JPH10274711A - Polarizing element and optical isolator using the same - Google Patents

Polarizing element and optical isolator using the same

Info

Publication number
JPH10274711A
JPH10274711A JP8066297A JP8066297A JPH10274711A JP H10274711 A JPH10274711 A JP H10274711A JP 8066297 A JP8066297 A JP 8066297A JP 8066297 A JP8066297 A JP 8066297A JP H10274711 A JPH10274711 A JP H10274711A
Authority
JP
Japan
Prior art keywords
substrate
polarizing element
metal particles
metal
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8066297A
Other languages
Japanese (ja)
Inventor
Masato Shintani
真人 新谷
Yasushi Sato
恭史 佐藤
Toru Fukano
徹 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8066297A priority Critical patent/JPH10274711A/en
Publication of JPH10274711A publication Critical patent/JPH10274711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the extinction ratio, to eliminate the need to worry about peeling off a substrate, and to lower the insertion loss by setting the quantity density of metal particles in a metal particle layer below a specific value along a substrate surface. SOLUTION: The polarizing element 1 is formed by providing a polarizing layer 3 on at least one main surface of a substrate 2 of a light-transmissive dielectric, and the polarizing layer 3 is formed by laminating metal particle layers 4 where shape-anisotropic metal particles 4a of <=37/μm<2> (square micron), more preferably, 5 to 37/μm<2> in quantity density along the substrate surface and light-transmissive dielectric layers 5 alternately on the dielectric substrate 2. Further, as an aspect ratio of the long-axis length to the short-axis length of the metal particles 4a is higher, the elongation rate of the substrate 2 increases to make the elongation difficult and since the increase rate of the extinction ratio decreases in an area of a high aspect area, the aspect ratio is suitably 3 to 30, specially preferably, about 15 to 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体中に異方性
を有する金属粒子が分散された偏光素子とそれを利用し
た光アイソレータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing element in which metal particles having anisotropy are dispersed in a dielectric and an optical isolator using the same.

【0002】[0002]

【従来の技術】偏光素子は特定の方向に偏光した光を取
り出すために用いるもので、光通信,光センサ,光干渉
計等に使用されている。例えば、光通信の場合、偏光素
子は光アイソレータの主要部品である。光アイソレータ
は、例えばホルダ内に第1の偏光素子とファラデー回転
子と第2の偏光素子とを光軸上に配置し、周囲に同軸の
マグネットを配置したものである。
2. Description of the Related Art Polarizing elements are used to extract light polarized in a specific direction, and are used in optical communications, optical sensors, optical interferometers, and the like. For example, in the case of optical communication, a polarizing element is a main component of an optical isolator. The optical isolator has, for example, a first polarizing element, a Faraday rotator, and a second polarizing element arranged on the optical axis in a holder, and a coaxial magnet arranged around the first polarizing element, the Faraday rotator, and the second polarizing element.

【0003】ここで、ホルダには例えばNi−Fe合金
等を用い、偏光素子は低融点ガラスまたは半田でホルダ
に溶着して気密に封止する。偏光性能は光通信に用いる
波長での値が重要であり、光アイソレータはレーザダイ
オード等とを組合わせて用い、第1の偏光素子で特定の
方向に偏光した光を取り出し、ファラデー回転子で偏光
方向を回転させ、第2の偏光素子で偏光方向を回転させ
た光を取り出すようにしたものである。
Here, for example, a Ni--Fe alloy or the like is used for the holder, and the polarizing element is hermetically sealed by welding to the holder with low melting point glass or solder. The value of the polarization performance at the wavelength used for optical communication is important, and the optical isolator uses a combination of a laser diode and the like, takes out light polarized in a specific direction with the first polarizing element, and polarizes it with the Faraday rotator. The direction is rotated, and light whose polarization direction is rotated by the second polarizing element is extracted.

【0004】現在、実用化されている偏光素子は、主と
してガラス中に回転楕円体状の銀粒子を分散させたもの
である(特公平2−40619号公報,対応米国特許U
SP4,486,213、及びUSP4,479,81
9)。この偏光素子は、銀とハロゲンとを有するガラス
素地を熱処理してハロゲン化銀の粒子を析出させ、加熱
下に延伸してハロゲン化銀粒子を回転楕円体状に引き延
ばす。この過程でハロゲン化銀粒子に異方性が生じる。
次いで、還元雰囲気下で加熱し、ハロゲン化銀を金属銀
へ還元する。
At present, a polarizing element put to practical use is one in which spheroidal silver particles are dispersed mainly in glass (Japanese Patent Publication No. 2-40619, corresponding US Pat.
SP4,486,213 and USP4,479,81
9). This polarizing element heat-treats a glass substrate having silver and halogen to precipitate silver halide particles, and stretches the particles under heating to expand the silver halide particles into a spheroid. In this process, silver halide grains become anisotropic.
Then, the mixture is heated under a reducing atmosphere to reduce silver halide to metallic silver.

【0005】ところが、この偏光素子ではアスペクト比
(長軸長さと短軸長さとの比)が不均一で、短軸や長軸
の長さが均一な銀粒子を析出させることが困難である。
さらに、ガラス内部でのハロゲン化銀の還元が困難で不
透明なハロゲン化銀が残留する。また、ハロゲン化銀の
還元の過程でガラスが収縮することに伴い、ガラス表面
がポーラスになり長期安定性が低下する。
However, in this polarizing element, the aspect ratio (the ratio between the major axis length and the minor axis length) is not uniform, and it is difficult to deposit silver particles having uniform minor axis and major axis lengths.
Further, opaque silver halide remains because it is difficult to reduce the silver halide inside the glass. Further, as the glass shrinks during the reduction of silver halide, the glass surface becomes porous and the long-term stability is reduced.

【0006】このような問題点を解決するために、真空
蒸着やスパッタリング等の薄膜形成プロセスを用いて、
偏光素子を製造することが提案されている(1990年
電子情報通信学会,秋季大会,講演予稿集C−21
2)。この提案では、ガラス等の誘電体基板上に金属層
を真空蒸着で設け、ガラス等の誘電体層をスパッタリン
グ等でその上に積層する。そして、金属層と誘電体層を
交互に数層形成する。次に加熱下で基板を引き延ばし、
金属層を不連続で島状の金属粒子の層に変形する。金属
粒子層での各金属粒子は延伸方向に引き延ばされて回転
楕円体状になり、偏光性能が発現する。
In order to solve such problems, a thin film forming process such as vacuum evaporation or sputtering is used.
It has been proposed to manufacture a polarizing element (IEICE, Autumn Meeting, Proceedings C-21, 1990)
2). In this proposal, a metal layer is provided on a dielectric substrate such as glass by vacuum deposition, and a dielectric layer such as glass is laminated thereon by sputtering or the like. Then, several metal layers and dielectric layers are alternately formed. Next, stretch the substrate under heating,
The metal layer is transformed into a discontinuous, island-like layer of metal particles. Each metal particle in the metal particle layer is elongated in the stretching direction and becomes a spheroid, and the polarization performance is exhibited.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記薄
膜形成プロセスを用いた偏光素子は、次に述べるような
問題点がある。
However, the polarizing element using the above-described thin film forming process has the following problems.

【0008】1)金属粒子層と誘電体層とを交互に積層
した後に、加熱工程及び延伸工程を施すので、最終的に
適当な大きさの金属粒子にさせることが困難となり、偏
光方向とそれに垂直な方向との間の消光比が低い。
1) Since the heating step and the stretching step are performed after alternately laminating the metal particle layers and the dielectric layers, it is difficult to finally produce metal particles having an appropriate size. The extinction ratio between the vertical direction is low.

【0009】2)消光比が低いため、積層数を増やして
消光比を増加させる必要があるが、積層数を増やすと基
板からの剥離が生ずるなどして積層体が破壊される。
2) Since the extinction ratio is low, it is necessary to increase the extinction ratio by increasing the number of stacked layers. However, if the number of stacked layers is increased, the stacked body is broken due to, for example, separation from the substrate.

【0010】3)金属粒子の形状を変えただけでは挿入
損失を低くするのに限界がある。
3) There is a limit in reducing the insertion loss only by changing the shape of the metal particles.

【0011】したがって、このような製造方法によって
得られた偏光素子においては、延伸及び還元による製法
で得られた光通信デバイス用の偏光ガラスと対比して
も、それと同程度の特性が得られず、未だ満足できる程
度の品質,特性及び信頼性が得られていなかったのであ
る。
Therefore, in the polarizing element obtained by such a manufacturing method, even when compared with a polarizing glass for an optical communication device obtained by a manufacturing method by stretching and reduction, the same properties as the polarizing glass cannot be obtained. However, satisfactory quality, characteristics and reliability have not yet been obtained.

【0012】そこで、本発明では金属粒子の個数密度に
着目し、これを最適化することで、消光比が高く、しか
も基板からの剥離の心配が不要で、さらに挿入損失の低
い、信頼性且つ特性の非常に優れた偏光素子、及びそれ
を用いた光アイソレータを提供することを目的とする。
Therefore, the present invention focuses on the number density of metal particles, and by optimizing the number density, has a high extinction ratio, does not need to worry about peeling off from the substrate, and has a low insertion loss, high reliability and low reliability. An object of the present invention is to provide a polarizing element having extremely excellent characteristics and an optical isolator using the same.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する偏光
素子は、透光性を有する基板の少なくとも一方の主面上
に、誘電体層と形状異方性を有する多数の金属粒子から
成る金属粒子層とを交互に積層して成る偏光素子であっ
て、前記金属粒子層中の金属粒子の個数密度が基板面方
向に37個/μm2以下であることを特徴とする。この個
数密度はより好適には5〜37個/μm2、最も好適には
5〜33個/μm2とする。
A polarizing element for solving the above-mentioned problem is a metal element comprising a dielectric layer and a large number of metal particles having shape anisotropy on at least one principal surface of a light-transmitting substrate. A polarizing element comprising alternately laminated particle layers, wherein the number density of the metal particles in the metal particle layer is 37 particles / μm 2 or less in the direction of the substrate surface. The number density is more preferably 5 to 37 / μm 2 , most preferably 5 to 33 / μm 2 .

【0014】また、金属粒子層中の金属粒子の平均のア
スペクト比(長軸長/短軸長)が3〜30であることを
特徴とする。
Further, the average aspect ratio (major axis length / minor axis length) of the metal particles in the metal particle layer is 3 to 30.

【0015】また、本発明の光アイソレータは、光を透
過させるファラデー回転子の光入射側及び/又は光出射
側に、上述の偏光素子を設け、該偏光素子の金属粒子層
及び誘電体層中に光を入射させるようにしたことを特徴
とする。
In the optical isolator of the present invention, the above-mentioned polarizing element is provided on the light incident side and / or the light emitting side of the Faraday rotator that transmits light, and the metal element layer and the dielectric layer of the polarizing element are provided. Characterized in that light is made incident on the substrate.

【0016】ここで、特に透光性を有する基板はガラス
基板が最適であり、例えばほう珪酸ガラスから成るもの
とするとよい。また、金属粒子が貴金属元素,銅(C
u),鉄(Fe),ニッケル(Ni),及びクロム(C
r)のうちの少なくとも一種から成るものとするとよ
い。
Here, a glass substrate is most suitable as the substrate having a particular light-transmitting property. For example, it is preferable that the substrate is made of borosilicate glass. Further, the metal particles are composed of a noble metal element, copper (C
u), iron (Fe), nickel (Ni), and chromium (C
r).

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施形態につい
て図面に基づき説明する。図1及び図2に示すように、
偏光素子1は透光性を有する誘電体の基板2の少なくと
も一方の主面上に偏光層3を設けたものであり、この偏
光層3は誘電体基板2上に個数密度が基板面方向に37
個/μm2(平方ミクロン)以下、より好適には5〜37
個/μm2の形状異方性を有する金属粒子4aが多数分散
された金属粒子層4と透光性を有する誘電体層5とが交
互に複数積層されて成るものである。なお、透光性を有
するとは使用波長に対して透明という意味である。ま
た、金属粒子の個数密度は基板面S方向における密度で
あって、少なくとも1個の金属粒子4aの長軸を含む面
(基板面Sに平行な面)で切断したときに計測した密度
である。なお、図1及び図2では、金属粒子層4と誘電
体層5との積層状態の一部を省略して図示している。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2,
The polarizing element 1 is provided with a polarizing layer 3 on at least one main surface of a dielectric substrate 2 having translucency. The polarizing layer 3 has a number density on the dielectric substrate 2 in the direction of the substrate surface. 37
Pcs / μm 2 (square micron) or less, more preferably 5-37
A plurality of metal particle layers 4 in which a large number of metal particles 4a having shape anisotropy of particles / μm 2 are dispersed and a plurality of dielectric layers 5 having a light-transmitting property are alternately laminated. In addition, having translucency means being transparent with respect to the used wavelength. The number density of the metal particles is a density in the direction of the substrate surface S, and is a density measured when the metal particle 4a is cut along a plane including the major axis (a plane parallel to the substrate plane S). . 1 and 2, a part of the laminated state of the metal particle layer 4 and the dielectric layer 5 is not shown.

【0018】基板2は例えばパイレックスガラス(パイ
レックスとは、コーニング・ガラス・インダストリーの
商標)やBKガラス(BKとは、HOYA社の商品名)
等のほう珪酸ガラスを用い、これ以外にシリカガラス等
の高融点ガラスやソーダガラス等の低融点ガラスを用い
てもよい。また、このようなガラス材料に代えて他の透
明材料を用いても良いが、ガラス材料は安価で延伸が容
易であるので好適に使用される。
The substrate 2 is made of, for example, Pyrex glass (Pyrex is a trademark of Corning Glass Industry) or BK glass (BK is a trade name of HOYA)
Alternatively, a high melting point glass such as a silica glass or a low melting point glass such as a soda glass may be used. Further, other transparent materials may be used instead of such a glass material, but a glass material is preferably used because it is inexpensive and easy to stretch.

【0019】また、ガラス材料の内、特にほう珪酸ガラ
スが基板2に好ましい。なぜなら、ほう珪酸ガラスの体
熱膨張率は、光アイソレータのホルダに使用される金属
材料に近似するからである。例えば、ホルダ材料として
使用されるNi−Fe合金の体熱膨張率の90〜96×
10-7/℃に近く、ホルダへの封止が極めて容易である
からである。例えば、BK−7ガラスの体熱膨張率は7
2〜89×10-7/℃程度で、Ni−Fe合金の体熱膨
張率に非常に近似しているので好適に使用可能である。
Of the glass materials, borosilicate glass is particularly preferred for the substrate 2. This is because the coefficient of thermal expansion of borosilicate glass is close to the metal material used for the holder of the optical isolator. For example, the body thermal expansion coefficient of a Ni—Fe alloy used as a holder material is 90 to 96 ×.
This is because it is close to 10 −7 / ° C., and sealing to the holder is extremely easy. For example, the coefficient of thermal expansion of BK-7 glass is 7
Since it is about 2 to 89 × 10 −7 / ° C., which is very close to the coefficient of thermal expansion of the Ni—Fe alloy, it can be suitably used.

【0020】誘電体層5は基板2と同種の材料が好まし
く、例えば基板2にパイレックスガラスを用いる場合に
は、誘電体層5にもパイレックスガラスを用い、熱膨張
率等の特性を一致させることが好ましい。
The dielectric layer 5 is preferably made of the same material as the substrate 2. For example, when Pyrex glass is used for the substrate 2, Pyrex glass is also used for the dielectric layer 5, and the characteristics such as the coefficient of thermal expansion are matched. Is preferred.

【0021】金属粒子4aにはAu,Ag,Pt,R
h,Ir等の貴金属や、Cu,Fe,Ni,Cr等の遷
移金属から選択される1種以上の金属であることが好ま
しく、基板2や誘電体層5との濡れ性が悪く凝集しやす
い金属でしかも酸化され難く、誘電体層5中で金属粒子
4aとして存在し得るものが好ましい。これらの内、特
に好ましいものは、低融点なため凝集が容易で、ガラス
との濡れが悪く、しかも酸化され難いAuと、安価でガ
ラスとの濡れ性が悪いCuである。なお、金属粒子4a
は金属単体に限定されるものではなく合金でもよい。
Au, Ag, Pt, R
It is preferably at least one metal selected from noble metals such as h and Ir, and transition metals such as Cu, Fe, Ni and Cr, and has poor wettability with the substrate 2 and the dielectric layer 5 and easily aggregates. A metal that is hard to be oxidized and that can exist as the metal particles 4a in the dielectric layer 5 is preferable. Among them, particularly preferred are Au, which has a low melting point and is easy to aggregate, has poor wettability with glass, and is hardly oxidized, and Cu is inexpensive and has poor wettability with glass. The metal particles 4a
Is not limited to a single metal, but may be an alloy.

【0022】金属粒子4aは回転楕円体状で異方性が有
り、図1(ただし、光の進行方向をZ方向とし、これに
直角な平面をX−Y平面とする。)では、金属粒子4a
の長軸方向がX方向で、短軸方向がY方向である。ま
た、金属粒子4aの長軸長さと短軸長さの比をアスペク
ト比とし、ここでは多数の金属粒子4aのアスペクト比
の平均値を単にアスペクト比と呼ぶものとする。
The metal particles 4a are spheroidal and have anisotropy. In FIG. 1 (where the traveling direction of light is the Z direction and a plane perpendicular to the Z direction is the XY plane), the metal particles 4a are metal particles. 4a
Is the X direction, and the short axis direction is the Y direction. The ratio between the major axis length and the minor axis length of the metal particles 4a is defined as an aspect ratio, and here, the average value of the aspect ratios of many metal particles 4a is simply referred to as the aspect ratio.

【0023】金属粒子4aが回転楕円体状になるのは、
基板2上に偏光層3の成膜後の延伸時に、基板2と共に
金属粒子4aが延伸方向に引き延ばされるからである。
そして、アスペクト比が高いほど消光比が増加するが、
それと同時に基板2の延伸率が増加して延伸が困難にな
り、しかも消光比の増加率がアスペクト比の高い領域で
減少するため、アスペクト比は3〜30が適当であり、
特に好ましくは15〜25程度とする。なお、消光比は
所定波長において偏光していない入力光を用いた際に、
X方向の透過光とY方向の透過光のエネルギーの比をデ
シベル単位で示したものとする。
The reason why the metal particles 4a have a spheroidal shape is as follows.
This is because the metal particles 4a are stretched in the stretching direction together with the substrate 2 at the time of stretching after forming the polarizing layer 3 on the substrate 2.
And the extinction ratio increases as the aspect ratio increases,
At the same time, the stretching ratio of the substrate 2 increases and stretching becomes difficult, and the increasing ratio of the extinction ratio decreases in a region having a high aspect ratio.
It is particularly preferably about 15 to 25. The extinction ratio is determined by using unpolarized input light at a predetermined wavelength.
The energy ratio between the transmitted light in the X direction and the transmitted light in the Y direction is indicated in decibels.

【0024】また、金属粒子層4中の金属粒子4aの個
数密度は基板面方向に5〜37個/μm2とする。この理
由は、個数密度が5個/μm2より下回ると偏光素子とし
ての特性が出にくくなり、例えば消光比が20dBより
低くなるからであり、また、37個/μm2より上回ると
金属粒子での吸収が大きく挿入損失が1dBより増大す
るからである。
The number density of the metal particles 4a in the metal particle layer 4 is 5 to 37 / μm 2 in the direction of the substrate surface. This is because the number density becomes below than 5 / [mu] m 2 hardly out characteristics as a polarizing element, for example, because the extinction ratio is lower than 20 dB, also, in the metal particles exceeds than 37 / [mu] m 2 Is large, and the insertion loss increases more than 1 dB.

【0025】また、金属粒子4aの短軸長さが増加する
と、透過すべきY方向の偏光に対する挿入損失が増加
し、このことからもアスペクト比が3以上、より好まし
くは15以上で短軸長さが短く挿入損失を小さくするこ
とが好ましい。金属粒子4aの長軸平均長さが増加する
と、X方向の吸収ピーク波長が増加し、光通信で用いる
波長域(1.3μm 程度)に接近する。しかしながら、
金属粒子4aのアスペクト比に製造上の制限があり、短
軸長さの増加が挿入損失をもたらすことを加味すると、
長軸長さにも制限が生じる。
When the short-axis length of the metal particles 4a increases, the insertion loss with respect to the polarized light in the Y direction to be transmitted increases, which indicates that the aspect ratio is 3 or more, more preferably 15 or more, and the short-axis length is increased. It is preferable that the insertion loss is short and the insertion loss is small. When the long axis average length of the metal particles 4a increases, the absorption peak wavelength in the X direction increases and approaches the wavelength range (about 1.3 μm) used in optical communication. However,
Considering that the aspect ratio of the metal particles 4a is limited in manufacturing and that an increase in the minor axis length results in an insertion loss,
The length of the long axis is also limited.

【0026】そこで、金属粒子4aについての好ましい
条件は、アスペクト比が3〜30であり、より好ましく
はアスペクト比が10〜30、最も好ましくはアスペク
ト比が15〜25である。
Therefore, preferable conditions for the metal particles 4a are an aspect ratio of 3 to 30, more preferably an aspect ratio of 10 to 30, and most preferably an aspect ratio of 15 to 25.

【0027】図1の場合、Z方向に入射した入射光L1
は、X方向の偏光成分が金属粒子5の自由電子との共鳴
で吸収され、Y方向の偏光成分は透過率が高く、偏光し
た出射光L2となる。また、X方向とY方向とでは吸収
のピーク波長に差があり、X方向ではY方向よりも長波
長側に吸収のピークがある。そして、特に指摘しない場
合、消光比はX方向の吸収のピークが生じる波長で定め
る。
In the case of FIG. 1, the incident light L1 incident in the Z direction
In the above, the polarized component in the X direction is absorbed by resonance with the free electrons of the metal particles 5, and the polarized component in the Y direction has a high transmittance and becomes polarized outgoing light L2. Further, there is a difference in the absorption peak wavelength between the X direction and the Y direction, and there is an absorption peak on the longer wavelength side in the X direction than in the Y direction. Unless otherwise specified, the extinction ratio is determined by the wavelength at which the absorption peak in the X direction occurs.

【0028】このような偏光素子1の金属粒子の個数密
度と挿入損失との関係についてアスペクト比3〜30の
金属粒子から成る金属粒子層と誘電体層とを交互にそれ
ぞれ10層以下に積層して調べたところ、図3における
格子線で示した領域となることが判明した。すなわち、
個数密度が37個/μm2を越えると挿入損失が1dB以
上となり損失が急激に増大することが判明した。また、
個数密度が5個/μm2より少なくなると消光比が20d
B以下となり所望の偏光特性を示さなくなることが判明
した。また、挿入損失を確実に0.1dB以下とするに
は、個数密度は33個/μm2以下とするのが最も望まし
いことも判明した。また、この偏光素子1によれば金属
粒子層4と誘電体層5のそれぞれの積層数を15以下と
することができ、積層数をそれほど増大させなくとも所
望の消光比が得られしかも剥離の全く生じない優れた偏
光素子を提供することができる。
With respect to the relationship between the number density of metal particles and the insertion loss of such a polarizing element 1, metal particle layers composed of metal particles having an aspect ratio of 3 to 30 and dielectric layers are alternately laminated to 10 or less layers. As a result, it was found that the region was indicated by the grid lines in FIG. That is,
When the number density exceeds 37 pieces / μm 2 , the insertion loss becomes 1 dB or more, and the loss rapidly increases. Also,
If the number density is less than 5 / μm 2 , the extinction ratio will be 20d
B or less, and it was found that desired polarization characteristics were not exhibited. In addition, it has been found that the number density is most preferably 33 pieces / μm 2 or less in order to ensure that the insertion loss is 0.1 dB or less. According to the polarizing element 1, the number of layers of the metal particle layer 4 and the number of layers of the dielectric layer 5 can be reduced to 15 or less, and a desired extinction ratio can be obtained without increasing the number of layers so much. An excellent polarizing element which does not occur at all can be provided.

【0029】したがって、例えば、上記の偏光素子1を
ファラデー回転子における光入射側及び光出射側の少な
くとも一方側に配設し、偏光素子1の金属粒子層4及び
誘電体層5に光を入射するようにして光アイソレータを
構成すれば、特性及び信頼性の高いものが提供できるこ
とは明らかである。
Therefore, for example, the polarizing element 1 is disposed on at least one of the light incident side and the light emitting side of the Faraday rotator, and light is incident on the metal particle layer 4 and the dielectric layer 5 of the polarizing element 1. It is clear that if the optical isolator is configured as described above, a device having high characteristics and high reliability can be provided.

【0030】[0030]

【実施例】実施例1 次に、より具体的で好適な実施例について説明する。ま
ず、基板2としてBK−7ガラス(HOYA社の商品名
であり、その組成は、SiO2 :69%,B23 :1
0%,Na2 O:8%,K2 O:8%,BaO:3%
(ただし、組成は重量%))を用いた。また、その軟化
点は724℃,体熱膨張率は72〜89×10-7/℃で
ある。基板2のサイズは長さが76mm,幅が10mm,厚
さが1mmである。
Embodiment 1 Next, a more specific and preferred embodiment will be described. First, BK-7 glass (trade name of HOYA Co., Ltd.) having a composition of 69% SiO 2 and B 2 O 3 : 1 was used as the substrate 2.
0%, Na 2 O: 8 %, K 2 O: 8%, BaO: 3%
(However, the composition is% by weight)). The softening point is 724 ° C. and the coefficient of thermal expansion is 72 to 89 × 10 −7 / ° C. The size of the substrate 2 is 76 mm in length, 10 mm in width, and 1 mm in thickness.

【0031】次に、BK−7ガラス(基板2と同一のB
K−7)とCuをターゲットとしたスパッタ成膜装置
(例:島津製HS−522S)にて、基板2上にCu層
(複素誘電率49.5−7.2j)とBK−7ガラス層
(誘電率2.25)を交互に積層することで積層体を構
成した。
Next, BK-7 glass (the same B as the substrate 2)
K-7) and a Cu layer (complex dielectric constant of 49.5-7.2j) and a BK-7 glass layer on the substrate 2 by a sputtering film forming apparatus (eg, Shimadzu HS-522S) using Cu as a target. (Dielectric constant 2.25) was alternately laminated to form a laminate.

【0032】すなわち、真空度1.0×10-3Torr
のAr(アルゴン)ガス雰囲気、成膜速度0.02nm
/secで膜厚4nmのCu層を成膜し、成膜後の真空
中にてCu膜をヒーター加熱法により500℃前後に加
熱して凝集させ、さらに島状のCu粒子の形状を球状に
整えた。その後、逆スパッタを施すことによりCu粒子
の基板面方向の個数密度を制御した。さらに、真空度
1.0×10-3TorrのArガス雰囲気、成膜速度
0.2nm/secで膜厚150nmのBK−7ガラス
層をスパッタリングにより成膜した。ただし、BK−7
ガラス層の加熱は行わなかった。この工程を10回繰り
返し、Cu層とBK−7ガラス層との交互層からなる積
層体を作製した。
That is, the degree of vacuum is 1.0 × 10 −3 Torr.
Ar (argon) gas atmosphere, deposition rate 0.02 nm
/ Sec to form a 4 nm-thick Cu layer, heat the Cu film to about 500 ° C. by a heater heating method in a vacuum after forming the film, and agglomerate it. I'm ready. Then, the number density of Cu particles in the direction of the substrate surface was controlled by performing reverse sputtering. Further, a BK-7 glass layer having a thickness of 150 nm was formed by sputtering under an Ar gas atmosphere with a degree of vacuum of 1.0 × 10 −3 Torr and a film formation rate of 0.2 nm / sec. However, BK-7
No heating of the glass layer was performed. This step was repeated 10 times to produce a laminate composed of alternate layers of a Cu layer and a BK-7 glass layer.

【0033】次に、BK−7ガラス基板の軟化点近傍の
温度600℃で加熱し、延伸を行い、Cu粒子の形状に
異方性を持たせ、同時に粒子の配向化も行わせた。この
結果、図1に示すように、基板2上に、BK−7ガラス
層(誘電体層)5間に平面状に島状化した多数のCu粒
子(金属粒子)4a(個数密度:20個/μm2 、アス
ペクト比:5.1)を設けた偏光素子1が完成した。
Next, the BK-7 glass substrate was heated at a temperature of 600 ° C. in the vicinity of the softening point and stretched to impart anisotropy to the shape of the Cu particles and at the same time to orient the particles. As a result, as shown in FIG. 1, on the substrate 2, a large number of Cu particles (metal particles) 4a (number density: 20), which are planarized between BK-7 glass layers (dielectric layers) 5, are formed. / Μm 2 , aspect ratio: 5.1) was completed.

【0034】この偏光素子1について、波長1.31μ
mの光を用いて消光比及び挿入損失を測定したところ、
消光比が40dB以上で、挿入損失が0.1dB以下の
非常に優れた特性を示した。
The polarization element 1 has a wavelength of 1.31 μm.
When the extinction ratio and the insertion loss were measured using m light,
The extinction ratio was 40 dB or more, and the insertion loss was 0.1 dB or less.

【0035】また、得られた偏光素子1をファラデー回
転子の光入射面及び光出射面のそれぞれに配置し、その
周囲に同軸のマグネットを配置して、Ni−Fe合金の
ホルダに収容して光アイソレータとした。ここで、偏光
素子1,1とホルダとの気密封止には低融点ガラスを用
い封着を行った。なお、封着温度は約500℃で、基板
2の熱膨張率とホルダの熱膨張率とが近似するため、気
密に封止することができた。
Further, the obtained polarizing element 1 is arranged on each of the light incident surface and the light emitting surface of the Faraday rotator, and coaxial magnets are arranged around the polarizing element 1 and housed in a Ni—Fe alloy holder. An optical isolator was used. Here, low-melting glass was used for hermetic sealing between the polarizing elements 1 and 1 and the holder. The sealing temperature was about 500 ° C., and the coefficient of thermal expansion of the substrate 2 was close to the coefficient of thermal expansion of the holder.

【0036】実施例2 次に、実施例1と同一の基板材料を用い、実施例1にお
けるCuの代わりにAu(金)及び実施例1と同一材料
で構成された誘電体層とを交互に積層させて偏光素子を
得た場合について説明する。実施例1と同様な基板2上
に、真空度1.0×10−3Torr、成膜速度0.0
15nm/secでスパッタ成膜により、膜厚5nmの
Au層を成膜した。さらに、Au層を輻射熱加熱法によ
り600℃前後に加熱し島状にAu粒子を凝集させると
ともにその形状を球状に整えた。次に、実施例1と同様
にして誘電体層を積層して、この一連の工程を実施例1
と同様に10回繰り返し、Au層とBK−7ガラス層の
交互層からなる積層体を得、しかる後にこの積層体を加
熱延伸して、偏光素子を作製した。
Embodiment 2 Next, the same substrate material as in Embodiment 1 was used, and instead of Cu in Embodiment 1, Au (gold) and a dielectric layer made of the same material as in Embodiment 1 were alternately used. A case where a polarizing element is obtained by stacking will be described. On the same substrate 2 as in Example 1, a degree of vacuum of 1.0 × 10 −3 Torr and a film formation rate of 0.0
A 5 nm-thick Au layer was formed by sputtering at 15 nm / sec. Further, the Au layer was heated to about 600 ° C. by a radiant heat method to aggregate the Au particles in an island shape and adjust the shape to a spherical shape. Next, a dielectric layer is laminated in the same manner as in the first embodiment.
By repeating 10 times in the same manner as described above, a laminate comprising alternate layers of Au layers and BK-7 glass layers was obtained, and then the laminate was heated and stretched to produce a polarizing element.

【0037】すなわち、図1に示すように、基板2上
に、BK−7ガラス層(誘電体層)5間に平面状に島状
化した多数のAu粒子(金属粒子)4a(個数密度:1
0個/μm2 、アスペクト比:20)を設けた偏光素子
1が完成した。
That is, as shown in FIG. 1, a number of Au particles (metal particles) 4a (number density: 1
0 / μm 2 , aspect ratio: 20) was completed.

【0038】この偏光素子1について、波長1.31μ
mの光を用いて消光比及び挿入損失を測定したところ、
消光比が40dB以上で、挿入損失が0.1dB以下の
非常に優れた特性を示した。また、得られた偏光素子1
を実施例1と同様にして優れた光アイソレータを作製す
ることができた。
This polarizing element 1 has a wavelength of 1.31 μm.
When the extinction ratio and the insertion loss were measured using m light,
The extinction ratio was 40 dB or more, and the insertion loss was 0.1 dB or less. In addition, the obtained polarizing element 1
Was carried out in the same manner as in Example 1 to produce an excellent optical isolator.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
誘電体層間の金属粒子の個数密度を最適化したので、偏
光素子の消光比を高めることができるだけでなく、挿入
損失を低減させた偏光素子や光アイソレータを提供する
ことができる。
As described above, according to the present invention,
Since the number density of the metal particles between the dielectric layers is optimized, not only the extinction ratio of the polarizing element can be increased, but also a polarizing element and an optical isolator with reduced insertion loss can be provided.

【0040】さらに、金属粒子層や誘電体層の積層数を
それほど増大させなくとも所望の特性が得られるので、
積層部分が剥離することもなく、特性及び信頼性の非常
に優れた偏光素子及び光アイソレータを提供できる。
Further, desired characteristics can be obtained without increasing the number of stacked metal particle layers and dielectric layers.
It is possible to provide a polarizing element and an optical isolator having extremely excellent characteristics and reliability without the laminated portion being separated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る偏光素子を説明するための模式的
な斜視図である。
FIG. 1 is a schematic perspective view for explaining a polarizing element according to the present invention.

【図2】本発明に係る偏光素子を説明するための断面図
であり、図1におけるA−A線断面図である。
FIG. 2 is a cross-sectional view for explaining a polarizing element according to the present invention, and is a cross-sectional view taken along line AA in FIG.

【図3】金属粒子の個数密度と挿入損失との関係を示す
特性図である。
FIG. 3 is a characteristic diagram showing a relationship between the number density of metal particles and insertion loss.

【符号の説明】[Explanation of symbols]

1 ・・・ 偏光素子 2 ・・・ 基板 3 ・・・ 偏光層 4 ・・・ 金属粒子層 4a・・・ 金属粒子 5 ・・・ 誘電体層 DESCRIPTION OF SYMBOLS 1 ... Polarizing element 2 ... Substrate 3 ... Polarizing layer 4 ... Metal particle layer 4a ... Metal particle 5 ... Dielectric layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透光性を有する基板の少なくとも一方の
主面上に、形状異方性を有する多数個の金属粒子から成
る金属粒子層と誘電体層とを交互に積層して成る偏光素
子であって、前記金属粒子層中の金属粒子の個数密度が
基板面方向で37個/μm2以下であることを特徴とする
偏光素子。
1. A polarizing element comprising a metal particle layer composed of a large number of metal particles having shape anisotropy and a dielectric layer alternately laminated on at least one main surface of a substrate having a light transmitting property. Wherein the number density of metal particles in the metal particle layer is 37 particles / μm 2 or less in a substrate surface direction.
【請求項2】 前記金属粒子層中の金属粒子の平均のア
スペクト比(長軸長/短軸長)が3〜30であることを
特徴とする請求項1に記載の偏光素子。
2. The polarizing element according to claim 1, wherein the metal particles in the metal particle layer have an average aspect ratio (major axis length / minor axis length) of 3 to 30.
【請求項3】 請求項1に記載の偏光素子をファラデー
回転子の光入射側及び/又は光出射側に配設して成る光
アイソレータ。
3. An optical isolator comprising the polarizing element according to claim 1 disposed on a light incident side and / or a light emitting side of a Faraday rotator.
JP8066297A 1997-03-31 1997-03-31 Polarizing element and optical isolator using the same Pending JPH10274711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8066297A JPH10274711A (en) 1997-03-31 1997-03-31 Polarizing element and optical isolator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8066297A JPH10274711A (en) 1997-03-31 1997-03-31 Polarizing element and optical isolator using the same

Publications (1)

Publication Number Publication Date
JPH10274711A true JPH10274711A (en) 1998-10-13

Family

ID=13724585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8066297A Pending JPH10274711A (en) 1997-03-31 1997-03-31 Polarizing element and optical isolator using the same

Country Status (1)

Country Link
JP (1) JPH10274711A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182262A (en) * 2012-03-05 2013-09-12 Seiko Epson Corp Method for producing polarizing element
JP2014112137A (en) * 2012-12-05 2014-06-19 Seiko Epson Corp Method for manufacturing polarizing element
US9201170B2 (en) 2012-03-05 2015-12-01 Seiko Epson Corporation Method for producing polarizing element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182262A (en) * 2012-03-05 2013-09-12 Seiko Epson Corp Method for producing polarizing element
US9201170B2 (en) 2012-03-05 2015-12-01 Seiko Epson Corporation Method for producing polarizing element
JP2014112137A (en) * 2012-12-05 2014-06-19 Seiko Epson Corp Method for manufacturing polarizing element

Similar Documents

Publication Publication Date Title
EP0744634B1 (en) Method of producing an optical polarizer
WO2009130966A1 (en) Polarization glass, optical isolator and method for manufacturing polarization glass
JPH10274711A (en) Polarizing element and optical isolator using the same
JP3602913B2 (en) Polarizing element, optical isolator using the same, and method of manufacturing the same
JPH0756018A (en) Production of polarizer
JPH08248227A (en) Polarizing glass and its production
JPH11248935A (en) Polarizer and its manufacture
JPH06273621A (en) Polarizer and its production
JPH08304625A (en) Polarizing element and its production
JP3740248B2 (en) Method for manufacturing polarizing element and method for manufacturing optical isolator
JP3722603B2 (en) Manufacturing method of polarizer
JPH09318813A (en) Polarizing element
JPH1172618A (en) Polarizer
JPH11248936A (en) High extinction ratio polarizer
JPH11133229A (en) Polarizer
JP2000171632A (en) Polarizer and waveguide type optical device using the same
JPH07301710A (en) Production of polarizer and apparatus for production
JPH09178939A (en) Polarizer and its production
JP2000284226A (en) Optical isolator
JP3752059B2 (en) Manufacturing method of polarizing plate
JP2000193823A (en) Polarizer, and optical isolator using it
JP3825154B2 (en) Manufacturing method of polarizer
JPH05142605A (en) Nonlinear optical material and its production
JPH09265009A (en) Polarizer
JPH11344616A (en) Polarizer