpoint of flexibility in shape and reduction in thickness. In order to secure a degree of freedom in shape, a solid electrolyte battery is often formed by laminating electrodes formed into a desired shape.

【0010】また、固体電解質を用いた電池は、電池内
に電解液が実質的に存在しないため、不慮の事故の場合
も漏液しないメリットがある電池としての期待されてい
る。しかし、圧縮成形や水系乳化分散液を用いて塗工乾
燥する製法で得られる電極は、電極中に40%程度の空
間を有しており、少量であるがその空間中に電解液が存
在しており、完全な固体電池とするには電極中のバイン
ダーなどに電解液を担持させるといった方法が考えられ
ているが、この場合通常よりもバインダーを増量する必
要がある。例えば、現在、バインダーとしてポリフッ化
ビニリデンを用いた場合、電極活物質100重量部に対
してバインダー量としてはせいぜい10重量部が添加さ
れているにすぎないが、これを増量した場合、スラリー
の粘度が著しく上昇し実質的に塗工できないものとなっ
たり、またスチレン/ブタジエンゴムのような水系乳化
分散液を用いる場合は、乳化分散液中のバインダー濃度
が低いため、電極活物質を分散したときにスラリー中の
固形分率が著しく低くなりスラリー粘度が著しく低下
し、塗工できなかったり、電極活物質の沈降によりスラ
リーのポットライフが著しく短くなり実用に供しないも
のとなっていたためバインダーの増量は極めて困難な課
題であった。
[0010] A battery using a solid electrolyte is expected to be a battery that has an advantage that it does not leak even in the case of an accident due to the fact that the electrolyte does not substantially exist in the battery. However, an electrode obtained by compression molding or a method of coating and drying using an aqueous emulsified dispersion has a space of about 40% in the electrode, and although a small amount, the electrolyte exists in the space. In order to obtain a complete solid-state battery, a method of supporting an electrolyte on a binder or the like in an electrode has been considered. In this case, however, it is necessary to increase the amount of the binder more than usual. For example, at present, when polyvinylidene fluoride is used as a binder, at most 10 parts by weight of a binder is added to 100 parts by weight of an electrode active material, but when the amount is increased, the viscosity of a slurry is increased. When an aqueous emulsified dispersion such as styrene / butadiene rubber is used, the binder concentration in the emulsified dispersion is low. In addition, the solid content in the slurry was significantly reduced, the slurry viscosity was significantly reduced, the coating could not be performed, and the pot life of the slurry was remarkably shortened due to the sedimentation of the electrode active material. Was a very difficult task.

【0011】前述の通り、非水系二次電池に用いられる
電極は、電池の小型化、軽量化、大容量化のため鋭意改
良されてきているが、更なる改良が望まれている。
As described above, the electrodes used in non-aqueous secondary batteries have been intensively improved in order to reduce the size, weight, and capacity of the batteries, but further improvements are desired.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、非水
系二次電池に用いられる電極が、高容量化のための厚膜
化が困難である、リサイクルが困難である、有機溶剤使
用と乾燥工程による排気設備と排気ガスの処理設備が必
須である、電池を搭載する電子機器の形状に合わせた異
形電極を作る場合にロスが極めて多い、電極中のバイン
ダー量を任意にコントロールすることができない、など
の問題点を解決することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrode for use in a non-aqueous secondary battery, in which it is difficult to increase the film thickness for increasing the capacity, to recycle, and to use an organic solvent. Exhaust equipment and exhaust gas treatment equipment for the drying process are indispensable.The loss is extremely large when making a deformed electrode that matches the shape of the electronic equipment on which the battery is mounted.The amount of binder in the electrode can be arbitrarily controlled It is to solve problems such as not being able to.

【0013】[0013]

【課題を解決するための手段】すなわち、本発明の一つ
は、非水系二次電池に用いられる電極において、該電極
が電極活物質と熱可塑性バインダーとからなる混合物で
あり、上記熱可塑性バインダーの溶融又は軟化状態の温
度以上の温度に加熱された金型内で加熱圧縮成形されて
なるものであることを特徴とする非水系二次電池に用い
られる電極、であり、本発明のもう一つの発明は、非水
系二次電池に用いられる電極の製法において、電極活物
質と熱可塑性バインダーとを混合物とし、ついで該混合
物を上記熱可塑性バインダーの溶融又は軟化状態の温度
以上の温度に加熱された金型内で加熱圧縮成形すること
を特徴とする非水系二次電池に用いられる電極の製法、
である。
That is, one aspect of the present invention is an electrode used for a non-aqueous secondary battery, wherein the electrode is a mixture comprising an electrode active material and a thermoplastic binder. An electrode used in a non-aqueous secondary battery, characterized in that the electrode is formed by heating and compression molding in a mold heated to a temperature not lower than the temperature of the molten or softened state of the present invention. One invention is a method of manufacturing an electrode used for a non-aqueous secondary battery, wherein a mixture of an electrode active material and a thermoplastic binder is formed, and then the mixture is heated to a temperature equal to or higher than the melting or softening state of the thermoplastic binder. Manufacturing method of electrodes used for non-aqueous secondary batteries, characterized in that they are heated and compression molded in a mold,
It is.

【0014】本発明における非水系二次電池とは、電池
を構成する材料として水を用いない電池をいい、一例を
示せば、エーテル類、ラクトン類、塩素化炭化水素類、
エステル類、カーボネート類などの有機溶剤にLiCl
4 、LiBF4 、LiAsF 6、CF3 SO3 Li、
LiAlCl4 、LiPF 6、NaClO 4、NaBF
4 、NaPF6 等の電解質を溶解したもの電解液として
用いた電池、該電解液を高分子材料からなるシート、発
泡体、微多孔膜などに含浸したゲル状の固体電解質を用
いた電池、およびエチレングリコールジアクリレート、
トリメチロールプロパンエトキシル化アクリレートなど
の光架橋性モノマーと前記電解液との混合物に電子照射
することによって得られる固体電解質などを用いた電池
などが挙げられる。
The non-aqueous secondary battery in the present invention refers to a battery that does not use water as a material constituting the battery. For example, ethers, lactones, chlorinated hydrocarbons,
LiCl for organic solvents such as esters and carbonates
O 4 , LiBF 4 , LiAsF 6 , CF 3 SO 3 Li,
LiAlCl 4 , LiPF 6 , NaClO 4 , NaBF
4, NaPF cell was used as an electrolytic solution obtained by dissolving an electrolyte such as 6, sheets an electrolyte solution made of a polymeric material, a foam, a battery using a gel-like solid electrolyte impregnated like microporous membrane, and Ethylene glycol diacrylate,
Examples include a battery using a solid electrolyte obtained by irradiating a mixture of a photo-crosslinkable monomer such as trimethylolpropane ethoxylated acrylate and the above-mentioned electrolyte with electrons.

【0015】本発明の製法は、特に、リチウムイオン二
次電池の製造に好適である。本発明の製法に用いる電極
活物質は、特に限定されるものではないが、一例を示せ
ば、V2 5 、Li(1-x) CoO2 、Li(1-x) NiO
2 、Li(1-x) FeO2 、 Li(1-x) Mn2 4 、L
(1-x) CoyNi(1-y) 2 等の無機化合物、あるい
はこれらの無機化合物にAl、In、Sn等の元素を微
量添加したもの、フッ化カーボン、黒鉛、炭素繊維、炭
素繊維の粉砕物、易黒鉛化性コークス、難黒鉛化性コー
クス、カーボンブラック、アセチレンブラック等の炭素
材料、ポリアセチレン、ポリーpーフェニレン等の導電
性高分子材料などが挙げられる。
The manufacturing method of the present invention is particularly suitable for manufacturing a lithium ion secondary battery. The electrode active material used in the production method of the present invention is not particularly limited. For example, V 2 O 5 , Li (1-x) CoO 2 , Li (1-x) NiO
2 , Li (1-x) FeO 2 , Li (1-x) Mn 2 O 4 , L
i (1-x) CoyNi (1-y) O 2 or other inorganic compounds, or those obtained by adding a small amount of elements such as Al, In and Sn to these inorganic compounds, carbon fluoride, graphite, carbon fiber, carbon fiber Pulverized product, easily graphitizable coke, non-graphitizable coke, carbon materials such as carbon black and acetylene black, and conductive polymer materials such as polyacetylene and poly-p-phenylene.

【0016】リチウムイオン二次電池用電極は、Li
(1-x) CoO2 、Li(1-x) NiO2、Li(1-x) Mn
2 4 、Li(1-x) CoyNi(1-y) 2 等の無機化合
物、あるいはこれらの無機化合物にAl、In、Sn等
の元素を微量添加したものを正極の電極活物質とし、黒
鉛、炭素繊維、炭素繊維の粉砕物、易黒鉛化性コーク
ス、難黒鉛化性コークス、カーボンブラック、アセチレ
ンブラック等の炭素材料を負極の電極活物質とすること
が好ましい。
The electrode for a lithium ion secondary battery is Li
(1-x) CoO 2 , Li (1-x) NiO 2 , Li (1-x) Mn
Inorganic compounds such as 2 O 4 , Li (1-x) CoyNi (1-y) O 2 , or those obtained by adding a trace amount of elements such as Al, In, and Sn to these inorganic compounds, as an electrode active material of the positive electrode, It is preferable to use a carbon material such as graphite, carbon fiber, pulverized carbon fiber, easily graphitizable coke, hardly graphitizable coke, carbon black, and acetylene black as the electrode active material of the negative electrode.

【0017】特に好ましくは、正極の電極活物質として
はLi(1-x) CoO2 、Li(1-x)NiO2 、LiMn
2 4 、LiCoyNi(1-y) 2 等、負極の電極活物
質としては黒鉛、炭素繊維の粉砕物、易黒鉛化性コーク
ス、難黒鉛化性コークス等である。本発明の製法に用い
る電極活物質には、導電性助剤として黒鉛微粉、アセチ
レンブラックを用いることがが好ましい。
Particularly preferably, as the positive electrode active material, Li (1-x) CoO 2 , Li (1-x) NiO 2 , LiMn
Examples of the negative electrode active material such as 2 O 4 and LiCoyNi (1-y) O 2 include graphite, pulverized carbon fiber, easily graphitizable coke, and non-graphitizable coke. As the electrode active material used in the production method of the present invention, it is preferable to use graphite fine powder and acetylene black as conductive assistants.

【0018】本発明の製法に用いる熱可塑性バインダー
は、ポリフッ化ビニル、ポリフッ化ビニリデン、フッ化
ビニリデン−ヘキサフルオロプロピレン共重合体、フッ
化ビニリデン−トリクロロフルオロエチレン共重合体等
のフッ素系高分子材料、ポリエチレン、ポリプロピレ
ン、ポリスチレン、ポリ塩化ビニル、ポリビニルブチラ
ールなどの汎用樹脂材料、スチレンブタジエン共重合
体、フッ化ビニリデン−ヘキサフルオロプロピレン−テ
トラフルオロエチレン共重合体等のゴム弾性を示す樹脂
材料などが挙げられるが、好ましくは、ポリフッ化ビニ
リデン、フッ化ビニリデン−ヘキサフルオロプロピレン
共重合体、フッ化ビニリデン−トリクロロフルオロエチ
レン共重合体といったフッ化ビニリデンを主体とするフ
ッ素系高分子材料である。
The thermoplastic binder used in the production method of the present invention is a fluorine-based polymer material such as polyvinyl fluoride, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride-trichlorofluoroethylene copolymer. General-purpose resin materials such as polyethylene, polypropylene, polystyrene, polyvinyl chloride and polyvinyl butyral, resin materials exhibiting rubber elasticity such as styrene-butadiene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer and the like. Preferably, a fluorine-based polymer material mainly containing vinylidene fluoride such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, or vinylidene fluoride-trichlorofluoroethylene copolymer is used. .

【0019】本発明の製法に用いる熱可塑性バインダー
は、可塑化して加熱圧縮成形を効率的にするため可塑剤
を添加することが好ましく、例えば、フタル酸ジメチ
ル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジ
ーnーオクチル、フタル酸ブチルベンジル等のフタル酸
エステル類、燐酸トリブチル、燐酸トリフェニル等の燐
酸エステル類、オレイン酸ブチル、アジピン酸ジブチル
などの脂肪酸エステル類、流動パラフィンなど一般の樹
脂加工に用いられるものが挙げられる。可塑剤は可塑化
される側の樹脂によって適宜選択されるべきであるが、
フッ化ビニリデンを主体とするフッ素系高分子材料を熱
可塑性バインダーとした場合は、フタル酸ジブチル、フ
タル酸ジーnーオクチルが好適である。
It is preferable to add a plasticizer to the thermoplastic binder used in the production method of the present invention in order to plasticize and make the heat compression molding efficient. For example, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, phthalate Phthalates such as di-n-octyl acid and butyl benzyl phthalate, phosphates such as tributyl phosphate and triphenyl phosphate, fatty acid esters such as butyl oleate and dibutyl adipate, and general resin processing such as liquid paraffin Are included. The plasticizer should be appropriately selected depending on the resin to be plasticized,
When a fluoropolymer mainly composed of vinylidene fluoride is used as the thermoplastic binder, dibutyl phthalate and di-n-octyl phthalate are preferred.

【0020】本発明の製法に用いる熱可塑性バインダー
は、粉末状、ペレット状、クラム状が好ましく、さらに
好ましくは粉末状である。本発明の製法において混合物
とは、電極活物質と熱可塑性バインダーとをプラネタリ
ーミキサー、ディゾルバー、ニーダー、タープラーミキ
サー、ヘンシェルミキサーなどを用いて均一に混合した
ものをいい、特に、粉体状の電極活物質と熱可塑性バイ
ンダーとをヘンシェルミキサーで混合することにより得
た均一な混合物が好ましく、導電性助剤を用いる場合
は、電極活物質と熱可塑性とを同時にヘンシェルミキサ
ーに加えることが好ましい。
The thermoplastic binder used in the production method of the present invention is preferably in the form of powder, pellet, or crumb, and more preferably powder. In the production method of the present invention, the mixture refers to a mixture obtained by uniformly mixing an electrode active material and a thermoplastic binder with a planetary mixer, a dissolver, a kneader, a tarpler mixer, a Henschel mixer, etc. A uniform mixture obtained by mixing the electrode active material and the thermoplastic binder with a Henschel mixer is preferable. When a conductive auxiliary is used, it is preferable to add the electrode active material and the thermoplastic simultaneously to the Henschel mixer.

【0021】本発明において溶融又は軟化状態の温度以
上の温度とは、結晶性熱可塑性バインダーにおいては結
晶融点、非結晶性熱可塑性バインダーにおいては、粘性
率が1011〜1012ボイズ程度まで落ち、流動が認めら
れる温度よりもそれぞれ20℃〜50℃高い温度を指
し、好ましくは50℃以上高い温度である。本発明の製
法に用いる金型は、一般の樹脂加工に用いられるような
温度制御可能な金型であり、加熱圧縮成形は一般の樹脂
加工の技術を採用できる。
In the present invention, the temperature not lower than the melting or softening temperature means that the crystalline thermoplastic binder has a crystalline melting point, and the amorphous thermoplastic binder has a viscosity of about 10 11 to 10 12 voise, A temperature 20 ° C. to 50 ° C. higher than the temperature at which flow is observed, preferably a temperature 50 ° C. or higher. The mold used in the production method of the present invention is a mold capable of controlling the temperature as used in general resin processing, and the heat compression molding can employ general resin processing techniques.

【0022】本発明の非水系二次電池に用いられる電極
の製法は、電極を金型内で加熱圧縮成形するため、予め
電池を搭載する電子機器の形状に合わせた金型を用いる
ことによって、異形電池を容易に形成することが可能で
ある。本発明の製法は、従来のシート状の電極から異形
電極を作る場合のように、異形電極を形成した後の余剰
部分がロスになることはない。仮に何らかの要因で成形
に失敗した場合も、失敗した形成品を粉砕して再利用す
ることが可能でありロスの発生はない。従来の、電極活
物質を分散してスラリーを調整し、塗工乾燥する得られ
方法による二次電池に用いられる電極は、形状が円筒
形、または角柱形の電極しか得られず、異形な電池を得
ようとすると、異形電極を切り出し成形した後の余剰部
分は再利用が不可能で廃材となっていた。
The method of manufacturing the electrodes used in the non-aqueous secondary battery of the present invention is as follows. The electrodes are heated and compression-molded in a mold. It is possible to easily form a deformed battery. According to the manufacturing method of the present invention, unlike a case where a deformed electrode is formed from a conventional sheet-shaped electrode, a surplus portion after forming the deformed electrode is not lost. Even if molding fails for some reason, the failed molded product can be crushed and reused, and no loss occurs. Conventional electrodes used for secondary batteries obtained by dispersing an electrode active material, preparing a slurry, and coating and drying are obtained only in a cylindrical or prismatic shape. In order to obtain the surplus part, the surplus part after cutting out and shaping the deformed electrode cannot be reused and is a waste material.

【0023】さらに、本発明の製法は、金型の形状によ
り、厚膜化が可能であるから同じ電極活物質を用いたと
しても、従来の二次電池よりもさらに高容量の二次電池
とすることが可能となる。しかも、本発明の製法は、従
来の塗工乾燥する方法で用いられる有機溶剤を用いない
ため、排気設備と排気ガスの処理設備が不要であり、環
境への悪影響もなく、コストダウンが図れるものであ
る。
Further, according to the manufacturing method of the present invention, a thicker film can be formed due to the shape of the mold. It is possible to do. In addition, the manufacturing method of the present invention does not use the organic solvent used in the conventional coating and drying method, so that exhaust equipment and exhaust gas treatment equipment are unnecessary, there is no adverse effect on the environment, and cost reduction can be achieved. It is.

【0024】また、固体電解質を用いた電池のように、
電極中のバインダー量を増量したい場合も、従来であれ
ば、スラリー化のために用いる溶剤に対するバインダー
の溶解量と必要なスラリーの粘度とから増量は難しいも
のであったが、本発明の製法は、溶剤へのバインダー樹
脂の溶解という制限がないため、任意に増量することが
可能である。
Also, as in a battery using a solid electrolyte,
Even if it is desired to increase the amount of binder in the electrode, conventionally, it was difficult to increase the amount of the binder from the amount of the binder dissolved in the solvent used for slurrying and the required viscosity of the slurry, but the production method of the present invention Since there is no limitation of dissolving the binder resin in the solvent, the amount can be arbitrarily increased.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施例を説明す
る。なお、物性の測定法は下記の通り。 (1)放充電量:(mAH/g) 活物質1gあたりの電気量に換算した値。 (2)塗膜厚み:(μm) 充放電試験を実施した塗膜の厚み。塗布基材そのものを
集電体として利用した場合は集電体の厚みを除いた厚
み。 (3)効率 :(%) 充電量に対する放電量の割合を百分率で表示。
Embodiments of the present invention will be described below. The methods for measuring physical properties are as follows. (1) Discharge amount: (mAH / g) A value converted to the amount of electricity per gram of the active material. (2) Film thickness: (μm) The thickness of the film subjected to the charge / discharge test. When the coated base material itself is used as a current collector, the thickness excludes the thickness of the current collector. (3) Efficiency: (%) The ratio of the amount of discharge to the amount of charge is expressed as a percentage.

【0026】[0026]

【実施例1】電極活物質としてコバルト酸リチウム、導
電性助剤として黒鉛微粉{ロンザ・ジャパン(株)製}
とアセチレンブラック{電気化学工業(株)製}との等
重量混合物を電極活物質100重量部に対し5重量部加
えて混合し、電極コンパウンドを作成した。この電極コ
ンパウンド100重量部に対し、熱可塑性バインダーと
してポリフッ化ビニリデン粉末16重量部とフタル酸ジ
ブチルを24重量部加えて電極合剤を調合した。
Example 1 Lithium cobaltate as an electrode active material and graphite fine powder as a conductive auxiliary (manufactured by Lonza Japan Co., Ltd.)
An equal weight mixture of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and 5 parts by weight per 100 parts by weight of the electrode active material was added and mixed to prepare an electrode compound. An electrode mixture was prepared by adding 16 parts by weight of polyvinylidene fluoride powder and 24 parts by weight of dibutyl phthalate as a thermoplastic binder to 100 parts by weight of this electrode compound.

【0027】得られた電極合剤を200℃に温調した1
50mm×150mm、厚さ0.2mmの金型に入れ、
ゲージ圧100Kg/cm2 の圧力を加え、加熱圧縮成
形した。加熱圧縮成形されたシート状の電極を、塩化メ
チレンに浸漬しフタル酸ジブチルを抽出した。更に抽出
したシートをロールプレスを通して、電極嵩密度を上げ
た。この電極を15mm角の正方形に切り出し、充放電
のテストを実施した。集電体としてステンレス箔を用
い、対極には金属リチウムホイル、市販ポリエチレン製
微多孔膜セパレータ{旭化成工業(株)製}を用い、セ
パレータをはさんで集電体と本発明の電極とリチウムホ
イルを圧着し電解液中に浸漬することによって電気化学
セルとした。
The temperature of the obtained electrode mixture was adjusted to 200 ° C.
50mm x 150mm, 0.2mm thick mold,
Gauge pressure of 100 kg / cm 2 was applied to perform heat compression molding. The sheet electrode formed by heating and compression molding was immersed in methylene chloride to extract dibutyl phthalate. Further, the extracted sheet was passed through a roll press to increase the electrode bulk density. This electrode was cut into a square of 15 mm square, and a charge / discharge test was performed. A stainless steel foil is used as the current collector, a lithium metal foil is used as a counter electrode, and a commercially available polyethylene microporous membrane separator (manufactured by Asahi Kasei Kogyo Co., Ltd.) is used. Was pressed and immersed in an electrolytic solution to form an electrochemical cell.

【0028】電解液としてはプロピレンカーボネートと
エチレンカーボネート及びγブチロラクトンの混合液
(体積混合比1/1/2)1リットルあたり1.5モル
の硼フッ化リチウムを加えたものを用いた。充電は電流
密度1mA/cm2 で定電流充電し、4.2Vに達した
時点で定電圧充電に切り替える方法で行った。また、放
電は1mA/cm2 で定電流放電し、3Vに達した時点
で放電操作を停止した。
As the electrolytic solution, a solution prepared by adding 1.5 mol of lithium borofluoride per liter of a mixed solution (volume mixing ratio: 1/2) of propylene carbonate, ethylene carbonate and γ-butyrolactone was used. Charging was performed by charging at a constant current at a current density of 1 mA / cm <2>, and switching to constant voltage charging when the voltage reached 4.2 V. The discharge was performed at a constant current of 1 mA / cm 2, and when the discharge reached 3 V, the discharge operation was stopped.

【0029】[0029]

【実施例2】導電性助剤として黒鉛微粉を活物質100
重量部に対し10重量部加えた以外は実施例1と同様に
して実施した。
Example 2 Graphite fine powder was used as an active material in an active material 100
The operation was performed in the same manner as in Example 1 except that 10 parts by weight was added to the parts by weight.

【0030】[0030]

【実施例3】電極活物質としてニードルコークス{興亜
石油(株)製}を用い、電極活物質100重量部に対
し、ポリフッ化ビニリデン粉末30重量部とフタル酸ジ
ブチルを46重量部加えて電極合剤を調合した以外は実
施例1と同様に実施した。但し、充放電試験の条件は、
充電を電流密度1mA/cm2 で定電流充電し、10m
Vに達した時点で定電圧充電に切り替える方法でおこな
った。また、放電は1mA/cm2 で定電流放電し、
1.2Vに達した時点で放電操作を停止した。
Example 3 Needle coke (manufactured by Koa Oil Co., Ltd.) was used as an electrode active material, and 30 parts by weight of polyvinylidene fluoride powder and 46 parts by weight of dibutyl phthalate were added to 100 parts by weight of the electrode active material to form an electrode. The procedure was performed in the same manner as in Example 1 except that the preparation was made. However, the conditions for the charge / discharge test are as follows:
Charge the battery with a constant current at a current density of 1 mA / cm 2
When the voltage reached V, the method was switched to constant voltage charging. Discharge is constant current at 1 mA / cm2.
When the voltage reached 1.2 V, the discharging operation was stopped.

【0031】[0031]

【実施例4】電極活物質としてニードルコークス{興亜
石油(株)製}を用い、導電性助剤としてアセチレンブ
ラック{電気化学工業(株)製}を用い、電極活物質の
重量と導電性助剤の重量比が98対2となるように混合
し電極コンパウンドを作成した。この電極コンパウンド
100重量部に対し、ポリフッ化ビニリデン粉末30重
量部とフタル酸ジブチルを46重量部加えて電極合剤を
調合した以外は実施例1と同様に実施した。充放電条件
は、実施例3と同様にして試験した。
Example 4 Needle coke (manufactured by Koa Oil Co., Ltd.) was used as an electrode active material, and acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as a conductive aid. The agents were mixed so that the weight ratio of the agents was 98: 2 to prepare an electrode compound. Example 1 was repeated except that 30 parts by weight of polyvinylidene fluoride powder and 46 parts by weight of dibutyl phthalate were added to 100 parts by weight of the electrode compound to prepare an electrode mixture. The charging and discharging conditions were tested in the same manner as in Example 3.

【0032】[0032]

【実施例5】ポリエチレン製微多孔膜セパレータの代わ
りに、フッ化ビニリデンとヘキサフルオロプロピレンの
共重合体よりなるシートを作成して、これに実施例1記
載の電解液と同様の電解液を含浸したゲル状の電解質を
用いた以外は、実施例1と同様に実施した。ただし、電
気化学セル中に新たに電解液を加えることはしなかっ
た。
Example 5 A sheet made of a copolymer of vinylidene fluoride and hexafluoropropylene was prepared in place of the polyethylene microporous membrane separator, and impregnated with the same electrolyte as the electrolyte described in Example 1. The procedure was performed in the same manner as in Example 1 except that the gelled electrolyte was used. However, no new electrolyte was added to the electrochemical cell.

【0033】[0033]

【実施例6】ポリエチレン製微多孔膜セパレータの代わ
りに、フッ化ビニリデンとヘキサフルオロプロピレンの
共重合体よりなる独立気泡発泡体を作成して、これに実
施例1記載の電解液と同様の電解液を含浸したゲル状の
電解質を用いた以外は、実施例1と同様に実施した。た
だし、電気化学セル中に新たに電解液を加えることはし
なかった。
Example 6 Instead of a polyethylene microporous membrane separator, a closed cell foam made of a copolymer of vinylidene fluoride and hexafluoropropylene was prepared, and an electrolytic solution similar to the electrolytic solution described in Example 1 was prepared. The procedure was performed in the same manner as in Example 1 except that a gel electrolyte impregnated with the liquid was used. However, no new electrolyte was added to the electrochemical cell.

【0034】[0034]

【実施例7】ポリエチレン製微多孔膜セパレータの代わ
りに、フッ化ビニリデンとヘキサフルオロプロピレンの
共重合体よりなる微多孔膜を作成して、これに実施例1
記載の電解液の電解液と同様の電解液を含浸したゲル状
の電解質を用いた以外は、実施例1と同様に実施した。
ただし、電気化学セル中に新たに電解液を加えることは
しなかった。
Example 7 Instead of a polyethylene microporous membrane separator, a microporous membrane made of a copolymer of vinylidene fluoride and hexafluoropropylene was prepared.
Example 1 was carried out in the same manner as in Example 1 except that a gel electrolyte impregnated with the same electrolytic solution as the electrolytic solution described was used.
However, no new electrolyte was added to the electrochemical cell.

【0035】[0035]

【実施例8】実施例1で加熱圧縮成形されたシート電極
を再利用のためペレット状に粉砕し、実施例1記載の電
極合剤100重量部に対し、該ペレットを10重量部混
合したものを電極合剤とした以外は実施例1と同様に実
施した。
Example 8 The sheet electrode formed by heating and compression in Example 1 was pulverized into a pellet for reuse, and 10 parts by weight of the pellet was mixed with 100 parts by weight of the electrode mixture described in Example 1. Was carried out in the same manner as in Example 1 except that was used as an electrode mixture.

【0036】[0036]

【比較例1】実施例1で用いたコンパウンド100重量
部に対しポリフッ化ビニリデン7重量部を加え、Nメチ
ルピロリドンを溶剤として固形分率62重量パーセント
のスラリーを調合し、クリアランス250μmのドクタ
ーブレードでアルミ箔上へ塗工し120℃の熱風乾燥機
中で乾燥させ電極を得た。得られた電極をロールプレス
を通して、電極嵩密度を上げた。
Comparative Example 1 To 100 parts by weight of the compound used in Example 1, 7 parts by weight of polyvinylidene fluoride was added, and a slurry having a solid content of 62% by weight was prepared using N-methylpyrrolidone as a solvent. It was applied on an aluminum foil and dried in a hot air dryer at 120 ° C. to obtain an electrode. The resulting electrode was passed through a roll press to increase the electrode bulk density.

【0037】ついで、電極塗膜面が15mm角の正方形
になるように成形し、充放電のテストを実施した。対極
には金属リチウムホイル、市販ポリエチレン製微多孔膜
セパレータ{旭化成工業(株)製}を用い、セパレータ
をはさんで電極とリチウムホイルを圧着し電解液中に浸
漬することによって電気化学セルとした。電解液は実施
例1記載のものと同様の電解液を用い、充放電の条件も
実施例1に記載の方法を採用した。
Next, the electrode coating film was formed into a square of 15 mm square, and a charge / discharge test was performed. As the counter electrode, a lithium metal foil, a commercially available polyethylene microporous membrane separator (manufactured by Asahi Kasei Kogyo Co., Ltd.) was used. The electrode and the lithium foil were crimped across the separator and immersed in an electrolyte to form an electrochemical cell. . The same electrolytic solution as that described in Example 1 was used as the electrolytic solution, and the method described in Example 1 was employed for the charge and discharge conditions.

【0038】[0038]

【比較例2】電極活物質としてニードルコークス{興亜
石油(株)製}を用い、電極活物質100重量部に対
し、ポリフッ化ビニリデン粉末7重量部を混合し、Nメ
チルピロリドンを溶剤として固形分率54重量パーセン
トのスラリーを調合し、クリアランス250μmのドク
ターブレードで銅箔上へ塗工し120℃の熱風乾燥機中
で乾燥させ電極を得た。得られた電極をロールプレスを
通して、電極嵩密度を上げた。
Comparative Example 2 Needle coke (manufactured by Koa Oil Co., Ltd.) was used as an electrode active material, 7 parts by weight of polyvinylidene fluoride powder was mixed with 100 parts by weight of the electrode active material, and solid content was determined using N-methylpyrrolidone as a solvent. A slurry having a rate of 54% by weight was prepared, coated on a copper foil with a doctor blade having a clearance of 250 μm, and dried in a hot air dryer at 120 ° C. to obtain an electrode. The resulting electrode was passed through a roll press to increase the electrode bulk density.

【0039】ついで、電極塗膜面が15mm角の正方形
になるように成形し、充放電のテストを実施した。対極
には金属リチウムホイル、市販ポリエチレン製微多孔膜
セパレータ{旭化成工業(株)製}を用い、セパレータ
をはさんで電極とリチウムホイルを圧着し電解液中に浸
漬することによって電気化学セルとした。電解液は実施
例1記載のものと同様の電解液を用い、充放電の条件は
実施例3に記載の方法を採用した。
Next, the electrode coating film was formed into a square of 15 mm square, and a charge / discharge test was conducted. As the counter electrode, a lithium metal foil, a commercially available polyethylene microporous membrane separator (manufactured by Asahi Kasei Kogyo Co., Ltd.) was used. The electrode and the lithium foil were crimped across the separator and immersed in an electrolyte to form an electrochemical cell. . The same electrolytic solution as that described in Example 1 was used as the electrolytic solution, and the method described in Example 3 was employed for the charge and discharge conditions.

【0040】[0040]

【比較例3】実施例1で用いたコンパウンド100重量
部に対しポリフッ化ビニリデン15重量部を加え、Nメ
チルピロリドンを溶剤として固形分率62重量パーセン
トのスラリーを調合し、クリアランス250μmのドク
ターブレードでアルミ箔上への塗工を試みたが、粘度が
高く均一な塗膜を得ることができなかった。
Comparative Example 3 15 parts by weight of polyvinylidene fluoride were added to 100 parts by weight of the compound used in Example 1, and a slurry having a solid content of 62% by weight was prepared using N-methylpyrrolidone as a solvent. An attempt was made to apply the coating on an aluminum foil, but a uniform coating film having a high viscosity could not be obtained.

【0041】[0041]

【比較例4】実施例1で用いたコンパウンド100重量
部に対しポリフッ化ビニリデン7重量部を加え、Nメチ
ルピロリドンを溶剤として固形分率62重量パーセント
のスラリーを調合し、クリアランス800μmのドクタ
ーブレードでアルミ箔上へ塗工し、120℃の熱風乾燥
機中で乾燥させ電極を得たが、得られた電極には大きく
ひびが入り、また塗膜全体が大きく反っており充放電の
試験までは至らなかった。
Comparative Example 4 7 parts by weight of polyvinylidene fluoride was added to 100 parts by weight of the compound used in Example 1, and a slurry having a solid content of 62% by weight was prepared using N-methylpyrrolidone as a solvent. The electrode was coated on aluminum foil and dried in a hot air dryer at 120 ° C to obtain an electrode.The obtained electrode was greatly cracked, and the entire coating film was greatly warped. Did not reach.

【0042】[0042]

【比較例5】実施例1で調合した電極合剤を100℃に
設定した二軸混練機(東洋精機(株)製の商品名ラボプ
ラストミル)で混練し混練された分散体の加熱圧縮成形
の可能性を調べたが、均一な分散体が得られず加熱圧縮
成形不可能と判断された。表1に実施例および比較例の
充放電結果を示す。比較例3から比較例5は前記の通り
充放電の評価が可能な電極を得られていないので表中に
はない。
Comparative Example 5 The electrode mixture prepared in Example 1 was kneaded with a twin-screw kneader (Laboplast Mill, trade name, manufactured by Toyo Seiki Co., Ltd.) set at 100 ° C. and the resulting kneaded dispersion was heated and compression-molded. However, a uniform dispersion was not obtained, and it was judged that the heat compression molding was impossible. Table 1 shows the charging and discharging results of the examples and the comparative examples. Comparative Examples 3 to 5 are not shown in the table because no electrode capable of evaluating charge / discharge was obtained as described above.

【0043】比較例1および比較例2は、現在のリチウ
ムイオン二次電池で一般に用いられている正極および負
極に相当するため、これらの比較例と実施例とを比較す
ることによって本発明の電極の電池への作用効果が評価
できるわけであるが、実施例1から実施例8のデータは
比較例1および比較例2のデータと遜色無い値が得られ
ていることが分かる。
Since Comparative Examples 1 and 2 correspond to the positive electrode and the negative electrode generally used in the current lithium ion secondary batteries, the electrode of the present invention was compared by comparing these Comparative Examples with Examples. Can be evaluated, but it can be seen that the data of Examples 1 to 8 are comparable to the data of Comparative Examples 1 and 2.

【0044】しかも、実施例8のデータからみてもわか
るようにリサイクルが可能で、かつ、従来のようなNメ
チルピロリドンといった溶剤を使わないため排気設備と
排気ガスの処理設備が不要であり、実施例1〜実施例8
の結果のように、高容量化のための厚膜化が容易であ
り、金型をあらかじめ所望の形状に作成しておけば電池
を搭載する電子機器の形状に合わせた異形電極を容易に
作成することができるばかりでなく、リサイクルが可能
なため異形電極を作る場合に仮にロスが発生しても再利
用が可能である。例えば、電池を搭載する電子機器の形
状に合わせた異形電極を製造する場合に、異形電極を成
形した後の余剰部分がロスとして発生した場合に、実施
例8にみられるように、異形電極を成形した後の余剰部
分を再利用してロスの発生がないようにすることができ
る。
Furthermore, as can be seen from the data of Example 8, recycling is possible, and no exhaust equipment and exhaust gas treatment equipment are required because no solvent such as conventional N-methylpyrrolidone is used. Examples 1 to 8
As shown in the above results, it is easy to increase the film thickness for higher capacity, and if the mold is created in advance to the desired shape, it is easy to create a deformed electrode that matches the shape of the electronic device on which the battery is mounted Not only can it be recycled, but it can be recycled, so that even if a loss occurs when a deformed electrode is made, it can be reused. For example, when manufacturing a deformed electrode according to the shape of the electronic device on which the battery is mounted, if a surplus portion after molding the deformed electrode occurs as a loss, as shown in Example 8, the deformed electrode is The surplus part after molding can be reused to prevent loss.

【0045】また、電極中のバインダー量を任意にコン
トロールすることが可能となる電極であることがわか
る。
Further, it can be seen that the electrode enables the amount of binder in the electrode to be arbitrarily controlled.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】本発明の非水系二次電池に用いられる電
極は、一旦、成形した電極を再利用して利用しても、新
品と遜色のない電池を得ることができ、従来のものでは
不可能であったリサイクルが可能である。また、本発明
の非水系二次電池に用いられる電極は、電極活物質の1
gあたりの電気量が同等のものでは、電極中の電極活物
質の絶対量がきいてくるため、容易に高容量の電池とす
ることができる。
The electrode used in the non-aqueous secondary battery of the present invention can be obtained as a new battery even if the molded electrode is reused. Recycling that was not possible is possible. The electrode used in the non-aqueous secondary battery of the present invention is one of the electrode active materials.
When the amount of electricity per g is equivalent, the absolute amount of the electrode active material in the electrode is determined, so that a high-capacity battery can be easily obtained.

【0048】本発明の製法は、従来のような、Nメチル
ピロリドンのような溶剤を使わないため排気設備と排気
ガスの処理設備が不要であり、高容量化のための厚膜化
が容易であり、さらに、金型をあらかじめ所望の形状に
作成しておけば電池を搭載する電子機器の形状に合わせ
た異形電極を容易に作成することができ、従来のシート
状の電極から異形電極を作成する場合のようなロスが発
生しない非水系二次電池に用いられる電極を製造するこ
とができる。
In the production method of the present invention, since a solvent such as N-methylpyrrolidone is not used as in the conventional method, exhaust equipment and exhaust gas treatment equipment are not required, and it is easy to form a thick film for high capacity. Yes, if the mold is created in the desired shape in advance, it is possible to easily create a deformed electrode that matches the shape of the electronic equipment on which the battery is mounted, and create a deformed electrode from the conventional sheet-shaped electrode Thus, an electrode used for a non-aqueous secondary battery that does not cause loss as in the case of the above can be manufactured.

【0049】本発明の製法は、従来の方法に較べて、熱
可塑性バインダーの量を任意にコントロールすることが
できる。
In the production method of the present invention, the amount of the thermoplastic binder can be arbitrarily controlled as compared with the conventional method.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 非水系二次電池に用いられる電極におい
て、該電極が電極活物質と熱可塑性バインダーとからな
る混合物であり、上記熱可塑性バインダーの溶融又は軟
化状態の温度以上の温度に加熱された金型内で加熱圧縮
成形されてなるものであることを特徴とする非水系二次
電池に用いられる電極。
An electrode used for a non-aqueous secondary battery, wherein the electrode is a mixture of an electrode active material and a thermoplastic binder, and is heated to a temperature not lower than the melting or softening state of the thermoplastic binder. An electrode used for a non-aqueous secondary battery, wherein the electrode is formed by heating and compression molding in a mold.
【請求項2】 熱可塑性バインダーがフッ素系高分子材
料であることを特徴とする請求項1記載の非水系二次電
池に用いられる電極。
2. The electrode for use in a non-aqueous secondary battery according to claim 1, wherein the thermoplastic binder is a fluoropolymer material.
【請求項3】 非水系二次電池がリチウムイオン二次電
池であることを特徴とする請求項1記載の非水系二次電
池に用いられる電極。
3. The electrode for use in a non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is a lithium ion secondary battery.
【請求項4】 非水系二次電池に用いられる電極の製法
において、電極活物質と熱可塑性バインダーとを混合物
とし、ついで該混合物を上記熱可塑性バインダーの溶融
又は軟化状態の温度以上の温度に加熱された金型内で加
熱圧縮成形することを特徴とする非水系二次電池に用い
られる電極の製法。
4. A method for producing an electrode used for a non-aqueous secondary battery, wherein a mixture of an electrode active material and a thermoplastic binder is formed, and the mixture is heated to a temperature not lower than the melting or softening state of the thermoplastic binder. A method for producing an electrode used for a non-aqueous secondary battery, wherein the electrode is heated and compression-molded in a molded die.
【請求項5】 熱可塑性バインダーがフッ素系高分子材
料であることを特徴とする請求項4記載の非水系二次電
池に用いられる電極の製法。
5. The method for producing an electrode used in a non-aqueous secondary battery according to claim 4, wherein the thermoplastic binder is a fluoropolymer material.
【請求項6】 熱可塑性バインダーが可塑剤を加熱圧縮
成形助剤として含有していることを特徴とする請求項4
記載の非水系二次電池に用いられる電極の製法。
6. The thermoplastic binder according to claim 4, wherein the thermoplastic binder contains a plasticizer as a heat compression molding aid.
A method for producing an electrode used in the nonaqueous secondary battery according to the above.
【請求項7】 非水系二次電池がリチウムイオン二次電
池であることを特徴とする請求項4記載の非水系二次電
池に用いられる電極の製法。
7. The method for producing an electrode used in a non-aqueous secondary battery according to claim 4, wherein the non-aqueous secondary battery is a lithium ion secondary battery.
JP9090477A 1997-04-09 1997-04-09 Electrode used for nonaqueous secondary battery and manufacture thereof Withdrawn JPH10284051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9090477A JPH10284051A (en) 1997-04-09 1997-04-09 Electrode used for nonaqueous secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9090477A JPH10284051A (en) 1997-04-09 1997-04-09 Electrode used for nonaqueous secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10284051A true JPH10284051A (en) 1998-10-23

Family

ID=13999667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9090477A Withdrawn JPH10284051A (en) 1997-04-09 1997-04-09 Electrode used for nonaqueous secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10284051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793982B1 (en) * 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
KR100454773B1 (en) * 2001-03-19 2004-11-05 아토피나 Lithium-ion battery elements manufactured from a microcomposite powder based on a filler and on a fluoropolymer
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2013098002A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method, and nonaqueous electrolyte secondary battery
CN113422113A (en) * 2021-06-04 2021-09-21 深圳赛骄阳能源科技股份有限公司 Method for manufacturing special-shaped lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793982B1 (en) * 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
KR100454773B1 (en) * 2001-03-19 2004-11-05 아토피나 Lithium-ion battery elements manufactured from a microcomposite powder based on a filler and on a fluoropolymer
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2013098002A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method, and nonaqueous electrolyte secondary battery
CN113422113A (en) * 2021-06-04 2021-09-21 深圳赛骄阳能源科技股份有限公司 Method for manufacturing special-shaped lithium ion battery

Similar Documents

Publication Publication Date Title
CN111640912A (en) Positive pole piece, preparation method thereof and lithium ion secondary battery
CN1196217C (en) Method for producing nonaqueous gel electrolyte cell
CN109565050B (en) Conductive resin composition for electrode, electrode composition, and electrode and lithium ion battery using same
US5849433A (en) Polymer blend electrolyte system and electrochemical cell using same
CN102124591A (en) Separator for battery and nonaqueous-electrolyte battery using same
JP2003059535A (en) Lithium polymer cell
JP2000149922A (en) Electrode active material composition for lithium ion polymer battery, polymer electrolyte matrix composition, and manufacture of lithium ion polymer battery using this
KR20070012057A (en) Lithium secondary battery
JP2007500926A (en) Cathode material for polymer battery and method of manufacturing the same
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
KR102256479B1 (en) Negative electrode active material for lithium secondary battery, and preparing method therof
JP2012028006A (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4984422B2 (en) Method for manufacturing electrode for secondary battery
CN113614951A (en) Method for preparing negative electrode for secondary battery
KR102088858B1 (en) Electrode for lithium secondary battery comprising hygroscopic materials and lithium secondary battery comprising the same
JP2002075458A (en) Nonaqueous electrolyte cell
CN114300648A (en) Positive pole piece and preparation method thereof, positive pole plate and solid-state battery
KR20140070258A (en) Cathode active material composition, and cathode and lithium secondary battery comprising the same
KR101116551B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JPH10284051A (en) Electrode used for nonaqueous secondary battery and manufacture thereof
JPH10284050A (en) Electrode used for nonaqueous secondary battery and manufacture thereof
JPH10284052A (en) Electrode used for nonaqueous secondary battery and manufacture thereof
WO1997044290A1 (en) Fabrication methods for low impedance lithium polymer electrodes
CN114188504A (en) Electrochemical device and electronic device
CN109478635B (en) Negative electrode for lithium metal secondary battery and lithium metal secondary battery comprising same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706