JPH05142605A - Nonlinear optical material and its production - Google Patents

Nonlinear optical material and its production

Info

Publication number
JPH05142605A
JPH05142605A JP30181891A JP30181891A JPH05142605A JP H05142605 A JPH05142605 A JP H05142605A JP 30181891 A JP30181891 A JP 30181891A JP 30181891 A JP30181891 A JP 30181891A JP H05142605 A JPH05142605 A JP H05142605A
Authority
JP
Japan
Prior art keywords
optical material
particles
substrate
fine particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30181891A
Other languages
Japanese (ja)
Inventor
Ayumi Tsujimura
歩 辻村
Masaru Yoshida
勝 吉田
Ichiro Tanahashi
一郎 棚橋
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30181891A priority Critical patent/JPH05142605A/en
Publication of JPH05142605A publication Critical patent/JPH05142605A/en
Priority to US08/495,186 priority patent/US5817410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a nonlinear optical material having high nonlinear susceptibility and to provide its production method. CONSTITUTION:This nonlinear optical material is produced by the following process. First, Au fine particles are deposited on a substrate 6 under conditions of 1.0Pa Ar gas pressure, 400 deg.C substrate 6 temp., 250W applied on a SiO2 target 4, 10W applied on an Au target 5, and 5sec residence time of the substrate 6 on the Au target 5. Then the substrate 6 is kept on the SiO4 target 4 for 5sec to deposit a SiO2 film. This process is repeated for 500 times to obtain a laminar structure in which Au fine particles are dispersed in a laminar state in SiO2 glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学効果を利用
した光デバイスの基礎をなす、金属微粒子と光学的透明
物質との積層構造を有する非線形光学材料およびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonlinear optical material having a laminated structure of fine metal particles and an optically transparent substance, which is the basis of an optical device utilizing the nonlinear optical effect, and a method for producing the same.

【0002】[0002]

【従来の技術】金属微粒子をガラス中に分散させること
により、金属の3次の非線形感受率が増大し、光学的非
線形性が大きくなることがアプライド フィジックス
A 第47巻第347 頁(Applied Physics A,vol.47,347(1
988))に記載されている。
BACKGROUND OF THE INVENTION Applied physics is that dispersion of fine metal particles in glass increases the third-order nonlinear susceptibility of the metal and increases optical nonlinearity.
A Vol. 47, p. 347 (Applied Physics A, vol.47,347 (1
988)).

【0003】金属微粒子分散ガラスの製造方法として
は、溶融法によって作製した金を含有するケイ酸塩ガラ
スを熱処理して、ガラスマトリックス中に金微粒子を分
散させている。
As a method for producing a glass containing dispersed fine metal particles, a silicate glass containing gold prepared by a melting method is heat-treated to disperse the fine gold particles in a glass matrix.

【0004】[0004]

【発明が解決しようとする課題】このような、従来の方
法で製造した金属微粒子分散ガラスの3次の非線形感受
率は10-14 〜10-11esuの値であり、非常に小さ
い。この原因は、ガラス中の金属微粒子が0.01体積
%未満と非常に少ないためである。従来の製造方法で
は、金属含有量をこれ以上増やすと、溶融時に溶解限界
を越えて凝集し、バルク粒子として析出してしまうの
で、金属を微粒子としてガラス中に分散させることがで
きない。また、熱処理により金属微粒子の核生成・成長
を行なわせているため、熱力学的平衡に支配され、粒径
に分布が生じるのは避けられない。そのため非線形性に
ばらつきが生じ、非線形光学材料としての制御性が劣
る。
The third-order nonlinear susceptibility of the metal fine particle-dispersed glass produced by the conventional method as described above is a value of 10 -14 to 10 -11 esu, which is very small. This is because the metal fine particles in the glass are very small, less than 0.01% by volume. In the conventional manufacturing method, if the metal content is increased more than this, the melting limit is exceeded and the particles are aggregated and precipitated as bulk particles during melting, so that the metal cannot be dispersed as fine particles in the glass. Further, since the nucleation and growth of the metal fine particles are performed by the heat treatment, it is unavoidable that they are governed by thermodynamic equilibrium and the particle size is distributed. Therefore, the non-linearity varies, and the controllability of the non-linear optical material is poor.

【0005】本発明は、このような課題を解決するもの
で、光学的透明物質中に粒径のそろった金属微粒子が分
散した非線形感受率の大きな非線形光学材料および光学
的透明物質中に粒径をそろえて金属微粒子を多量に分散
し得る非線形感受率の大きな非線形光学材料を製造する
方法を提供することを目的とする。
The present invention is intended to solve such a problem, and a non-linear optical material having a large non-linear susceptibility in which fine metal particles having a uniform particle size are dispersed in an optically transparent substance and a particle size in the optically transparent substance. It is an object of the present invention to provide a method for producing a non-linear optical material having a large non-linear susceptibility capable of dispersing a large amount of metal fine particles.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に本発明の非線形光学材料は、光学的透明物質中に粒径
のそろった金属微粒子が層状に分散されてなる非線形光
学材料である。
In order to achieve the above object, the non-linear optical material of the present invention is a non-linear optical material in which fine metal particles having a uniform particle size are dispersed in a layer in an optically transparent substance.

【0007】前記構成においては、金属微粒子が金、
銀、銅、白金、あるいはパラジウムから選ばれた少なく
とも1種の金属であることが好ましい。本発明の非線形
光学材料の製造方法は、光学的透明物質中に金属微粒子
が分散されてなる非線形光学材料の製造方法において、
金属微粒子と光学的透明物質とを基板面上に交互に堆積
させることを特徴とする。
In the above structure, the metal fine particles are gold,
It is preferably at least one metal selected from silver, copper, platinum, or palladium. The method for producing a nonlinear optical material of the present invention is a method for producing a nonlinear optical material in which fine metal particles are dispersed in an optically transparent substance,
It is characterized in that the metal fine particles and the optically transparent substance are alternately deposited on the surface of the substrate.

【0008】前記製造方法に於いては、金属微粒子と光
学的透明物質とを基板面上に交互に堆積させる際、基板
面を加熱することにより、前記金属微粒子の形状を球形
とすることが好ましい。
In the above manufacturing method, when the metal fine particles and the optically transparent substance are alternately deposited on the substrate surface, it is preferable to heat the substrate surface so that the metal fine particles have a spherical shape. ..

【0009】[0009]

【作用】本発明の非線形光学材料は、光学的透明物質中
に粒径のそろった金属微粒子が層状に分散されているの
で、金属粒子が多量に分散されていても粒子がバルク状
に成長する恐れがなく効率の良い非線形光学材料が提供
できる。また、金属微粒子を用いているので、金属微粒
子の表面プラズモン共鳴吸収に伴う3次の非線形感受率
の増大を利用することができ、粒径をそろえることによ
り、プラズモン共鳴吸収が鋭くなり、3次の非線形感受
率を大きくすることができる。
In the non-linear optical material of the present invention, since fine metal particles having a uniform particle size are dispersed in a layer in an optically transparent substance, the particles grow in bulk even if a large amount of the metal particles are dispersed. It is possible to provide a highly efficient nonlinear optical material without fear. Further, since the metal fine particles are used, it is possible to utilize the increase in the third-order nonlinear susceptibility associated with the surface plasmon resonance absorption of the metal fine particles. By making the particle diameters uniform, the plasmon resonance absorption becomes sharp and The non-linear susceptibility of can be increased.

【0010】前記構成においては、金属微粒子が金、
銀、銅、白金、あるいはパラジウムから選ばれた少なく
とも1種の金属である好ましい構成とすることによりこ
れらの金属は複素誘電率の虚数部の値が小さく、表面プ
ラズモン共鳴振動数が光学的透明領域にあり、還元性が
高く金属微粒子として安定に存在し得るので、大きな3
次の非線形感受率を有する非線形光学材料を提供するこ
とができる。
In the above structure, the fine metal particles are gold,
By adopting a preferred structure of at least one metal selected from silver, copper, platinum, or palladium, these metals have a small imaginary part of the complex permittivity, and the surface plasmon resonance frequency has an optically transparent region. In addition, since it is highly reducible and can stably exist as metal fine particles,
A non-linear optical material having the following non-linear susceptibility can be provided.

【0011】本発明の非線形光学材料の製造方法は、光
学的透明物質中に金属微粒子が分散されてなる非線形光
学材料の製造方法において、金属微粒子と光学的透明物
質とを基板面上に交互に堆積さたので、金属微粒子の成
長による粒径の増大が防止でき、従って粒径のそろった
金属微粒子を多量に分散させることができる。
The method for producing a non-linear optical material according to the present invention is a method for producing a non-linear optical material in which fine metal particles are dispersed in an optically transparent substance, wherein the fine metal particles and the optically transparent substance are alternately provided on the substrate surface. Since the particles are deposited, it is possible to prevent the particle size from increasing due to the growth of the metal particles, and therefore it is possible to disperse the metal particles having a uniform particle size in a large amount.

【0012】前記製造方法に於いて、金属微粒子と光学
的透明物質とを基板面上に交互に堆積させる際、基板面
を加熱することにより、前記金属微粒子の形状を球形と
することにより前記金属微粒子の表面プラズモン共鳴吸
収ピークが鋭くなり、3次の非線形感受率を大きくする
ことができるので好ましい。
In the above manufacturing method, when the metal fine particles and the optically transparent substance are alternately deposited on the substrate surface, the surface of the substrate is heated so that the metal fine particles have a spherical shape. The surface plasmon resonance absorption peak of the fine particles becomes sharp, and the third-order nonlinear susceptibility can be increased, which is preferable.

【0013】[0013]

【実施例】本発明における非線形光学材料の断面構造を
図1に示す。図1に示したように、本発明の非線形光学
材料は、基板1上に、金属微粒子2と光学的透明物質3
とが交互に堆積した積層構造よりなるものである。
EXAMPLE FIG. 1 shows the cross-sectional structure of a nonlinear optical material according to the present invention. As shown in FIG. 1, the non-linear optical material of the present invention comprises a substrate 1, a metal fine particle 2 and an optically transparent substance 3.
It has a laminated structure in which and are alternately deposited.

【0014】本発明における非線形光学材料では、金属
薄膜作製時のごく初期過程に形成される島状成長物質が
微粒子であることに着目し、この島状成長物質を金属微
粒子2として、光学的透明物質3中へ多量に含有させる
ために積極的に利用しているものである。
In the nonlinear optical material according to the present invention, attention is paid to the fact that the island-shaped growth substance formed in the very initial stage of the metal thin film formation is fine particles, and the island-shaped growth substance is used as the metal fine particles 2 to be optically transparent. It is actively used to contain a large amount in the substance 3.

【0015】本発明において粒径のそろった球形の金属
微粒子2を光学的透明物質3中へ多量に含有させること
ができる理由を説明する。蒸発源(図示せず)から基板
1上に飛来した金属粒子は、基板1と垂直方向のエネル
ギーを短時間に失って基板1上に滞在する。しかし、気
相−固相間の遷移過程であり、この時点では熱力学的平
衡には達していないので、基板1表面上を動き回った
後、欠陥などの吸着点に捕らえられて基板1上に付着す
る。もし吸着点がなければ、蒸着粒子は再蒸発する。次
々に飛来してくる蒸着粒子によって、近傍の付着粒子が
いくつか集まり、それが結晶核となる。この結晶核が形
成された後に、島状構造が成長する。この時点で金属微
粒子が飛来するのを止めると、基板1上に金属島状微粒
子が分散することになる。この時の島状微粒子は、一般
に、基板と面接触しており、形状は半球状あるいは半回
転楕円体状であり、球状ではない。
The reason why a large amount of spherical metal fine particles 2 having a uniform particle size can be contained in the optically transparent substance 3 in the present invention will be described. The metal particles flying from the evaporation source (not shown) onto the substrate 1 lose energy in the direction perpendicular to the substrate 1 in a short time and stay on the substrate 1. However, since it is a transition process between the gas phase and the solid phase, and since thermodynamic equilibrium has not been reached at this point, after moving around on the surface of the substrate 1, it is trapped on the substrate 1 by adsorption points such as defects. Adhere to. If there are no adsorption points, the vapor deposition particles will re-evaporate. By the vapor deposition particles that fly one after another, some adhering particles in the vicinity gather, and they become crystal nuclei. After the crystal nuclei are formed, the island structure grows. If the metal fine particles are prevented from flying at this point, the metal island fine particles are dispersed on the substrate 1. In this case, the island-shaped fine particles are generally in surface contact with the substrate and have a hemispherical or semi-spheroidal shape, not a spherical shape.

【0016】次に、この上に光学的透明物質3の薄膜を
形成して、金属島状微粒子の表面を覆う。この時、飛来
する光学的透明物質3の蒸着粒子はその運動エネルギー
を熱エネルギーとして放出するため、金属島状微粒子と
の界面で新たな熱平衡状態への移行が起こる。ここで、
金属島状微粒子が光学的透明物質3との界面エネルギー
差を0にするに足りる熱エネルギーを受ければ、球状の
金属微粒子2となる。このエネルギーは、金属および光
学的透明物質3の種類により、表面エネルギーならびに
蒸着粒子の運動エネルギーが異なり、また蒸着条件によ
っても異なるが、スパッタリング法や真空蒸着法を用い
た場合、基板1面上を適当な温度に加熱することによ
り、微粒子が球状となるのに十分なエネルギーとなるの
で、好ましい。基板1の加熱温度としては上述の如く採
用条件や用いる物質の種類によって異なるので一概には
規定しがたいが、一般的には100〜700℃の範囲が
目安となる。通常、光学的透明物質3として有機高分子
重合体などの有機物を用いる場合は低い温度が採用さ
れ、また、石英ガラスの様に高温で溶融するような無機
化合物を用いる場合には、比較的高い温度が採用でき
る。
Next, a thin film of the optically transparent substance 3 is formed on this to cover the surface of the metal island fine particles. At this time, the vapor-deposited particles of the optically transparent substance 3 coming in release their kinetic energy as heat energy, so that a transition to a new thermal equilibrium state occurs at the interface with the metal island-shaped fine particles. here,
When the metal island-shaped fine particles receive sufficient thermal energy to make the interface energy difference with the optically transparent substance 3 zero, the metal island-shaped fine particles 2 become spherical metal fine particles 2. This energy varies depending on the type of the metal and the optically transparent substance 3, the surface energy and the kinetic energy of the vapor deposition particles, and also depends on the vapor deposition conditions. However, when a sputtering method or a vacuum vapor deposition method is used, Heating to a suitable temperature provides sufficient energy to make the fine particles spherical, which is preferable. The heating temperature of the substrate 1 varies depending on the conditions used and the type of substance used as described above, so it is difficult to specify in a general manner, but generally a range of 100 to 700 ° C. is a standard. Usually, a low temperature is used when an organic substance such as an organic polymer is used as the optically transparent substance 3, and a relatively high temperature is used when an inorganic compound that melts at a high temperature such as quartz glass is used. Temperature can be adopted.

【0017】金属微粒子2の粒径に等しい厚さよりも厚
く光学的透明物質3を堆積させたところで、光学的透明
物質3粒子の飛来を止めて、再び金属微粒子の蒸着を行
なう。この操作を繰り返し行なうことによって、光学的
透明物質3中に粒径のそろった球形の金属微粒子を層状
に分散させることができる。
When the optically transparent substance 3 is deposited thicker than the particle size of the metal fine particles 2, the particles of the optically transparent substance 3 are stopped from flying and the metal fine particles are vapor-deposited again. By repeating this operation, it is possible to disperse spherical metal fine particles having a uniform particle size in the optically transparent substance 3 in layers.

【0018】金属微粒子2の粒径は、蒸着量あるいは基
板1の加熱温度を変化させることによって制御でき、ま
た金属微粒子2が存在する層内での微粒子の面密度は、
蒸着粒子の運動エネルギーあるいは基板1の加熱温度を
変化させることによって制御できる。更に、本材料中の
金属微粒子2の密度は、光学的透明物質3の蒸着量を変
化させることによって制御できる。本実施例では、最大
で40体積%と、従来の4000倍以上の密度で金属微
粒子2を含有させることができた。
The particle size of the metal fine particles 2 can be controlled by changing the deposition amount or the heating temperature of the substrate 1, and the surface density of the fine particles in the layer in which the metal fine particles 2 are present is
It can be controlled by changing the kinetic energy of vapor deposition particles or the heating temperature of the substrate 1. Furthermore, the density of the metal fine particles 2 in the present material can be controlled by changing the vapor deposition amount of the optically transparent substance 3. In this example, the metal fine particles 2 could be contained at a maximum density of 40% by volume, which is 4000 times or more that of the conventional one.

【0019】金属微粒子2の粒径は局所的電場効果が現
われる程度に小さいことが必要であり、用いる金属の種
類などによって異なるが例えば50nm以下、好ましく
は1〜15nm程度の大きさが適当であった。微粒子の
大きさが100nm以上になるとバルク的性質が顕著に
なるため、光学的非線形性は小さくなった。
It is necessary that the particle size of the metal fine particles 2 is small enough to exhibit a local electric field effect, and it depends on the kind of the metal used and the like, but a size of, for example, 50 nm or less, preferably 1 to 15 nm is suitable. It was When the size of the fine particles is 100 nm or more, the bulk property becomes remarkable, and the optical nonlinearity becomes small.

【0020】基板1として用いる材料は、光学的透明物
質3として用いる材料と同一のものであっても異なるも
のであってもよい。また、非線形光学材料を形成した
後、基板1から剥離して用いる場合、基板1は光学的に
透明な物質である必要はない。
The material used for the substrate 1 may be the same as or different from the material used for the optically transparent substance 3. When the nonlinear optical material is formed and then peeled off from the substrate 1, the substrate 1 need not be an optically transparent substance.

【0021】金属微粒子2として用いる物質は、金、
銀、銅、白金、あるいはパラジウムから選ばれた金属で
あることが好ましい。光学的透明物質3として用いる材
料は、非線形光学特性を得るのに必要な波長領域で光学
的に透明であれば、無機結晶物質であっても、ガラス物
質であっても、また有機高分子化合物であってもよい。
具体的には、例えば石英ガラス、フッ化マグネシウム、
LiF、CaF2 、Al2 3 、MgO、ホウケイ酸ガ
ラス、アルミン酸ガラス、フッ化物ガラス、アクリル酸
樹脂、メタクリル酸樹脂、ポリスチレン、ポリエチレン
などが挙げられるがこれのみに限定されるものではな
い。
The material used as the metal fine particles 2 is gold,
A metal selected from silver, copper, platinum, or palladium is preferable. The material used as the optically transparent substance 3 may be an inorganic crystalline substance, a glass substance, or an organic polymer compound as long as it is optically transparent in the wavelength region required to obtain the nonlinear optical characteristics. May be
Specifically, for example, quartz glass, magnesium fluoride,
Examples thereof include, but are not limited to, LiF, CaF 2 , Al 2 O 3 , MgO, borosilicate glass, aluminate glass, fluoride glass, acrylic acid resin, methacrylic acid resin, polystyrene, and polyethylene.

【0022】光学的透明物質3中に分散させる金属微粒
子2の量は、通常0.01〜50体積%、好ましくは1
〜40体積%程度であり、金属微粒子の体積占有率に比
例して3次非線形感受率が大きくなるので、通常は多い
ほど好ましい。本発明においては粒径のそろった金属微
粒子2が光学的透明物質3中に分散されているが、従来
の方法で得られた非線形光学材料の金属微粒子の粒径分
布に比べて粒径分布の標準偏差が小さい状態で分散され
ている場合(ただし平均粒径が同一の場合で比較する)
は粒径がそろっていると言える。
The amount of the fine metal particles 2 dispersed in the optically transparent substance 3 is usually 0.01 to 50% by volume, preferably 1.
It is about 40% by volume, and the third-order nonlinear susceptibility increases in proportion to the volume occupancy of the metal fine particles. In the present invention, the metal fine particles 2 having a uniform particle size are dispersed in the optically transparent substance 3, but the particle size distribution is smaller than that of the metal fine particles of the nonlinear optical material obtained by the conventional method. When the standard deviations are small and dispersed (however, if the average particle size is the same, compare)
Can be said to have a uniform particle size.

【0023】本発明の非線形光学材料の製造方法におい
ては、薄膜製造方法であるスパッタリング法や、真空蒸
着法などを用いることができる。スパッタリング法の場
合は通常スパッタリングガスとしてアルゴンガスが用い
られ10-2〜10Pa程度の圧力下で行なわれ、また、
真空蒸着法10-3Pa〜10-4Pa程度の減圧力下で行
なわれる。どの方法を選定するか、またその条件などは
使用する金属および光学的透明物質の融点、蒸気圧、酸
化性などを考慮して選択することが好ましい。
In the method of manufacturing the nonlinear optical material of the present invention, a sputtering method which is a thin film manufacturing method, a vacuum vapor deposition method, or the like can be used. In the case of the sputtering method, argon gas is usually used as the sputtering gas and the sputtering is performed under a pressure of about 10 -2 to 10 Pa.
The vacuum deposition method is performed under a reduced pressure of about 10 −3 Pa to 10 −4 Pa. It is preferable to select which method is to be selected and the conditions thereof in consideration of the melting point, vapor pressure, oxidizing property, etc. of the metal and the optically transparent substance used.

【0024】また、金属微粒子の形状を球形にするため
には、基板加熱を行ない、適当な温度、例えば前述した
ように100〜700℃程度の温度に保つことが好まし
い。以下、具体的実施例を挙げて本発明をより詳細に説
明する。
In order to make the shape of the metal fine particles spherical, it is preferable to heat the substrate and maintain it at an appropriate temperature, for example, a temperature of about 100 to 700 ° C. as described above. Hereinafter, the present invention will be described in more detail with reference to specific examples.

【0025】実施例1 図2に示すスパッタリング装置を用い、スパッタリング
法で本発明の非線形光学材料を製造した。スパッタ源は
石英(SiO2 )ガラスターゲット4と金(Au)ター
ゲット5とで構成した。基板6はヒーター7を備えた基
板ホルダ8に固定され、これに直結した回転軸により、
回転させることによってSiO2 ターゲット4またはA
uターゲット5のいずれかのターゲット上方に持ってく
ることができる。基板6の位置とターゲット上方での滞
在時間とは、コンピュータで制御されている。蒸着中の
コンタミネーションを防ぐため、各ターゲットにターゲ
ット周囲およびその延長上を覆う形のシールド板9を設
けている。基板6には石英ガラスを用いた。スパッタリ
ングガスにはアルゴンを用い、ガス導入口10から流入
させ、ガス排出口11を真空ポンプ(図示せず)に接続
して、ガス圧を1.0Pa、基板温度は400℃、Si
2 ターゲット4への印加電力は250W、Auターゲ
ット5への印加電力は10Wとした。
Example 1 Using the sputtering apparatus shown in FIG. 2, the nonlinear optical material of the present invention was manufactured by the sputtering method. The sputtering source was composed of a quartz (SiO 2 ) glass target 4 and a gold (Au) target 5. The substrate 6 is fixed to a substrate holder 8 equipped with a heater 7, and by a rotary shaft directly connected to this,
By rotating the SiO 2 target 4 or A
It can be brought above any of the u targets 5. The position of the substrate 6 and the staying time above the target are controlled by a computer. In order to prevent contamination during vapor deposition, each target is provided with a shield plate 9 that covers the periphery of the target and its extension. Quartz glass was used for the substrate 6. Argon is used as the sputtering gas, the gas is introduced from the gas inlet 10, the gas outlet 11 is connected to a vacuum pump (not shown), the gas pressure is 1.0 Pa, the substrate temperature is 400 ° C., and Si is
The power applied to the O 2 target 4 was 250 W, and the power applied to the Au target 5 was 10 W.

【0026】まず、基板6をAuターゲット5の上で5
秒間滞在させて、Au微粒子を堆積させた。次に、基板
6を回転させてSiO2 ターゲット4の上で5秒間滞在
させて、SiO2 膜を堆積させた。AuとSiO2 を基
板6に交互に堆積させる上記の操作を500回繰り返し
て、SiO2 ガラス中にAu微粒子が層状に分散した積
層構造を有する非線形光学材料を形成した。
First, the substrate 6 is placed on the Au target 5 by 5
After being left for a second, Au particles were deposited. Next, the substrate 6 was rotated and allowed to stay on the SiO 2 target 4 for 5 seconds to deposit a SiO 2 film. The above operation of alternately depositing Au and SiO 2 on the substrate 6 was repeated 500 times to form a nonlinear optical material having a laminated structure in which Au particles were dispersed in a layered form in SiO 2 glass.

【0027】作製した非線形光学材料の膜厚は2μmで
あり、球状Au微粒子の平均粒径は2nm、粒径分布の
標準偏差は0.4nm、Au微粒子が分散した層と層と
の間隔は4nm、Au微粒子の含有量は40体積%であ
った。
The thickness of the produced nonlinear optical material was 2 μm, the average particle size of the spherical Au particles was 2 nm, the standard deviation of the particle size distribution was 0.4 nm, and the distance between the layers in which the Au particles were dispersed was 4 nm. , The content of Au fine particles was 40% by volume.

【0028】また、Auターゲット5の上での滞在時間
を変化させて作製した非線形光学材料では、7秒間でA
u微粒子の平均粒径が4nm、粒径分布の標準偏差は
0.7nm、10秒間で平均粒径が7nm、標準偏差は
1nmのものを得ることができた。
In the case of a non-linear optical material produced by changing the staying time on the Au target 5, the A
It was possible to obtain an u particle having an average particle size of 4 nm, a standard deviation of particle size distribution of 0.7 nm, an average particle size of 7 nm and a standard deviation of 1 nm in 10 seconds.

【0029】なお、Auターゲット5を、銀(Ag)、
銅(Cu)、白金(Pt)、あるいはパラジウム(P
d)のターゲットに代えて作製しても、粒径1〜10n
mの金属微粒子が層状に分散した同様な非線形光学材料
が得られた。
The Au target 5 is replaced with silver (Ag),
Copper (Cu), platinum (Pt), or palladium (P
Even if the target is manufactured in place of the target d), the particle size is 1 to 10 n.
A similar nonlinear optical material was obtained in which the metal fine particles of m were dispersed in layers.

【0030】実施例2 図2に示したスパッタリングターゲットの代わりに、蒸
発源をタングステンボートに乗せ、抵抗加熱で蒸発させ
る真空蒸着法を用いて本発明の非線形光学材料を製造し
た。基板部の構成は図2と同様であり、各蒸発源にシー
ルド板9を設けている点も同様である。光学的透明物質
として用いたのはフッ化マグネシウム(MgF2 )、金
属としてはAuを用いた。基板6には石英ガラスを用い
た。真空度は10-4Pa、基板温度は200℃、MgF
2 の乗ったボートへの印加電力は120W、Auの乗っ
たボートへの印加電力は200Wとした。
Example 2 Instead of the sputtering target shown in FIG. 2, a non-linear optical material of the present invention was manufactured by using a vacuum evaporation method in which an evaporation source was placed on a tungsten boat and evaporation was performed by resistance heating. The structure of the substrate portion is the same as that in FIG. 2, and the point that the shield plate 9 is provided for each evaporation source is also the same. Magnesium fluoride (MgF 2 ) was used as the optically transparent substance, and Au was used as the metal. Quartz glass was used for the substrate 6. Vacuum degree is 10 −4 Pa, substrate temperature is 200 ° C., MgF
The power applied to the boat on which 2 was on was 120 W, and the power on the boat on which Au was on was 200 W.

【0031】まず、基板をAu蒸発源の上で2秒間滞在
させて、Au微粒子を堆積させた。次に、基板を回転さ
せてMgF2 蒸発源の上で5秒間滞在させて、MgF2
膜を堆積させた。AuとMgF2 を基板に交互に堆積さ
せる上記の操作を400回繰り返して、MgF2 中にA
u微粒子が層状に分散した積層構造を有する非線形光学
材料を形成した。
First, the substrate was left on the Au evaporation source for 2 seconds to deposit Au particles. Next, the substrate is rotated and allowed to stay on the MgF 2 evaporation source for 5 seconds, and then the MgF 2
The film was deposited. The above operation of alternately depositing Au and MgF 2 on the substrate was repeated 400 times to obtain A in MgF 2.
A non-linear optical material having a laminated structure in which u particles were dispersed in a layer was formed.

【0032】作製した非線形光学材料の膜厚は2.4μ
mであり、球状Au微粒子の平均粒径は3nm、粒径分
布の標準偏差は0.5nm、Au微粒子が分散した層と
層との間隔は6nm、Au微粒子の含有量は40体積%
であった。
The thickness of the produced nonlinear optical material is 2.4 μm.
m, the average particle size of the spherical Au particles is 3 nm, the standard deviation of the particle size distribution is 0.5 nm, the spacing between the layers in which the Au particles are dispersed is 6 nm, and the content of the Au particles is 40% by volume.
Met.

【0033】なお、Au以外にも、Ag、Cu、Pt、
あるいはPdに代えて作製しても、粒径1〜10nmの
金属微粒子が層状に分散した同様な非線形光学材料が得
られた。
Besides Au, Ag, Cu, Pt,
Alternatively, a similar non-linear optical material in which metal fine particles having a particle size of 1 to 10 nm are dispersed in a layer form was obtained even if it was produced in place of Pd.

【0034】実施例3 実施例1で作製した粒径2nmのAu微粒子が層状に分
散した非線形光学材料の3次の非線形感受率χ(3) を測
定したところ、波長515nmにおいて4.8×10-7
esuであった。これに2枚の外部鏡をはさんでファブ
リペロー型共振器を構成し、光双安定素子とした。この
素子に波長515nmのレーザ光をスポット径5μmで
入射させ、入射光の強度と出射光の強度の関係を室温
(25℃)にて測定したところ、光双安定特性を示し、
5ピコ秒以下の非常に高速のスイッチング速度を得た。
Example 3 The third-order nonlinear susceptibility χ (3) of the nonlinear optical material prepared in Example 1 in which Au fine particles having a particle size of 2 nm were dispersed in a layer was measured, and it was 4.8 × 10 at a wavelength of 515 nm. -7
It was esu. A Fabry-Perot resonator was constructed by sandwiching this with two external mirrors, and was used as an optical bistable element. When a laser beam with a wavelength of 515 nm was made incident on this element with a spot diameter of 5 μm and the relationship between the intensity of the incident light and the intensity of the emitted light was measured at room temperature (25 ° C.), it showed an optical bistable characteristic.
Very fast switching speeds of less than 5 picoseconds were obtained.

【0035】また同様に、実施例1で作製した平均粒径
5nm、粒径分布の標準偏差0.7nm、のAg微粒子
を25体積%含有させた非線形光学材料のχ(3) は波長
400nmにおいて、9.2×10-8esuであった。
この材料でファブリペロー型共振器を構成し、波長40
0nmのレーザ光をスポット径5μmで入射させ、入射
光の強度と出射光の強度の関係を室温(25℃)にて測
定したところ、光双安定特性を示し、5ピコ秒以下の非
常に高速のスイッチング速度を得た。
Similarly, χ (3) of the nonlinear optical material prepared in Example 1 containing 25% by volume of Ag fine particles having an average particle size of 5 nm and a standard deviation of particle size distribution of 0.7 nm is 400 nm. , 9.2 × 10 −8 esu.
This material forms a Fabry-Perot resonator with a wavelength of 40
When a laser beam of 0 nm was made incident with a spot diameter of 5 μm and the relationship between the intensity of the incident light and the intensity of the emitted light was measured at room temperature (25 ° C), it showed optical bistable characteristics and was extremely fast at 5 picoseconds or less. Got the switching speed of.

【0036】以上の結果から本発明の非線形光学材料
は、高速光スイッチとしての応用が可能であり、また他
の非線形光学特性を応用した素子としても適用できる効
果がある。
From the above results, the nonlinear optical material of the present invention can be applied as a high-speed optical switch and can be applied as an element to which other nonlinear optical characteristics are applied.

【0037】[0037]

【発明の効果】本発明の非線形光学材料は、効率の良い
3次の非線形感受率のすぐれた非線形光学材料を提供で
きる。
INDUSTRIAL APPLICABILITY The nonlinear optical material of the present invention can provide an efficient nonlinear optical material having excellent third-order nonlinear susceptibility.

【0038】また、金属微粒子が金、銀、銅、白金、あ
るいはパラジウムから選ばれた少なくとも1種の金属で
ある好ましい構成とすることにより、金属微粒子として
安定に存在し得、大きな3次の非線形感受率を有する非
線形光学材料を提供することができる。
Further, by adopting a preferable structure in which the metal fine particles are at least one kind of metal selected from gold, silver, copper, platinum, or palladium, the metal fine particles can stably exist and have a large third-order nonlinearity. A nonlinear optical material having a susceptibility can be provided.

【0039】本発明の非線形光学材料の製造方法によれ
ば、金属微粒子の成長による粒径の増大が防止でき、従
って粒径のそろった金属微粒子を多量に分散させること
ができる。
According to the method for producing a non-linear optical material of the present invention, it is possible to prevent an increase in particle size due to the growth of metal particles, and therefore it is possible to disperse a large amount of metal particles having a uniform particle size.

【0040】また、金属微粒子と光学的透明物質とを基
板面上に交互に堆積させる際、基板面を加熱することに
より、前記金属微粒子の形状を球形とすることにより前
記金属微粒子の表面プラズモン共鳴吸収ピークを鋭くし
て、3次の非線形感受率の大きい非線形光学材料の製造
方法を提供することができる。
Further, when the metal fine particles and the optically transparent substance are alternately deposited on the surface of the substrate, the surface of the substrate is heated to make the shape of the metal fine particles spherical, whereby the surface plasmon resonance of the metal fine particles is formed. It is possible to provide a method for manufacturing a nonlinear optical material having a sharp absorption peak and a large third-order nonlinear susceptibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非線形光学材料の構造を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing the structure of a nonlinear optical material of the present invention.

【図2】本発明の一実施例で用いた線形光学材料の製造
装置の構成を示す略断面図である。
FIG. 2 is a schematic cross-sectional view showing the structure of a linear optical material manufacturing apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 金属微粒子 3 光学的透明物質 4 SiO2 ターゲット 5 Auターゲット 6 基板 7 ヒーター 8 基板ホルダー 9 シールド板 10 ガス導入口 11 ガス排出口1 Substrate 2 Metal Fine Particles 3 Optically Transparent Material 4 SiO 2 Target 5 Au Target 6 Substrate 7 Heater 8 Substrate Holder 9 Shield Plate 10 Gas Inlet 11 Gas Outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真鍋 由雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 三露 常男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshio Manabe 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Tsuneo Sanritsu 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co. Within

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光学的透明物質中に粒径のそろった金属
微粒子が層状に分散されてなる非線形光学材料。
1. A non-linear optical material in which fine metal particles having a uniform particle size are dispersed in layers in an optically transparent substance.
【請求項2】 金属微粒子が金、銀、銅、白金、あるい
はパラジウムから選ばれた少なくとも1種の金属である
請求項1記載の非線形光学材料。
2. The nonlinear optical material according to claim 1, wherein the fine metal particles are at least one metal selected from gold, silver, copper, platinum, and palladium.
【請求項3】 光学的透明物質中に金属微粒子が分散さ
れてなる非線形光学材料の製造方法において、金属微粒
子と光学的透明物質とを基板面上に交互に堆積させるこ
とを特徴とする非線形光学材料の製造方法。
3. A method for producing a non-linear optical material in which fine metal particles are dispersed in an optically transparent substance, wherein the fine metal particles and the optically transparent substance are alternately deposited on the substrate surface. Material manufacturing method.
【請求項4】 金属微粒子と光学的透明物質とを基板面
上に交互に堆積させる際、基板面を加熱することによ
り、前記金属微粒子の形状を球形としてなる請求項3記
載の非線形光学材料の製造方法。
4. The non-linear optical material according to claim 3, wherein when the metal fine particles and the optically transparent substance are alternately deposited on the substrate surface, the shape of the metal fine particles becomes spherical by heating the substrate surface. Production method.
JP30181891A 1991-11-18 1991-11-18 Nonlinear optical material and its production Pending JPH05142605A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30181891A JPH05142605A (en) 1991-11-18 1991-11-18 Nonlinear optical material and its production
US08/495,186 US5817410A (en) 1991-11-18 1995-06-27 Nonlinear optical composites using linear transparent substances and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30181891A JPH05142605A (en) 1991-11-18 1991-11-18 Nonlinear optical material and its production

Publications (1)

Publication Number Publication Date
JPH05142605A true JPH05142605A (en) 1993-06-11

Family

ID=17901534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30181891A Pending JPH05142605A (en) 1991-11-18 1991-11-18 Nonlinear optical material and its production

Country Status (1)

Country Link
JP (1) JPH05142605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679888A (en) * 1994-10-05 1997-10-21 Matsushita Electric Industrial Co., Ltd. Dynamic quantity sensor and method for producing the same, distortion resistance element and method for producing the same, and angular velocity sensor
JP2006208057A (en) * 2005-01-25 2006-08-10 Taiyo Yuden Co Ltd Plasmon resonance structure, its control method and manufacturing method of metal domain
JP2006349532A (en) * 2005-06-16 2006-12-28 Takao Saito Plasmon resonance structure and its manufacturing method
JP2009080311A (en) * 2007-09-26 2009-04-16 Toshiba Corp Optical resonator
JP2013079442A (en) * 2011-09-22 2013-05-02 Sumitomo Chemical Co Ltd Process for producing metallic particle assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679888A (en) * 1994-10-05 1997-10-21 Matsushita Electric Industrial Co., Ltd. Dynamic quantity sensor and method for producing the same, distortion resistance element and method for producing the same, and angular velocity sensor
JP2006208057A (en) * 2005-01-25 2006-08-10 Taiyo Yuden Co Ltd Plasmon resonance structure, its control method and manufacturing method of metal domain
JP2006349532A (en) * 2005-06-16 2006-12-28 Takao Saito Plasmon resonance structure and its manufacturing method
JP2009080311A (en) * 2007-09-26 2009-04-16 Toshiba Corp Optical resonator
JP2013079442A (en) * 2011-09-22 2013-05-02 Sumitomo Chemical Co Ltd Process for producing metallic particle assembly

Similar Documents

Publication Publication Date Title
JP2902456B2 (en) Inorganic polarizing thin film
US3959799A (en) Information storage by laser beam initiated reactions
US5817410A (en) Nonlinear optical composites using linear transparent substances and method for producing the same
EP3356869B1 (en) Nano bi-material electromagnetic spectrum shifter
JPH05142605A (en) Nonlinear optical material and its production
EP0059096B1 (en) An information recording material
JPH05142604A (en) Nonlinear optical material and its production
JPH03294829A (en) Nonlinear optical thin film and production thereof
JPH08146477A (en) Nonlinear optical thin film and its production
JPH0797226A (en) Production of glass having dispersed gold fine particle
JPS58158056A (en) Laser recording medium and its manufacture
JPS647445B2 (en)
JPH11142898A (en) Nonlinear optical element and its production
CN113238426B (en) Optical limiting device based on quantum dot nonlinearity and nonlinear film preparation method thereof
JPH08313946A (en) Nonlinear optical thin film and its production
Xu et al. Wavelength multiplexing and tuning in nano-Ag/dielectric multilayers
Zhang et al. Preparation of Au/SiO2 nano-composite multilayers by helicon plasma sputtering and their optical properties
JPS6048397A (en) Optical recording medium and preparation thereof
JP3397495B2 (en) Manufacturing method of chromatic thin film
JPS61195943A (en) Alloy having variable spectral reflectance and recording material
JPH09203915A (en) Nonlinear optical thin film and its production
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material
JPH0915664A (en) Nonlinear optical material
TW200523914A (en) Phase change optical media and fabrication method thereof
JPH10274711A (en) Polarizing element and optical isolator using the same