JPH10282466A - Liquid crystal electric charge transporting material and organic light emiiting element - Google Patents

Liquid crystal electric charge transporting material and organic light emiiting element

Info

Publication number
JPH10282466A
JPH10282466A JP9086393A JP8639397A JPH10282466A JP H10282466 A JPH10282466 A JP H10282466A JP 9086393 A JP9086393 A JP 9086393A JP 8639397 A JP8639397 A JP 8639397A JP H10282466 A JPH10282466 A JP H10282466A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric charge
light emitting
organic light
discotic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9086393A
Other languages
Japanese (ja)
Other versions
JP3760555B2 (en
Inventor
Akio Takimoto
昭雄 滝本
Kazunori Komori
一徳 小森
Hisanori Sugiura
久則 杉浦
Kazuhiro Nishiyama
和廣 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP08639397A priority Critical patent/JP3760555B2/en
Publication of JPH10282466A publication Critical patent/JPH10282466A/en
Application granted granted Critical
Publication of JP3760555B2 publication Critical patent/JP3760555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption and to improve reliability by efficient light emitting characteristic and the reduction of driving voltage by constituting an electric charge transporting layer of a discotic liquid crystal with positive dielectric amisotropy. SOLUTION: The discotic liquid crystal 3 is inserted between a pair of oriented film layers 7 to make the electric charge transporting layer. The liquid crystal 3 is provided with positive dielectric anisotropy to form the electric charge transporting layer. At the time of applying voltage in order to move an electric charge in the film of this liquid crystal 3, a moving degree is different depending on the polarity of its dielectric anistropy. When the liquid crystal 3 is provided with positive dielectric anisotropy, a molecule arranges the axes of pillars in a voltage applying direction in a voltage applying state. Consequently, the path of more systematic electric charge movement is formed within the liquid crystal layer and a moving degree is remarkably increased. Thereby, basic performance such as light emitting efficiency, light receiving efficiency, life are remarkably improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶電荷輸送材料
と、大型ディスプレイ素子を駆動する有機薄膜トランジ
スタを用いた大型液晶素子に関し、この有機薄膜トラン
ジスタを用いた大型の有機発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal charge transporting material and a large liquid crystal device using an organic thin film transistor for driving a large display device, and to a large organic light emitting device using the organic thin film transistor.

【0002】[0002]

【従来の技術】近年、有機発光素子は薄型で自発光型の
表示素子として期待され、実用化レベルに到達しつつあ
る。有機発光素子は1987年のTang等の提案によって電荷
輸送層と電荷発生層との2層構造を採用し、その性能を
著しく向上させることに成功した。それぞれの有機層を
低分子の蒸着層によって数百オングストロームと薄く形
成することで駆動電圧を下げ、同時に発光効率を向上さ
せた。またその後の取り組みによって有機物特有の寿命
の課題も克服されつつある。
2. Description of the Related Art In recent years, organic light-emitting devices are expected to be thin and self-luminous display devices, and are reaching practical use levels. As proposed by Tang et al. In 1987, the organic light-emitting device adopted a two-layer structure of a charge transport layer and a charge generation layer, and succeeded in significantly improving the performance thereof. By forming each organic layer as thin as several hundred angstroms by using a low molecular vapor deposition layer, the driving voltage was lowered and at the same time the luminous efficiency was improved. In addition, subsequent efforts have overcome the problem of life span unique to organic matter.

【0003】上記した基本構成の電荷輸送材料と発光材
料の有機材料開発も盛んであるが、前者はキャリア移動
度の大きな材料が、後者は発光効率の大きな材料と発光
波長が可視域で選択できることが望まれる。特に高輝度
で且つ長寿命を満足させるためにも高移動度材料が望ま
れる。一方、有機発光素子の製造方法において、数百オ
ングストロームの有機層を蒸着方法によって大面積に成
膜することが最も困難なプロセスである。この有機発光
素子の駆動は通常、十数Vで行われるが、ピンホール等
の欠陥は致命的となる。
[0003] The development of organic materials for the charge transporting material and the light emitting material having the above-mentioned basic constitution is also actively pursued. Is desired. In particular, a high mobility material is desired in order to satisfy high luminance and long life. On the other hand, in a method for manufacturing an organic light emitting device, it is the most difficult process to form an organic layer of several hundred angstroms over a large area by a vapor deposition method. The driving of the organic light emitting device is usually performed at a voltage of more than ten volts, but a defect such as a pinhole is fatal.

【0004】D.Adam等は1994年にディスコチック液晶が
高い電荷移動度を有することを報告した(「ネイチャ
ー」(NATURE、Vol371、P.141〜143、1994年))。彼ら
が用いた液晶は、2,3,6,7,10,11−hexahexylthiotriphe
nyleneであり、ヘリカル柱状相:H相(helical colum
nar phase)において移動度μ〜0.1cm2/V・sを確認
している。この移動度は印加電界強度が2×104V/cm
と低い。以前よりアントラセン等の縮合多環系の有機単
結晶が高い移動度を有することは知られていた。
D. Adam et al. Reported in 1994 that discotic liquid crystals have high charge mobility ("Nature" (Nature, Vol 371, pp. 141-143, 1994)). The liquid crystal they used was 2,3,6,7,10,11-hexahexylthiotriphe
nylene, helical columnar phase: H phase (helical colum)
In the nar phase), the mobility μ to 0.1 cm 2 / V · s has been confirmed. The mobility is such that the applied electric field strength is 2 × 10 4 V / cm
And low. It has been known that condensed polycyclic organic single crystals such as anthracene have high mobility.

【0005】またアモルファス状態であっても移動度が
高い分子が、有機感光体材料の電荷輸送材料として数多
く合成された。表示素子の光変調材料である液晶が、そ
の相構造によって高移動度を持つことを初めて報告し
た。彼らは、その高移動度の実現はディスコチック液晶
がH相でカラム構造の柱に沿ってトリフェニレン単位で
スタックし(隣接間距離3.64オングストローム)、
π軌道が重なることが重要であるとしている。またH相
より高温側から冷却することでより秩序の整ったH相が
形成されることも上げている。
[0005] Many molecules having high mobility even in an amorphous state have been synthesized as charge transport materials for organic photoreceptor materials. We have reported for the first time that liquid crystals, which are light modulation materials for display devices, have high mobility due to their phase structure. They realize that the high mobility is achieved by discotic liquid crystals stacked in triphenylene units along the columns of the column structure in the H phase (adjacent distance 3.64 Å),
It is important that the π orbitals overlap. It is also mentioned that a more ordered H phase is formed by cooling from a higher temperature side than the H phase.

【0006】[0006]

【発明が解決しようとする課題】発光素子、受光素子を
はじめ有機機能デバイスにとって電荷輸送層の移動度の
向上が最大の課題である。これによって発光効率、受光
効率、寿命といった基本性能の著しい向上が期待でき
る。また駆動電圧も減少する。高移動度の有機層を得る
には、分子の並びが良いことが条件としてある。さらに
隣接分子間の軌道重なりが大きく、π電子系が広がるこ
とが望ましい。有機単結晶は理想的な形態であるが、大
面積化が困難でありデバイス応用に課題がある。液晶相
は分子の秩序がある程度整った形態であり、近年の液晶
表示素子が示すように大面積のデバイス対応が十分可能
である。ディスコチック液晶は柱構造の中央に大きなπ
電子系を有することで柱に沿って電荷移動のパスが形成
される。さらに大きな移動度を実現させるには、H相に
おける秩序を向上させることである。
The most important issue for organic functional devices such as light emitting elements and light receiving elements is to improve the mobility of the charge transport layer. As a result, remarkable improvements in basic performance such as light emission efficiency, light reception efficiency, and life can be expected. Also, the driving voltage decreases. In order to obtain an organic layer having a high mobility, it is a condition that the arrangement of molecules is good. Further, it is desirable that the orbital overlap between adjacent molecules is large and the π-electron system is widened. Although the organic single crystal is an ideal form, it is difficult to increase the area, and there is a problem in device application. The liquid crystal phase is in a form in which the order of molecules is adjusted to some extent, and as shown by a recent liquid crystal display element, it is possible to sufficiently cope with a device having a large area. The discotic liquid crystal has a large π in the center of the pillar structure.
By having an electron system, a path for charge transfer is formed along the pillar. To achieve even higher mobility, the order in the H phase must be improved.

【0007】[0007]

【課題を解決するための手段】電荷輸送層を正の誘電異
方性をもったディスコチック液晶から構成する。ディス
コチック液晶を一対の配向膜層によって挟み電荷輸送層
を形成する。またこれらのディスコチック液晶を電荷輸
送層として発光層と組み合わせることで有機発光素子を
構成する。
The charge transport layer is composed of a discotic liquid crystal having a positive dielectric anisotropy. A discotic liquid crystal is sandwiched between a pair of alignment film layers to form a charge transport layer. An organic light-emitting device is formed by combining these discotic liquid crystals as a charge transport layer with a light-emitting layer.

【0008】[0008]

【発明の実態の形態】以下、本発明の実施の形態につい
て、図1から図4を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0009】(実施の形態1)図1は本発明の正の誘電
異方性をもったディスコチック液晶を電荷輸送層とする
有機発光素子の断面を示す。図1において、1はガラス
を代表とする電気絶縁性基板であり、フィルム形状基板
であっても良い。2は対向電極のストライプ形状電極で
あり、例えばマグネシウム・銀を用いる。3は正の誘電
異方性をもったディスコチック液晶であり、電荷輸送層
を形成する。4は有機発光層であり、アルミニウムウ・
キノリンを代表とする低分子の蒸着層かあるいはポリ−
p−フェニレンビニレン(PPV)を代表とする高分子
層を用いる。また、ポリイミド発光層としてUSP5,
331,182の材料を用いてもよい。5はもう一方の
ストライプ形状電極であり、インジウム錫酸化物(IT
O)を代表とする。さらに6は液晶層の膜厚を制御する
ためのスペーサーである。
(Embodiment 1) FIG. 1 shows a cross section of an organic light emitting device of the present invention using a discotic liquid crystal having a positive dielectric anisotropy as a charge transport layer. In FIG. 1, reference numeral 1 denotes an electrically insulating substrate represented by glass, which may be a film-shaped substrate. Reference numeral 2 denotes a stripe-shaped electrode serving as a counter electrode, for example, magnesium / silver is used. Reference numeral 3 denotes a discotic liquid crystal having a positive dielectric anisotropy, which forms a charge transport layer. 4 is an organic light emitting layer,
Low molecular vapor deposition layer represented by quinoline or poly-
A polymer layer represented by p-phenylenevinylene (PPV) is used. USP5 as a polyimide light emitting layer
331 and 182 may be used. Reference numeral 5 denotes another stripe-shaped electrode, which is formed of indium tin oxide (IT
O) as a representative. Reference numeral 6 denotes a spacer for controlling the thickness of the liquid crystal layer.

【0010】ディスコチック液晶の膜中を電荷を移動さ
せるのに電圧を印加する時、その誘電異方性の極性によ
って移動度が異なる。その原理を図4に示す。ディスコ
チック液晶が正の誘電異方性を持つ場合は、電圧印加状
態で分子は柱の軸を電圧印加方向に揃えることになる。
従ってより秩序だった電荷移動のパスが液晶層内に形成
され、移動度が大幅に増加する。一方、ディスコチック
液晶が負の誘電異方性を持つ場合は、電圧印加状態で分
子は柱の軸が斜めに傾くことになり、秩序だった電荷移
動のパスが形成されない。従って移動度は減少する。
When a voltage is applied to move a charge in a discotic liquid crystal film, the mobility varies depending on the polarity of the dielectric anisotropy. The principle is shown in FIG. When the discotic liquid crystal has a positive dielectric anisotropy, the molecules of the molecules align the axes of the columns in the voltage application direction in the voltage application state.
Therefore, a more ordered path of charge transfer is formed in the liquid crystal layer, and the mobility is greatly increased. On the other hand, if the discotic liquid crystal has a negative dielectric anisotropy, the molecules of the molecules will be tilted obliquely in the state of voltage application, and no ordered charge transfer path will be formed. Therefore, the mobility decreases.

【0011】正の誘電異方性△n=0.1を持つディス
コチック液晶と負の誘電違法性△n=−0.05のディ
スコチック液晶の移動度を、タイム・オブ・フライト法
によって測定評価を行ったところ、前者がμ=0.2cm
2/V・s、後者がμ=0.01cm2/V・sと大きく異なっ
た。尚、移動度の測定には膜厚5μmの液晶層と印加電
圧10Vを用いた。
The mobilities of a discotic liquid crystal having a positive dielectric anisotropy Δn = 0.1 and a discotic liquid crystal having a negative dielectric illegality Δn = −0.05 are measured by a time-of-flight method. When the evaluation was performed, the former was μ = 0.2 cm
2 / V · s, and the latter was significantly different from μ = 0.01 cm 2 / V · s. The mobility was measured using a liquid crystal layer having a thickness of 5 μm and an applied voltage of 10 V.

【0012】図1の有機発光素子を作製するための具体
的な製造方法を次に述べる。 (1)一方の電気絶縁性基板であるガラス基板1(50
mm×50mm)上にストライプ形状に幅500μm、ピッ
チ600μmの64本のアルミニウム・マグネシウムの
合金の電極2をマスク蒸着で形成する。
Next, a specific manufacturing method for manufacturing the organic light emitting device shown in FIG. 1 will be described. (1) One glass substrate 1 (50) which is an electrically insulating substrate
(mm × 50 mm), 64 aluminum-magnesium alloy electrodes 2 having a width of 500 μm and a pitch of 600 μm are formed in a stripe shape by mask evaporation.

【0013】(2)他方の電気絶縁性基板であるガラス
基板1にはITO電極4を同じくストライプ形状に幅5
00μm、ピッチ600μmの64本、フォトリソグラ
フィ技術によって形成する。
(2) An ITO electrode 4 is formed on a glass substrate 1, which is the other electrically insulating substrate, in a stripe shape with a width of 5 in the same manner.
64 lines of 00 μm and pitch of 600 μm are formed by photolithography.

【0014】(3)ITO基板上にアルミニウム・キノ
リンを蒸着法によって全面均一に500オングストロー
ム形成し、発光層4とする。
(3) 500 Å of aluminum quinoline is uniformly formed on the ITO substrate by vapor deposition to form a light emitting layer 4.

【0015】(4)両基板を周辺にシール材料を設けて
5μmのスペーサー6を介して張り合わせ、ディスコチ
ック液晶を注入することで電荷輸送層3を形成する。
(4) Both substrates are provided with a sealing material around them and bonded together via a 5 μm spacer 6, and a discotic liquid crystal is injected to form the charge transport layer 3.

【0016】以上の方法で製作した有機発光素子を駆動
し、特性評価した。駆動電圧は10Vとした。輝度1万
cd/m2を達成した。
The organic light-emitting device manufactured by the above method was driven and its characteristics were evaluated. The driving voltage was 10 V. Brightness 10,000
cd / m 2 was achieved.

【0017】また全画素とも欠陥は無かった。連続点灯
試験を行ったところ1000時間経過後も初期の輝度の
90%以上を維持していた。比較として負の誘電異方性
を持つディスコチック液晶を用いた有機発光素子の場
合、同じ駆動条件でも輝度は〜100cd/m2と大きく減
少する。
There were no defects in all pixels. When a continuous lighting test was performed, 90% or more of the initial luminance was maintained after 1000 hours. As a comparison, in the case of an organic light emitting device using a discotic liquid crystal having a negative dielectric anisotropy, the luminance is greatly reduced to 〜100 cd / m 2 even under the same driving conditions.

【0018】また1000時間経過後も50%程度に輝
度低下が起きる。移動度の減少に伴って発光効率の低下
ばかりでなく界面(発光層と液晶相)に蓄積された電荷
によって電荷注入効率が極度に低下するものと思われ
る。
Further, even after 1000 hours, the luminance is reduced to about 50%. It is considered that not only the luminous efficiency is reduced with the decrease in mobility but also the charge injection efficiency is extremely reduced due to the electric charges accumulated at the interface (the luminescent layer and the liquid crystal phase).

【0019】(実施の形態2)図2は本発明の一対の配
向膜層7によってディスコチック液晶を挟み電荷輸送層
とする有機発光素子の断面を示す。図1と同様に1は電
気絶縁性基板であり、2は対向電極のストライプ形状電
極である。3は正の誘電異方性をもったディスコチック
液晶であり、電荷輸送層を形成する。4は有機発光層で
あり、アルミニウムウ・キノリンを代表とする低分子の
蒸着層かあるいはポリ−p−フェニレンビニレン(PP
V)を代表とする高分子層を用いる。
(Embodiment 2) FIG. 2 shows a cross section of an organic light emitting device having a charge transport layer sandwiching a discotic liquid crystal between a pair of alignment film layers 7 of the present invention. As in FIG. 1, reference numeral 1 denotes an electrically insulating substrate, and reference numeral 2 denotes a stripe-shaped electrode as a counter electrode. Reference numeral 3 denotes a discotic liquid crystal having a positive dielectric anisotropy, which forms a charge transport layer. Reference numeral 4 denotes an organic light-emitting layer, which is a low-molecular vapor deposition layer represented by aluminum quinoline or poly-p-phenylenevinylene (PP
A polymer layer represented by V) is used.

【0020】5は、もう一方のストライプ形状電極で、
インジウム錫酸化物(ITO)を代表とする透明電極で
ある。さらに6は液晶層の膜厚を制御するためのスペー
サーである。7はディスコチック液晶の配向性を向上さ
せることが目的で導入した配向膜であり、ポリイミドを
代表とする高分子とする。通常の液晶表示素子と同様に
布でその表面を一定方向に擦るラビングを施す。
Reference numeral 5 denotes another stripe-shaped electrode.
This is a transparent electrode represented by indium tin oxide (ITO). Reference numeral 6 denotes a spacer for controlling the thickness of the liquid crystal layer. Reference numeral 7 denotes an alignment film introduced for the purpose of improving the alignment of the discotic liquid crystal, which is a polymer represented by polyimide. Rubbing is performed by rubbing the surface with a cloth in the same direction as a normal liquid crystal display element.

【0021】前記したディスコチック液晶の移動度と同
じ評価方法で、配向膜導入の効果を検討した。正の誘電
異方性△nを持つディスコチック液晶を配向膜で挟む
と、その移動度はμ=0.2cm2/V・sから0.5cm2/V・
sへと2.5倍増加した。
The effect of introducing an alignment film was examined by the same evaluation method as that for the discotic liquid crystal described above. When a discotic liquid crystal having a positive dielectric anisotropy Δn is sandwiched between alignment films, the mobility is μ = 0.2 cm 2 / V · s to 0.5 cm 2 / V ·
to 2.5 s.

【0022】これは配向膜によって、よりディスコチッ
ク液晶の秩序性が向上したためと考えられる。更にUS
P5,331,182の配向膜且つ発光層を兼用できる
ポリイミド材料を用いても、この移動度0.5cm2/V・sを
確認した。
This is presumably because the ordering of the discotic liquid crystal was further improved by the orientation film. Further US
This mobility of 0.5 cm 2 / V · s was confirmed even when a polyimide material which can also serve as an alignment film and a light emitting layer of P5,331,182 was used.

【0023】図2の有機発光素子を作製するため、図1
の有機発光素子と同じ工程(1)〜(3)を行う。その後両基
板面に配向膜としてポリイミド膜を約200オングスト
ローム形成する。レーヨン布を巻いたラビングローラー
によって、両基板の表面のポリイミド膜をラビング処理
する。この後の工程は前記した工程(4)となる。
In order to fabricate the organic light emitting device of FIG.
Perform the same steps (1) to (3) as for the organic light emitting device of (1). Thereafter, a polyimide film is formed on both substrate surfaces as an alignment film at about 200 angstroms. The polyimide film on the surfaces of both substrates is rubbed by a rubbing roller wound with rayon cloth. The subsequent step is the above-mentioned step (4).

【0024】製作した有機発光素子を駆動電圧10Vで
特性評価したところ、輝度3万cd/m2と配向膜7の導入
で3倍増加した。連続点灯も1000時間経過後で初期
の輝度の90%以上を維持していた。
When the characteristics of the manufactured organic light-emitting device were evaluated at a driving voltage of 10 V, the luminance was increased to 30,000 cd / m 2 and increased three-fold due to the introduction of the alignment film 7. The continuous lighting also maintained 90% or more of the initial luminance after 1000 hours.

【0025】また別の配向膜材料としてUSP5,33
1,182の配向膜且つ発光層を兼用できるポリイミド
材料を用いると、デバイス構造と工程は簡略化される。
As another alignment film material, USP 5,33
When a polyimide material that can also serve as the light emitting layer and the 1,182 alignment film is used, the device structure and the process are simplified.

【0026】(実施の形態3)図3は本発明のディスコ
チック液晶の電荷輸送層と高分子発光層と配向膜とマト
リックス状に配置した画素電極及び各画素を駆動するト
ランジスタから構成される1画素あたりの有機発光素子
の断面を示す。電気絶縁性基板1に各画素を駆動するト
ランジスタを形成する。活性半導体層がガラス基板に形
成できるp-Si半導体を用いた場合の素子構成例である。
(Embodiment 3) FIG. 3 is a diagram showing a structure in which a charge transport layer of a discotic liquid crystal, a polymer light emitting layer, an alignment film, pixel electrodes arranged in a matrix, and a transistor for driving each pixel according to the present invention. 2 shows a cross section of an organic light emitting element per pixel. A transistor for driving each pixel is formed on the electrically insulating substrate 1. This is an example of an element configuration in the case where a p-Si semiconductor whose active semiconductor layer can be formed on a glass substrate is used.

【0027】ソース電極8、ドレイン電極9、活性半導
体層10、ゲート電極11及びゲート絶縁膜12が構成
され、層間絶縁膜15を介してソース電極8はデータ線
13と、ドレイン電極9は画素電極14と結合される。
そしてパシベーション膜16が設けられる。基板面の全
面に配向膜7で覆う。この構成はアクティブマトリック
ス液晶表示素子と全く同じである。対向側の基板のガラ
ス基板1に透明電極5と発光層4を設け、基板間にディ
スコチック液晶3を注入する。尚、発光層4はUSP
5,331,182の配向膜且つ発光層を兼用できるポ
リイミド材料を用いる。
A source electrode 8, a drain electrode 9, an active semiconductor layer 10, a gate electrode 11 and a gate insulating film 12 are formed. The source electrode 8 is connected to the data line 13 via the interlayer insulating film 15, and the drain electrode 9 is connected to the pixel electrode 14 is combined.
Then, a passivation film 16 is provided. The entire surface of the substrate is covered with an alignment film 7. This configuration is exactly the same as the active matrix liquid crystal display device. A transparent electrode 5 and a light emitting layer 4 are provided on a glass substrate 1 on the opposite side, and a discotic liquid crystal 3 is injected between the substrates. The light emitting layer 4 is made of USP
A polyimide material that can also serve as a light emitting layer and 5,331,182 alignment films is used.

【0028】試作に用いた基板は表示有効面積が対角
5.0インチで画素数はSVGA(800×600)と
した。駆動電圧を10Vとして、動画表示を行ったとこ
ろ最大輝度が3万cd/m2で残像のない良好な画像が得ら
れた。
The substrate used in the prototype had a display effective area of 5.0 inches diagonally and the number of pixels was SVGA (800 × 600). When the driving voltage was set to 10 V and a moving image was displayed, the maximum luminance was 30,000 cd / m 2 and a good image without an afterimage was obtained.

【0029】[0029]

【発明の効果】以上のように本発明によれば、高移動度
な電荷輸送層によって、高効率な発光特性と、駆動電圧
の減少による消費電力の減少及び信頼性の向上が達成で
きた。また、製造方法も液晶表示素子と同じ工程が使
え、均一性と高歩留まりが可能となる。
As described above, according to the present invention, a high-mobility charge transporting layer achieves high-efficiency light-emitting characteristics, reduced power consumption due to reduced driving voltage, and improved reliability. In addition, the same manufacturing process as that of the liquid crystal display element can be used, and uniformity and high yield can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1によるディスコチック液
晶を電荷輸送層とした有機発光素子の断面図
FIG. 1 is a cross-sectional view of an organic light emitting device using a discotic liquid crystal as a charge transport layer according to a first embodiment of the present invention.

【図2】本発明の実施の形態2によるディスコチック液
晶を電荷輸送層とし、配向膜で挟む構造の有機発光素子
の断面図
FIG. 2 is a cross-sectional view of an organic light emitting device having a structure in which a discotic liquid crystal is used as a charge transport layer and is sandwiched between alignment films according to a second embodiment of the present invention.

【図3】本発明の実施の形態3によるディスコチック液
晶を電荷輸送層とし、トランジスタ駆動による有機発光
素子の断面図
FIG. 3 is a cross-sectional view of an organic light-emitting device driven by a transistor using a discotic liquid crystal as a charge transport layer according to a third embodiment of the present invention.

【図4】正の誘電異方性△nを持つディスコチック液晶
と負の誘電異方性△nを持つディスコチック液晶の電界
印加時の配向状態を示す原理図
FIG. 4 is a principle diagram showing an alignment state of a discotic liquid crystal having a positive dielectric anisotropy Δn and a discotic liquid crystal having a negative dielectric anisotropy Δn when an electric field is applied.

【符号の説明】[Explanation of symbols]

1 電気絶縁性基板 2 ストライプ電極 3 ディスコチック液晶 4 有機発光層 5 透明電極 6 スペーサー 7 配向膜 8 ソース電極 9 ドレイン電極 10 活性半導体層 11 ゲート電極 12 ゲート絶縁膜 13 データ線 14 画素電極 15 層間絶縁膜 16 パッシベーション膜 DESCRIPTION OF SYMBOLS 1 Electrically insulating substrate 2 Stripe electrode 3 Discotic liquid crystal 4 Organic light emitting layer 5 Transparent electrode 6 Spacer 7 Alignment film 8 Source electrode 9 Drain electrode 10 Active semiconductor layer 11 Gate electrode 12 Gate insulating film 13 Data line 14 Pixel electrode 15 Interlayer insulation Film 16 passivation film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 和廣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuhiro Nishiyama 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正の誘電異方性をもったディスコチック液
晶からなる液晶電荷輸送材料。
1. A liquid crystal charge transporting material comprising a discotic liquid crystal having a positive dielectric anisotropy.
【請求項2】ディスコチック液晶の層厚が0.5μmか
ら10μmであることを特長とする請求項1記載の液晶
電荷輸送材料。
2. The liquid crystal charge transport material according to claim 1, wherein the layer thickness of the discotic liquid crystal is 0.5 μm to 10 μm.
【請求項3】ディスコチック液晶を一対の配向膜層によ
って挟む液晶電荷輸送材料。
3. A liquid crystal charge transporting material in which a discotic liquid crystal is sandwiched between a pair of alignment film layers.
【請求項4】ディスコチック液晶の膜厚をスペーサーに
よって制限した請求項2記載の液晶電荷輸送材料。
4. The liquid crystal charge transport material according to claim 2, wherein the thickness of the discotic liquid crystal is limited by a spacer.
【請求項5】少なくとも一対の電極と、ディスコチック
液晶からなる電荷輸送層と、有機発光層からなる有機発
光素子。
5. An organic light emitting device comprising at least one pair of electrodes, a charge transport layer made of discotic liquid crystal, and an organic light emitting layer.
【請求項6】少なくとも一対の電極と、マトリックス状
に配置されたトランジスタとディスコチック液晶からな
る電荷輸送層と、有機発光層からなる有機発光素子。
6. An organic light emitting device comprising at least a pair of electrodes, a transistor arranged in a matrix and a charge transport layer made of discotic liquid crystal, and an organic light emitting layer.
JP08639397A 1997-04-04 1997-04-04 Liquid crystal charge transport materials and organic light emitting devices Expired - Fee Related JP3760555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08639397A JP3760555B2 (en) 1997-04-04 1997-04-04 Liquid crystal charge transport materials and organic light emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08639397A JP3760555B2 (en) 1997-04-04 1997-04-04 Liquid crystal charge transport materials and organic light emitting devices

Publications (2)

Publication Number Publication Date
JPH10282466A true JPH10282466A (en) 1998-10-23
JP3760555B2 JP3760555B2 (en) 2006-03-29

Family

ID=13885640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08639397A Expired - Fee Related JP3760555B2 (en) 1997-04-04 1997-04-04 Liquid crystal charge transport materials and organic light emitting devices

Country Status (1)

Country Link
JP (1) JP3760555B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164177A (en) * 1999-11-29 2002-06-07 Canon Inc Liquid crystal element
US6733849B2 (en) 2001-03-23 2004-05-11 Jsr Corporation High-speed charge transport material, production method thereof, photoelectric conversion device and electroluminescence device
KR100453360B1 (en) * 2001-04-18 2004-10-15 비오이 하이디스 테크놀로지 주식회사 Apparatus for Thin Film Transistor Liquid Crystal Display
KR100583559B1 (en) * 1998-10-20 2006-10-24 삼성전자주식회사 Electroluminescent type back light source device and liquid crystal display module using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583559B1 (en) * 1998-10-20 2006-10-24 삼성전자주식회사 Electroluminescent type back light source device and liquid crystal display module using the same
JP2002164177A (en) * 1999-11-29 2002-06-07 Canon Inc Liquid crystal element
JP4717198B2 (en) * 1999-11-29 2011-07-06 キヤノン株式会社 Organic electroluminescence device
US6733849B2 (en) 2001-03-23 2004-05-11 Jsr Corporation High-speed charge transport material, production method thereof, photoelectric conversion device and electroluminescence device
KR100453360B1 (en) * 2001-04-18 2004-10-15 비오이 하이디스 테크놀로지 주식회사 Apparatus for Thin Film Transistor Liquid Crystal Display

Also Published As

Publication number Publication date
JP3760555B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP4085438B2 (en) Organic thin film transistor, liquid crystal device and organic light emitting device
JP4536184B2 (en) Active matrix display device
US7576812B2 (en) Liquid crystal display device and method for fabricating the same
US7501658B2 (en) Electro-luminescence device including a thin film transistor and method of fabricating an electro-luminescence device
JPH11510272A (en) Improved TFT, method of manufacturing the TFT and matrix display including the TFT
US6685524B2 (en) Process for producing electroluminescent device with liquid crystal layer
JP2004354468A (en) Curved surface liquid crystal panel, liquid crystal display device, device and method for manufacturing curved surface liquid crystal panel, and method of manufacturing liquid crystal display device
US6897931B2 (en) In-plane switching mode liquid crystal display device and method for fabricating the same
JP3760555B2 (en) Liquid crystal charge transport materials and organic light emitting devices
JP2001527225A (en) Multipolar liquid crystal display device having alignment layer
US20180350283A1 (en) Vcom drift improvements by new design and compensation techniques
US6433357B1 (en) Display device
CN110071165B (en) Array substrate, manufacturing method thereof and display panel
JPH10209459A (en) Organic thin film transistor, fabrication thereof, liquid crystal element and organic light emitting element
JP2002196704A (en) Organic el panel and method for manufacturing the same
JP2006058730A (en) Display device
JP2004260121A (en) Organic semiconductor element and method for manufacturing the same, and display unit using the same
JP4423585B2 (en) Organic EL device and method for manufacturing the same
JP2004152595A (en) Display apparatus
JP2002270378A (en) Electroluminescent element
JP4857516B2 (en) Method for manufacturing organic semiconductor element
JPH01259323A (en) Liquid crystal display device
JPH02193121A (en) Thin film transistor panel
JPH0277729A (en) Flat panel type display
Sato et al. Flexible displays for digital tv broadcasting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees