JPH10280003A - Carbon-coated metallic grain and production thereof - Google Patents

Carbon-coated metallic grain and production thereof

Info

Publication number
JPH10280003A
JPH10280003A JP9089701A JP8970197A JPH10280003A JP H10280003 A JPH10280003 A JP H10280003A JP 9089701 A JP9089701 A JP 9089701A JP 8970197 A JP8970197 A JP 8970197A JP H10280003 A JPH10280003 A JP H10280003A
Authority
JP
Japan
Prior art keywords
carbon
thermoplastic resin
particles
metal
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9089701A
Other languages
Japanese (ja)
Inventor
Michio Inagaki
道夫 稲垣
Toshiaki Sogabe
敏明 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP9089701A priority Critical patent/JPH10280003A/en
Publication of JPH10280003A publication Critical patent/JPH10280003A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce special metallic grains (carbon-coated metallic grains) excellent in chemical resistance and oxidation resistance and to provide a method for producing the same. SOLUTION: This special metallic grains are composed of carbon-coated metallic grains in which the surfaces of metallic grains are coated with carbon coating. Furthermore, as for the production thereof, a mixture of the grains of metallic oxide and the grains of thermoplastic resin (preferably of polyvinyl chloride) is subjected to heating treatment in an atmosphere of an inert gas (preferably of gaseous argon), and the thermoplastic resin is subjected to liquidus carbonization by which the reduction of the metallic oxide and the carbonization of the thermoplastic resin are simultaneously progressed to obtain the carbon- coated metallic grains.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過酷な化学的環境
下でも金属材料本来の特性を安定して保持することがで
きる、特に耐薬品性及び耐酸化性に優れた特殊な金属粒
子及びその製造方法に関するものである。
The present invention relates to a special metal particle having excellent chemical resistance and oxidation resistance, capable of stably maintaining the original properties of a metal material even in a severe chemical environment, and a method for producing the same. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】金属材料は、一般に大気・水・化学薬品
・高温気体・土壌などと直接触れ合う環境下では、その
表面から徐々に電気化学的な腐食が始まり、特に化学薬
品や酸化による腐食はその程度と進行が著しい。このよ
うな腐食が進行すると、当然の結果として金属材料本来
の特性も損なわれていく。そこで、このような化学薬品
による腐食や酸化が問題となるような環境下に配置され
る各種の機器や装置に対しては、耐薬品性や耐酸化性を
付与するための手段が講じられる。
2. Description of the Related Art Metallic materials generally begin to corrode electrochemically gradually from the surface in an environment where they come into direct contact with the atmosphere, water, chemicals, high-temperature gas, soil, and the like. The degree and progress are remarkable. When such corrosion progresses, as a result, the inherent characteristics of the metal material are also impaired. Therefore, means for imparting chemical resistance and oxidation resistance is taken for various types of equipment and devices arranged in an environment where corrosion and oxidation due to such chemicals pose a problem.

【0003】そのような手段としては、通常、耐薬品性
又は耐酸化性に優れた金属やセラミック等の薄膜を基材
たる金属材料(機械構造材)の表面に形成することが有
効とされており、これまでにも種々の形成方法が提案さ
れ、実施されている。例えば、真空蒸着法、スパッタ
法、イオンプレーティング法、各種CVD法、プラズマ
法などが挙げられる。
As such means, it is usually effective to form a thin film of a metal or ceramic having excellent chemical resistance or oxidation resistance on the surface of a metal material (machine structural material) as a base material. Thus, various forming methods have been proposed and implemented so far. For example, a vacuum deposition method, a sputtering method, an ion plating method, various CVD methods, a plasma method and the like can be mentioned.

【0004】しかし、各種の機器や装置はその形状、大
きさ等がまちまちであり、特に複雑な形状の装置や大き
な表面積を有する装置に対し、その表面に金属やセラミ
ック等の薄膜を均一に形成することは非常に困難であ
る。しかも、上記の形成方法を実施するためには、大規
模な形成装置を必要とし、さらに形成速度に限界がある
ため、生産性が非常に悪く、結局、耐薬品性又は耐酸化
性付与のためのコストが非常に高くなるという問題もあ
る。
[0004] However, various types of equipment and devices have different shapes, sizes, and the like. Particularly, for devices having a complicated shape or a device having a large surface area, a thin film of metal or ceramic is uniformly formed on the surface thereof. It is very difficult to do. Moreover, in order to carry out the above-described forming method, a large-scale forming apparatus is required, and since the forming speed is limited, productivity is very poor, and eventually, chemical resistance or oxidation resistance is imparted. However, there is also a problem that the cost is extremely high.

【0005】そこで、こうした事情から機械構造用部材
とする前の金属粒子の段階で、その表面に薄膜を形成し
て金属粒子そのものが耐薬品性や耐酸化性を帯びたもの
とすることができれば上記諸問題の解決に役立つはずと
の見地から、金属粒子の表面に異質な材料(耐環境特性
に優れた材料)の薄膜を形成し、このような耐環境特性
材料を被覆した金属粒子を機械構造材(二次加工品)の
原料として利用するという着想(技術的思想)自体は、
存在していた。
[0005] In view of these circumstances, if it is possible to form a thin film on the surface of the metal particles at the stage of forming the metal particles before forming the member for a mechanical structure, the metal particles themselves can have chemical resistance and oxidation resistance. From the viewpoint of solving the above-mentioned problems, a thin film of a foreign material (a material with excellent environmental resistance) is formed on the surface of the metal particle, and the metal particle coated with such an environmental resistance material is machined. The idea (technical idea) of using it as a raw material for structural materials (secondarily processed products)
Existed.

【0006】[0006]

【発明が解決しようとする課題】しかし、その着想を具
体化した手段(実用的手段)は、これまで全く存在せ
ず、従って表面に耐環境性材料の薄膜を形成した実用可
能な金属粒子も未だ出現していない。これは、金属粒子
の場合、その表面が活性状態にあるため取り扱いが非常
に難しく、その表面に薄膜を均一に形成することが極め
て困難であったことによるものと考えられる。本発明者
らは、ここに初めてその具体化した手段(実用的手段)
を開示するものであるが、従来の着想(外部から物理的
な作用で金属粒子の表面に薄膜を形成する思想)とは全
く異なる発想に基づいて完成したものである。
However, there has been no means (practical means) embodying the idea so far, and therefore, there is no practical metal particle having a thin film of an environment-resistant material formed on its surface. Has not yet appeared. This is considered to be due to the fact that in the case of metal particles, the surface is in an active state, so that handling is very difficult, and it is extremely difficult to form a thin film uniformly on the surface. The present inventors have here first embodied means (practical means)
However, the present invention has been completed based on a completely different idea from the conventional idea (the idea of forming a thin film on the surface of metal particles by physical action from the outside).

【0007】即ち、本発明の目的とするところは、耐薬
品性や耐酸化性に優れた特殊な金属粒子を提供するこ
と、及びその特殊な金属粒子を簡単に効率良く得ること
ができる製造方法を提供する点にある。
That is, an object of the present invention is to provide special metal particles having excellent chemical resistance and oxidation resistance, and to provide a method for producing such special metal particles easily and efficiently. The point is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成し得た本
発明の一つは、金属粒子の表面が炭素の被膜で覆われて
なる炭素被覆金属粒子である。また他の発明は、この炭
素被覆金属粒子の製造方法の発明であり、金属酸化物の
粒子と熱可塑性樹脂の粒子との混合物を不活性ガス雰囲
気中で加熱処理し、前記熱可塑性樹脂を液相炭素化する
ことを基本的特徴とする。
Means for Solving the Problems One of the objects of the present invention, which has achieved the above object, is a carbon-coated metal particle in which the surface of the metal particle is covered with a carbon film. Still another invention is an invention of a method for producing the carbon-coated metal particles, in which a mixture of metal oxide particles and thermoplastic resin particles is heated in an inert gas atmosphere, and the thermoplastic resin is liquidized. The basic feature is that it is carbonized.

【0009】本発明者らは、かねてより炭素材や炭素複
合材等の物性改良技術の研究を進めており、特に炭素−
金属複合材の開発研究の一環として本発明者らも、上述
した従来の着想を具体化する手段を見い出すべく種々実
験を行ってきたが、満足のいく炭素被覆金属粒子は得ら
れなかった。その主因が、活性状態の金属粒子を扱った
ことにあると判断されたことから、化学的に安定な金属
酸化物としての粒子を扱うこととし、この金属酸化物を
還元して金属粒子に形態変化させると同時に、この形態
変化した金属粒子の表面を炭素の被膜で覆うことができ
るような技術の開発を目指しさらに実験研究を行った。
The present inventors have long been studying techniques for improving the physical properties of carbon materials and carbon composite materials, and in particular, carbon-
As a part of research and development of metal composites, the present inventors have also conducted various experiments to find a means for embodying the above-mentioned conventional idea, but have not been able to obtain satisfactory carbon-coated metal particles. Since it was determined that the main reason was to handle metal particles in the active state, we decided to treat particles as chemically stable metal oxides, and reduced this metal oxide to form metal particles. At the same time, we conducted further experimental research with the aim of developing a technology that could cover the surface of the metal particles that had changed shape with a carbon coating.

【0010】その結果、金属酸化物の粒子を熱可塑性樹
脂でコートし加熱処理すると、金属酸化物の還元と熱可
塑性樹脂の炭素化が同時に進行して、表面が炭素被膜で
覆われた金属粒子が簡単に得られることを見い出し、本
発明を完成したものである。
As a result, when the metal oxide particles are coated with a thermoplastic resin and heat-treated, the reduction of the metal oxide and the carbonization of the thermoplastic resin proceed simultaneously, and the metal particles whose surfaces are covered with the carbon coating are formed. Have been found to be easily obtained, and the present invention has been completed.

【0011】本発明において金属酸化物としては、Fe
3 4 、Fe2 3 、CoO、Co 3 4 、NiO、C
2 O、CuOなどが代表的に挙げられる。また金属酸
化物の粒子の大きさとしては、特に制限はないが、汎用
性を考慮すると、10〜100μmの平均粒径のものが
望ましい。
In the present invention, the metal oxide may be Fe
ThreeOFour, FeTwoOThree, CoO, Co ThreeOFour, NiO, C
uTwoO, CuO and the like are typically given. Also metal acid
There is no particular limitation on the size of the compound particles,
Considering the properties, those having an average particle size of 10 to 100 μm
desirable.

【0012】一方、熱可塑性樹脂についても、特に制限
はないが、金属酸化物粒子をコートしたときのコート膜
にムラが生じにくいという利点を考慮すると、ポリビニ
ルクロライド(PVC)が望ましい。また、熱可塑性樹
脂の粒子の大きさであるが、目的とする炭素被覆金属粒
子の炭素被覆層の厚みとしては、この炭素被覆層が緻密
ゆえに5μm程度もあれば耐薬品性等の性能を十分発揮
しうるので、この5μm程度の厚みの被覆層をほぼ均一
にかつ確実に形成するために必要十分な粒子の大きさで
あればよい。例えば、金属酸化物の粒子が10〜100
μm程度のものである場合は、100〜200μm程度
のものが望ましい。
On the other hand, there is no particular limitation on the thermoplastic resin, but polyvinyl chloride (PVC) is desirable in view of the advantage that the coating film formed by coating the metal oxide particles is less likely to have unevenness. In addition, although the size of the thermoplastic resin particles is sufficient, if the carbon coating layer of the target carbon-coated metal particles has a thickness of about 5 μm because the carbon coating layer is dense, performance such as chemical resistance is sufficient. Since it is possible to exert the effect, the particle size may be sufficient and sufficient to form the coating layer having a thickness of about 5 μm substantially uniformly and reliably. For example, when the metal oxide particles are 10 to 100
When the thickness is about μm, the thickness is preferably about 100 to 200 μm.

【0013】金属酸化物粒子に対する熱可塑性樹脂粒子
の混合割合は、20〜80重量%程度が望ましい。20
重量%未満であると、樹脂が金属酸化物粒子全体に十分
には行き渡らず、均質な被覆層が得られないからであ
り、一方、80重量%を超えると、金属酸化物粒子に対
して膜厚が大きくなりすぎて、被膜自体に内部応力が発
生しやすくなるからである。
The mixing ratio of the thermoplastic resin particles to the metal oxide particles is preferably about 20 to 80% by weight. 20
When the amount is less than 80% by weight, the resin does not sufficiently spread over the entire metal oxide particles, and a uniform coating layer cannot be obtained. This is because the thickness becomes too large and internal stress is easily generated in the coating itself.

【0014】上記の条件を満足するように得られた、金
属酸化物粒子と熱可塑性樹脂との混合物を不活性ガス雰
囲気内に配置した後、昇温速度50〜500℃/hrで
加熱し、800〜1500℃に達した後、一定時間保持
する。いわゆる焼成操作を施すわけであるが、この焼成
操作が終了するまでの間に金属酸化物は還元されて金属
粒子となり、同時に熱可塑性樹脂は液相炭素化が進み、
最終的に還元された金属粒子の表面が3〜20μm程度
の炭素の被膜で覆われた状態となる。
After the mixture of the metal oxide particles and the thermoplastic resin obtained so as to satisfy the above conditions is placed in an inert gas atmosphere, the mixture is heated at a heating rate of 50 to 500 ° C./hr, After the temperature reaches 800 to 1500 ° C., the temperature is maintained for a certain time. Although the so-called baking operation is performed, the metal oxide is reduced to metal particles until the baking operation is completed, and at the same time, the thermoplastic resin undergoes liquid phase carbonization,
Finally, the surface of the reduced metal particles is covered with a carbon coating of about 3 to 20 μm.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 (実施例)プラスチック製容器にFe3 4 の粒子(平
均粒径は約50μm)を50g入れ、さらにPVCの粉
末(平均粒径は100〜200μm)を43重量%を入
れた後容器を閉じて、10分間、機械的に揺動して両者
を均一に混合した。次に、混合粉体を電気炉内に設置
し、炉内にアルゴンガスを流しつつ、500℃/hrの
割合で炉内を昇温し、1000℃に達した後、1時間保
持して熱処理を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. (Example) 50 g of particles of Fe 3 O 4 (average particle size is about 50 μm) are put in a plastic container, and 43% by weight of PVC powder (average particle size is 100 to 200 μm) is added, and then the container is closed. Then, they were shaken mechanically for 10 minutes to uniformly mix the two. Next, the mixed powder was placed in an electric furnace, and the temperature of the furnace was raised at a rate of 500 ° C./hr while flowing argon gas into the furnace. Was done.

【0016】被熱処理粉体の周囲は、約10μmの厚み
の炭素で均一に覆われているにもかかわらず、粉体はす
べて磁性体であり、又いくつか粉体をサンプルとしてそ
のX線回折により粉体内の金属粒子の成分分析を行っ
た。その結果を示したものが、図1(X線回折図)の中
段部のピーク図(図中「実施例」で明示)である。これ
によれば、粉体の内部の金属粒子はすべてα−Feであ
ることから、金属酸化物(Fe3 4 )が十分還元さ
れ、純粋な金属粒子(α−Fe)、つまり活性のある金
属粒子になっていることが分かる。
Although the periphery of the powder to be heat-treated is uniformly covered with carbon having a thickness of about 10 μm, all the powders are magnetic substances. In this way, the component analysis of the metal particles in the powder was performed. FIG. 1 (X-ray diffractogram) shows a peak diagram at the middle part (shown as “Example” in the figure). According to this, since all the metal particles inside the powder are α-Fe, the metal oxide (Fe 3 O 4 ) is sufficiently reduced and pure metal particles (α-Fe), that is, active It turns out that it has become a metal particle.

【0017】(比較例)原料としてFe3 4 の粒子
(平均粒径は約50μm)だけを使用すること以外、上
記の実施例と同様の熱処理操作を施し、被熱処理粉体に
ついて、実施例と同様にX線回折により被熱処理粉体の
成分分析を行った。その結果を示したものが、図1(X
線回折図)の下段部のピーク図(図中「比較例」で明
示)である。この図から明らかなように、Fe3 4
子を単独で熱処理しただけでは、Fe3 4 が一部還元
されてα−Fe2 3 が形成されるにすぎないことが分
かる。なお、図1の上段部のピーク図は、Fe3 4
子(常温)のX線回折ピーク図である。
(Comparative Example) The same heat treatment as in the above example was performed except that only Fe 3 O 4 particles (average particle size was about 50 μm) were used as a raw material. In the same manner as in the above, the component analysis of the heat-treated powder was performed by X-ray diffraction. FIG. 1 (X
FIG. 3 is a peak diagram (clearly indicated by “Comparative Example” in the figure) in the lower part of the line diffraction diagram). As is clear from this figure, if the Fe 3 O 4 particles are heat-treated alone, the Fe 3 O 4 is only partially reduced to form α-Fe 2 O 3 . Note that the peak diagram in the upper part of FIG. 1 is an X-ray diffraction peak diagram of Fe 3 O 4 particles (normal temperature).

【0018】[0018]

【発明の効果】以上説明したように、本発明の一つは、
活性状態にある金属粒子の表面を炭素被膜で均一に覆っ
た特殊な金属粒子であるので、その金属本来の特性(例
えば、常磁性、電気伝導性など)を安定して保持しつ
つ、耐薬品性能及び耐酸化性能を備えた金属粒子とする
ことができる。従って、この炭素被覆金属粒子を使用す
ると、化学薬品による腐食や酸化が問題となる環境下に
配置される各種の形状、大きさの機器、装置等の表面保
護構造(部材)を自在かつ簡単に装備することも可能と
なる。
As described above, one aspect of the present invention is as follows.
Since the metal particles in the active state are special metal particles whose surfaces are uniformly covered with a carbon coating, the chemical properties of the metal particles can be stably maintained while maintaining the original characteristics of the metal (eg, paramagnetism, electrical conductivity, etc.). Metal particles having performance and oxidation resistance can be obtained. Therefore, the use of the carbon-coated metal particles makes it possible to freely and easily form surface protection structures (members) for devices and devices of various shapes and sizes arranged in an environment where corrosion and oxidation by chemicals pose a problem. It is also possible to equip it.

【0019】また、本発明の製造方法は、従来の着想
(外部から物理的な作用で金属粒子の表面に薄膜を形成
する思想)とは全く異なる発想、つまり金属酸化物の還
元と熱可塑性樹脂の炭素化という化学的な作用を同時に
進行させることにより、活性化された金属粒子の表面を
炭素被膜で均一に覆う方法であるため、従来のように大
規模な薄膜形成装置を必要とせず、既設の焼成装置を利
用し操作条件を制御することで容易に製造することがで
き、本発明の特殊金属粒子を非常に簡単に効率良く、従
って安価に得ることができる。
Further, the production method of the present invention is a completely different idea from the conventional idea (the idea of forming a thin film on the surface of metal particles by external physical action), that is, reduction of metal oxide and thermoplastic resin. Since the chemical action of carbonization proceeds simultaneously, the surface of the activated metal particles is uniformly covered with a carbon coating, so that a large-scale thin film forming apparatus is not required as in the related art. It can be easily manufactured by controlling the operating conditions using an existing sintering apparatus, and the special metal particles of the present invention can be obtained very simply, efficiently, and inexpensively.

【0020】また、上記の熱可塑性樹脂としてポリビニ
ルクロライドを使用すると、金属粒子を覆う炭素被膜と
して膜厚がより均一で表面がより一層滑らかなものが得
られるので、その分耐薬品性能や耐酸化性能の向上を期
待することができる。さらに、熱処理時に流す不活性ガ
スとして汎用性のあるアルゴンガスを使用すれば、製造
コストの低減化に貢献することができる。
Further, when polyvinyl chloride is used as the above-mentioned thermoplastic resin, a carbon coating covering metal particles can be obtained with a more uniform film thickness and a smoother surface. An improvement in performance can be expected. Further, if a versatile argon gas is used as the inert gas flowing during the heat treatment, it is possible to contribute to a reduction in manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例で使用した金属酸化物(Fe
3 4 )についてのX線回折図であり、未処理の金属酸
化物、本発明方法に従って得られた炭素被覆金属粒子、
金属酸化物だけを熱処理して得られた金属酸化物のそれ
ぞれについてのX線回折ピークを、上段、中段、下段に
示した図である。
FIG. 1 shows a metal oxide (Fe) used in Examples and Comparative Examples.
FIG. 3 is an X-ray diffraction diagram for 3 O 4 ), showing untreated metal oxide, carbon-coated metal particles obtained according to the method of the invention,
It is the figure which showed the X-ray-diffraction peak about each of the metal oxide obtained by heat-processing only the metal oxide in the upper part, the middle part, and the lower part.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属粒子の表面が炭素の被膜で覆われて
なることを特徴とする炭素被覆金属粒子。
1. A carbon-coated metal particle, wherein the surface of the metal particle is covered with a carbon coating.
【請求項2】 金属酸化物の粒子と熱可塑性樹脂の粒子
との混合物を不活性ガス雰囲気中で加熱処理し、前記熱
可塑性樹脂を液相炭素化することを特徴とする炭素被覆
金属粒子の製造方法。
2. A process for heating a mixture of metal oxide particles and thermoplastic resin particles in an inert gas atmosphere to convert the thermoplastic resin into a liquid phase carbon. Production method.
【請求項3】 前記熱可塑性樹脂がポリビニルクロライ
ドである請求項2記載の炭素被覆金属粒子の製造方法。
3. The method for producing carbon-coated metal particles according to claim 2, wherein said thermoplastic resin is polyvinyl chloride.
【請求項4】 前記不活性ガスがアルゴンガスである請
求項2又は請求項3に記載の炭素被覆金属粒子の製造方
法。
4. The method for producing carbon-coated metal particles according to claim 2, wherein the inert gas is an argon gas.
JP9089701A 1997-04-08 1997-04-08 Carbon-coated metallic grain and production thereof Pending JPH10280003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9089701A JPH10280003A (en) 1997-04-08 1997-04-08 Carbon-coated metallic grain and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9089701A JPH10280003A (en) 1997-04-08 1997-04-08 Carbon-coated metallic grain and production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006353830A Division JP2007126755A (en) 2006-12-28 2006-12-28 Carbon-coated metal particle and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JPH10280003A true JPH10280003A (en) 1998-10-20

Family

ID=13978090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9089701A Pending JPH10280003A (en) 1997-04-08 1997-04-08 Carbon-coated metallic grain and production thereof

Country Status (1)

Country Link
JP (1) JPH10280003A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003987A (en) * 1998-06-16 2000-01-07 Sumitomo Metal Mining Co Ltd Thermally conductive resin paste
JP2008308733A (en) * 2007-06-14 2008-12-25 Toda Kogyo Corp Nickel powder coated with carbon and production method therefor
CN102806356A (en) * 2012-07-30 2012-12-05 西安科技大学 Preparation method of carbon-coated copper nanoparticles with core-shell structures
CN102990075A (en) * 2012-11-05 2013-03-27 四川大学 Method for preparing carbon-coated iron nano particles
CN109332681A (en) * 2018-12-06 2019-02-15 河北工业大学 Carbon-coated iron-tri-ferrous carbide magnetic nanoparticle preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003987A (en) * 1998-06-16 2000-01-07 Sumitomo Metal Mining Co Ltd Thermally conductive resin paste
JP2008308733A (en) * 2007-06-14 2008-12-25 Toda Kogyo Corp Nickel powder coated with carbon and production method therefor
CN102806356A (en) * 2012-07-30 2012-12-05 西安科技大学 Preparation method of carbon-coated copper nanoparticles with core-shell structures
CN102990075A (en) * 2012-11-05 2013-03-27 四川大学 Method for preparing carbon-coated iron nano particles
CN109332681A (en) * 2018-12-06 2019-02-15 河北工业大学 Carbon-coated iron-tri-ferrous carbide magnetic nanoparticle preparation method

Similar Documents

Publication Publication Date Title
Verma et al. High-resistivity nickel–zinc ferrites by the citrate precursor method
KR101795420B1 (en) Manufacturing method of cathode active material powder for lithium secondary battery
TWI546254B (en) Method of surface modifying graphene
US3645894A (en) Free-flowing plasma spray powder
Gusev et al. Synthesis of Ti4O7 magneli phase using mechanical activation
JPH10280003A (en) Carbon-coated metallic grain and production thereof
JP2007126755A (en) Carbon-coated metal particle and method for manufacturing the same
CN111508676A (en) Small-size distribution network annular zinc oxide resistance card and preparation method thereof
TW200901535A (en) Novel cocrystalline compounds and electrochemical redox active material employing the same
CN106424751A (en) Preparation method of nano copper powder
Nagai et al. Fabrication and evaluation of porous Al2O3 AgI composites
Yufeng et al. Magnetic characteristics of LaMnO3+ δ thin films deposited by RF magnetron sputtering in an O2/Ar mixture gas
KR101620032B1 (en) FeSiAl soft magnetic composite powders on which an heat-resistant oxide insulation film is formed, and powder core thereof
JPS61295371A (en) Production of aluminum material having aluminum nitride layer
US7118728B2 (en) Method and apparatus for making ferrite material products and products produced thereby
Tofighi et al. Note on the condensation of the vapor phase above a melt of iron oxide in a solar parabolic concentrator
Srivastava et al. Topotaxial growth of α-Fe2O3 nanowires on iron substrate in thermal annealing method
JPH02168698A (en) Conductive resin film and manufacture thereof
JP2010120786A (en) Oxide hollow particles, production method thereof and apparatus for manufacturing oxide hollow particles
JPS5613411A (en) Manufacture of magnetic powder of metallic iron
JP2020023744A (en) Composite iron oxide thin film and method for producing the same
JP2565894B2 (en) Method for producing oxide superconducting material
JP2614810B2 (en) Method for producing single-phase magnetite powder
JP7243282B2 (en) FeNi ordered alloy, method for producing FeNi ordered alloy, and magnetic material containing FeNi ordered alloy
KR20130098452A (en) Particulate alloy thin film and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031