JPH10268092A - Organic matter reducing device in reactor power station - Google Patents

Organic matter reducing device in reactor power station

Info

Publication number
JPH10268092A
JPH10268092A JP9071779A JP7177997A JPH10268092A JP H10268092 A JPH10268092 A JP H10268092A JP 9071779 A JP9071779 A JP 9071779A JP 7177997 A JP7177997 A JP 7177997A JP H10268092 A JPH10268092 A JP H10268092A
Authority
JP
Japan
Prior art keywords
toc
filter
line
desalter
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9071779A
Other languages
Japanese (ja)
Other versions
JP3846814B2 (en
Inventor
Noriyuki Namikata
紀之 南方
Takao Takada
孝夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07177997A priority Critical patent/JP3846814B2/en
Publication of JPH10268092A publication Critical patent/JPH10268092A/en
Application granted granted Critical
Publication of JP3846814B2 publication Critical patent/JP3846814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide an organic matter reducing device in a reactor power station capable of raising the efficiency of decomposition and removal of total organic carbon(TOC) and removing and processing TOC in a short time. SOLUTION: Between a filter 1 and a demineralizer 2 placed in a radioactive waste liquid processing equipment and condensate purification system of a reactor power station, a total organic carbon removing device 3 is placed. Impurity is removed to some extent with the upstream filter 1, TOC is decomposed and processed and remaining ionic TOC is removed with the demineralizer 2. By this, small-sizing and efficiency raising of the TOC removing device 3 can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子力発電所に設置
されている復水浄化系や放射性廃液処理系の廃液中の全
有機炭素を除去するための原子力発電所内有機物低減装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for reducing organic matter in a nuclear power plant for removing all organic carbon in wastewater of a condensate purification system or a radioactive wastewater treatment system installed in a nuclear power plant.

【0002】[0002]

【従来の技術】最近の沸騰水型原子力発電所内,放射性
廃棄物処理建屋において主な全有機炭素(以下、TOC
と記す)発生源は復水浄化系の復水脱塩装置に充填され
ているイオン交換樹脂である。その内カチオン樹脂は鉄
イオン等の金属イオンを吸着させるが、金属イオンが酸
化触媒となり、復水脱塩装置の逆洗時の酸素飽和水が酸
化剤となって樹脂を酸化劣化させ、TOCを溶出させる
ものと思われる。
2. Description of the Related Art In a recent boiling water nuclear power plant and a radioactive waste treatment building, main organic carbon (hereinafter referred to as TOC) is mainly used.
The source is an ion-exchange resin charged in a condensate desalination unit of a condensate purification system. Among them, the cationic resin adsorbs metal ions such as iron ions, but the metal ions serve as an oxidation catalyst, and the oxygen-saturated water during backwashing of the condensate desalination device serves as an oxidizing agent to oxidize and degrade the resin, thereby reducing TOC. It seems to elute.

【0003】その他の発生源は、使用済樹脂貯蔵タンク
に長期貯蔵されている樹脂も同様に劣化され、デカント
水からもTOCを含む廃液が発生しているものと思われ
る。このような廃液を機器ドレン系で処理すると機器ド
レン系のイオン交換樹脂の表面に付着し、イオン交換能
力が低下する。
[0003] As for other sources, it is considered that the resin stored in the used resin storage tank for a long period of time is similarly deteriorated, and waste liquid containing TOC is generated from the decant water. When such a waste liquid is treated with the equipment drain system, it adheres to the surface of the equipment drain system ion exchange resin, and the ion exchange capacity decreases.

【0004】これを避けるため、TOCを含む廃液を放
射性廃棄物処理系においては濃縮蒸留処理している。ま
た、復水貯蔵タンク内の回収水を抜き出し、抜き出した
回収水からTOCを除去した後、再び復水貯蔵タンクに
戻す循環ループを設けて処理する復水中の有機性不純物
の防去方法およびシステムとして、例えば特開平5-1340
94号公報に開示されている。
In order to avoid this, the waste liquid containing TOC is concentrated and distilled in a radioactive waste treatment system. Also, a method and system for removing organic impurities in condensate water, wherein the collected water in the condensed water storage tank is extracted, TOC is removed from the extracted collected water, and a circulation loop is returned to the condensed water storage tank for treatment. As, for example, JP-A-5-1340
No. 94 discloses this.

【0005】[0005]

【発明が解決しようとする課題】上記技術において、濃
縮蒸留処理方法では比較的高分子有機物のみ除去でき、
低分子有機物は除去できないのが現状である。また、特
開平5-134094号公報記載の場合、復水貯蔵タンクはほと
んどすべての浄化処理系からの回収水を集める大容量タ
ンクであるため、タンク内に貯蔵されている回収水をす
べて脱TOCするには処理時間が非常にかかってしま
う。よって、復水貯蔵タンクからの処理時間が限定され
てしまい必ずしも効果が期待できない。
In the above technology, the concentrated distillation treatment method can remove only relatively high molecular organic substances,
At present, low molecular organic substances cannot be removed. Further, in the case of JP-A-5-34094, the condensate storage tank is a large-capacity tank that collects recovered water from almost all of the purification processing systems. Requires a very long processing time. Therefore, the processing time from the condensate storage tank is limited, and the effect cannot always be expected.

【0006】また、TOC除去における既知の技術の多
くは分解方法であるが、分解処理液にイオン性のTOC
が残留してしまい、イオン成分を除去するための除去装
置を設ける必要があった。
Many of the known techniques for removing TOC are decomposition methods, and ionic TOC is added to the decomposition solution.
Remains, and it is necessary to provide a removing device for removing the ion component.

【0007】本発明の目的は、上記課題を解決するため
になされたもので、TOCの分解および除去効率を高
め、短時間でTOCを除去処理することができる原子力
発電所内有機物低減装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide an organic matter reduction apparatus in a nuclear power plant capable of improving TOC decomposition and removal efficiency and removing TOC in a short time. It is in.

【0008】[0008]

【課題を解決するための手段】請求項1の発明において
は、原子力発電所の放射性廃液処理設備や復水浄化系に
設置されているろ過器と脱塩器との間または濃縮器から
脱塩器との間に全有機炭素(TOC)除去装置を設けて
なることを特徴とする。
According to the first aspect of the present invention, desalination is performed between a filter and a desalter installed in a radioactive waste liquid treatment facility or a condensate purification system of a nuclear power plant or from a concentrator. A total organic carbon (TOC) removing device is provided between the vessel and the vessel.

【0009】請求項1の発明によれば、上流側に設置し
たろ過器および濃縮器等である程度不純物を除去するた
め、全有機炭素(TOC)除去装置において速やかにT
OC分解処理ができ、残留イオン性TOCを下流の脱塩
器により除去できる。よって、TOC除去装置の縮小化
および効率化が図ることができる。
According to the first aspect of the present invention, since a certain amount of impurities are removed by the filter and the concentrator installed on the upstream side, the total organic carbon (TOC) removing device quickly removes T.
OC decomposition treatment can be performed, and residual ionic TOC can be removed by a downstream desalter. Therefore, the size and efficiency of the TOC removing device can be reduced.

【0010】請求項2の発明においては、前記ろ過器と
脱塩器との間または濃縮器から脱塩器までの間に全有機
炭素(TOC)除去ラインとバイパスラインの2系統の
流路を設けてなることを特徴とする。
In the invention of claim 2, two flow paths, a total organic carbon (TOC) removal line and a bypass line, are provided between the filter and the desalter or between the concentrator and the desalter. It is characterized by being provided.

【0011】請求項2の発明によれば、請求項1の発明
とほぼ同じであるが、異なるところはTOC除去系に通
水できなくなるという事態が発生した場合にはバイパス
ラインにより正常に下流の脱塩器に移送できることであ
る。
According to the second aspect of the present invention, it is almost the same as the first aspect of the present invention, except that when a situation occurs in which water cannot be passed through the TOC removal system, the downstream of the TOC removal system is normally performed by the bypass line. That it can be transferred to a desalinator.

【0012】請求項3の発明においては、前記ろ過器と
脱塩器との間のバイパスラインまたは濃縮器から脱塩器
までのラインから分岐してTOC除去装置を設け、この
TOC除去装置の下流側にサージタンクを設け、このサ
ージタンクから前記脱塩器の上流側まで戻る戻りライン
を設けてなることを特徴とする。
In the invention of claim 3, a TOC removing device is provided by branching from a bypass line between the filter and the desalter or a line from the concentrator to the desalter, and a TOC removing device is provided downstream of the TOC removing device. A surge tank is provided on the side, and a return line returning from the surge tank to the upstream side of the desalter is provided.

【0013】請求項3の発明によれば、ろ過器の下流側
に接続したバイパスラインから分岐してTOC除去装置
とサージタンクとを直列接続し、サージタンクの下流側
を脱塩器の上流側に接続する戻りラインにより循環ルー
プを構成することにより、TOCを確実に除去できる。
According to the third aspect of the present invention, the TOC removing device and the surge tank are connected in series by branching from the bypass line connected to the downstream side of the filter, and the downstream side of the surge tank is connected to the upstream side of the desalter. The TOC can be reliably removed by forming a circulation loop by the return line connected to the circulating loop.

【0014】請求項4の発明においては、前記ろ過器と
前記全有機炭素(TOC)除去装置との間から分岐して
サンプリングポイントを設け、このサンプリングライン
にTOC自動分析計を設けてなることを特徴とする。
According to a fourth aspect of the present invention, a sampling point is provided by branching between the filter and the total organic carbon (TOC) removing device, and a TOC automatic analyzer is provided on this sampling line. Features.

【0015】請求項4の発明によれば、TOC自動分析
計によりろ過器から流出する廃液中のTOC成分の存在
の有無を確認し、存在すればバイパスライン中のバルブ
が閉となりTOC除去装置が稼働し、存在しなければバ
ルブが開となりバイパスさせることができ、TOC除去
装置の無駄な運用をさけることができる。
According to the fourth aspect of the present invention, the presence or absence of the TOC component in the waste liquid flowing out of the filter is confirmed by the TOC automatic analyzer, and if there is, the valve in the bypass line is closed and the TOC removing device is operated. If it does not exist, the valve is opened and can be bypassed if it does not exist, so that useless operation of the TOC removing device can be avoided.

【0016】請求項5の発明においては、前記全有機炭
素(TOC)除去装置は電気分解装置,オゾン分解機
構,逆浸透(RO)膜,紫外線(UV)照射機構を少な
くとも2以上組み合わせたTOC分解装置からなること
を特徴とする。請求項5の発明によれば、多装置構成に
することで、さまざまな形態のTOCを確実に除去する
ことができる。
In the fifth aspect of the present invention, the total organic carbon (TOC) removal apparatus is a TOC decomposition apparatus combining at least two or more of an electrolysis apparatus, an ozone decomposition mechanism, a reverse osmosis (RO) film, and an ultraviolet (UV) irradiation mechanism. It is characterized by comprising a device. According to the fifth aspect of the present invention, various forms of TOC can be reliably removed by employing a multi-device configuration.

【0017】請求項6の発明においては、復水浄化系に
設置された収集タンクと、この収集タンクに接続したろ
過器と、このろ過器の出口側配管から分岐し仕切弁を有
するバイパスラインと、このバイパスラインに接続した
脱塩器と、前記ろ過器の出口側配管に接続した移送ライ
ンと、この移送ラインに接続した使用済燃料を貯蔵した
燃料プールと、この燃料プールに供給ラインを介して接
続した燃料プール浄化系と、この燃料プール浄化系と前
記収集タンクとを接続する回収ラインとを具備したこと
を特徴とする。
According to a sixth aspect of the present invention, there is provided a collection tank installed in a condensate purification system, a filter connected to the collection tank, and a bypass line branched from an outlet pipe of the filter and having a gate valve. A desaliner connected to the bypass line, a transfer line connected to the outlet pipe of the filter, a fuel pool storing spent fuel connected to the transfer line, and a supply line connected to the fuel pool. And a recovery line connecting the fuel pool purification system and the collection tank.

【0018】請求項6の発明によれば、燃料プール内の
使用済燃料から発生する放射線か、または、放射線の影
響により水が分解されて発生するオゾン等の酸化剤によ
りTOC成分が酸化分解され、再び放射性廃棄物処理系
に戻すことにより、既設備を利用しても復水浄化系のT
OC成分を除去できる。
According to the present invention, the TOC component is oxidized and decomposed by the radiation generated from the spent fuel in the fuel pool or the oxidizing agent such as ozone generated by decomposing water due to the radiation. By returning to the radioactive waste treatment system again, the T
The OC component can be removed.

【0019】[0019]

【発明の実施の形態】本発明に係る原子力発電所内有機
物低減装置の第1の実施の形態を図1から図4を参照し
て説明する。本実施の形態は図1に示すように原子力発
電所の放射性廃液処理設備や復水浄化系に設置されてい
るろ過器1と脱塩器2との間にTOC除去装置3を設け
たことを特徴とし、ろ過器1からの廃液中のTOC成分
をTOC除去装置3で除去することにある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of an organic matter reduction apparatus in a nuclear power plant according to the present invention will be described with reference to FIGS. In the present embodiment, as shown in FIG. 1, a TOC removal device 3 is provided between a filter 1 and a desalter 2 installed in a radioactive waste liquid treatment facility or a condensate purification system of a nuclear power plant. It is characterized in that the TOC component in the waste liquid from the filter 1 is removed by the TOC removing device 3.

【0020】ここで、ろ過器1には図2に示す構造の中
空糸膜モジュール16を組み込んだ中空糸膜フィルタを適
用し、脱塩器2に図3に示す構造のイオン交換樹脂層36
を内蔵した脱塩器を適用し、TOC除去装置3には図4
に示した電気分解装置23と紫外線(UV)照射槽26とを
組み合わせたTOC除去装置を適用する。
Here, a hollow fiber membrane filter incorporating a hollow fiber membrane module 16 having the structure shown in FIG. 2 is applied to the filter 1, and the ion exchange resin layer 36 having the structure shown in FIG.
4 is applied to the TOC removal device 3 by applying a desalinator incorporating
The TOC removal device in which the electrolysis device 23 and the ultraviolet (UV) irradiation tank 26 shown in FIG.

【0021】図2におけるろ過器1は、沸騰水型原子力
発電所の放射性廃液処理設備内で用いられている中空糸
膜フィルタで、この中空糸膜フィルタは胴本体aの側面
に原液入口14を有し、上蓋bに液出口15を有し、胴本体
a内の管板Cに多数本の中空糸膜モジュール16を設置し
た構造からなり、数μmの超微細粒子を除去することが
できる。
The filter 1 in FIG. 2 is a hollow fiber membrane filter used in a radioactive waste water treatment facility of a boiling water nuclear power plant. The hollow fiber membrane filter has a stock solution inlet 14 on the side surface of the body a. It has a structure in which a liquid outlet 15 is provided in the upper lid b, and a large number of hollow fiber membrane modules 16 are installed in a tube sheet C in the barrel main body a, and ultra-fine particles of several μm can be removed.

【0022】固体不純物を除去する場合には原液入口14
から原液を胴本体a内に送り込み、中空糸膜モジュール
16により固液分離を行う。中空糸膜モジュール16内を通
過したろ液はろ液出口15から排出される。また、中空糸
膜モジュール16の中空糸膜面が固体不純物により目詰ま
りしてきた場合には原液の送り込みを中止し、ろ液出口
15に接続した逆洗空気入口17から圧縮空気を注入して固
体不純物を剥離させ、逆洗水とともに胴本体aの底部d
から排出する。
When removing solid impurities, the stock solution inlet 14
Feeds into the barrel body a from the hollow fiber membrane module
The solid-liquid separation is performed according to 16. The filtrate that has passed through the hollow fiber membrane module 16 is discharged from the filtrate outlet 15. If the hollow fiber membrane surface of the hollow fiber membrane module 16 is clogged with solid impurities, the feeding of the undiluted solution is stopped and the filtrate outlet is stopped.
Compressed air is injected from a backwash air inlet 17 connected to 15 to separate solid impurities, and together with the backwash water, the bottom d of the body a
Discharged from

【0023】図3における脱塩器2は、沸騰水型原子力
発電所の放射性廃液処理設備内で用いられているもの
で、胴本体dの上下両端に原水入口18と処理水出口19を
有し、胴本体d内にイオン交換樹脂層36,支持板37,ス
トレーナ38および再生液流入管39が設けられ、原水(廃
液)中のイオン成分をイオン交換樹脂層36により水素イ
オンおよび水酸化物イオンに交換する装置である。
The desalter 2 in FIG. 3 is used in a radioactive waste liquid treatment facility of a boiling water nuclear power plant, and has a raw water inlet 18 and a treated water outlet 19 at both upper and lower ends of a body d. An ion exchange resin layer 36, a support plate 37, a strainer 38, and a regenerating liquid inflow pipe 39 are provided in the body d of the body, and ion components in raw water (waste liquid) are converted into hydrogen ions and hydroxide ions by the ion exchange resin layer 36. It is a device to be exchanged.

【0024】不純イオン成分を除去する場合には、原水
入口18から原水を胴本体e内に送り込み、イオン交換樹
脂層36によりイオン交換を行う。その後、処理水は胴本
体e底部fの処理水出口19から排出される。図4におけ
るTOC除去装置3は、下部の電気分解装置23と、上部
の紫外線照射槽26とを組み合わせたものからなってい
る。
In order to remove the impure ion components, the raw water is fed into the body e through the raw water inlet 18 and ion exchange is performed by the ion exchange resin layer 36. Thereafter, the treated water is discharged from the treated water outlet 19 at the bottom f of the body e. The TOC removal device 3 in FIG. 4 is composed of a combination of a lower electrolysis device 23 and an upper ultraviolet irradiation tank 26.

【0025】すなわち、電気分解装置23は固体電解質20
を境界としてその両側に陰極21および陽極22を有し、陽
極22側に原液を流入するTOC除去系入口27を接続した
陽極室22aと、陰極21側に電気分解処理された純水を流
出するTOC除去系出口35を接続した陰極室21aとを有
する。
That is, the electrolyzer 23 comprises the solid electrolyte 20
An anode chamber 22a having a cathode 21 and an anode 22 on both sides with a boundary as a boundary, and connected to a TOC removal system inlet 27 into which an undiluted solution flows into the anode 22, and pure water subjected to electrolysis treatment flows out to the cathode 21 side. And a cathode chamber 21a to which a TOC removal system outlet 35 is connected.

【0026】一方、紫外線処理槽26は電気分解装置23の
陽極室22aで電気分解された酸化性物質28を含む原液29
を流入して紫外線処理するもので、この紫外線処理槽26
は紫外線ランプ24を内蔵しかつ槽内面に半導体光触媒化
処理層25を有し、前記紫外線ランプ24で紫外線処理され
た処理液を流出する流出口を有している。
On the other hand, the ultraviolet treatment tank 26 is a stock solution 29 containing an oxidizing substance 28 electrolyzed in the anode chamber 22a of the electrolyzer 23.
The UV treatment tank 26
Has a built-in ultraviolet lamp 24, has a semiconductor photocatalyst treatment layer 25 on the inner surface of the tank, and has an outlet through which the treatment liquid subjected to ultraviolet treatment by the ultraviolet lamp 24 flows out.

【0027】ここで、上記構成に係るTOC除去装置を
使用した場合のTOC分解方法を説明する。 (1) TOC除去系入口27から陽極室22a内に廃液を送り
込む。 (2) 陽極22に二酸化鉛電極を用いて電気分解することに
より、廃液中の水から酸化性物質28である溶解性オゾン
(O3 )が発生する。
Here, a description will be given of a TOC decomposing method when the TOC removing apparatus according to the above configuration is used. (1) The waste liquid is fed from the TOC removal system inlet 27 into the anode chamber 22a. (2) By performing electrolysis using a lead dioxide electrode as the anode 22, soluble ozone (O 3 ), which is an oxidizing substance 28, is generated from water in the waste liquid.

【0028】(3) 廃液+酸化性物質(O3 )29を紫外線
照射槽26内に送り込む。 (4) オゾン(O3 )を紫外線ランプ24からの紫外線で強
制分解することにより、強力な酸化力を持たせる。
(3) The waste liquid + oxidizing substance (O 3 ) 29 is fed into the ultraviolet irradiation tank 26. (4) Ozone (O 3 ) is forcibly decomposed by ultraviolet rays from the ultraviolet lamp 24 to have a strong oxidizing power.

【0029】(5) 強制分解したオゾンで廃液中のTOC
成分30を分解する。 (6) TOC成分30を分解後、処理液32として電気分解装
置23の陰極室21a内に戻す。
(5) TOC in waste liquid by forcibly decomposed ozone
Break down component 30. (6) After the TOC component 30 is decomposed, the TOC component 30 is returned to the cathode chamber 21a of the electrolyzer 23 as the treatment liquid 32.

【0030】(7) 酸化性物質28が残留する処理液32は陰
極21側で発生する還元性物質33の水素ガスにより還元処
理される。 (8) TOC成分が完全に分解されるまで循環を行い(2)
〜(7) の手段を繰り返す。 (9) TOC成分が完全に分解されたことを確認して、T
OC除去系出口35から陰極室21a内の廃液を排出する。
(7) The treatment liquid 32 in which the oxidizing substance 28 remains is reduced by the hydrogen gas of the reducing substance 33 generated on the cathode 21 side. (8) Circulate until the TOC component is completely decomposed (2)
Repeat steps (7) to (7). (9) After confirming that the TOC component has been completely decomposed,
The waste liquid in the cathode chamber 21a is discharged from the OC removal system outlet 35.

【0031】本実施の形態によれば、ろ過器1に使用す
る中空糸膜フィルタは数μmの超微細粒子を除去するこ
とができる高性能フィルタである。また、脱塩装置2は
廃液中のイオン成分をイオン交換樹脂により水素イオン
および水酸化物イオンにイオン交換装置である。さら
に、全有機炭素除去装置の紫外線処理槽は廃液に紫外線
を照射すれば廃液中のTOC成分が分解されて二酸化炭
素およびイオン性TOCになる特性を有している。
According to the present embodiment, the hollow fiber membrane filter used in the filter 1 is a high-performance filter capable of removing ultra-fine particles of several μm. Further, the desalination device 2 is an ion exchange device that converts ion components in the waste liquid into hydrogen ions and hydroxide ions by using an ion exchange resin. Further, the ultraviolet treatment tank of the total organic carbon removing apparatus has a property that when the waste liquid is irradiated with ultraviolet rays, the TOC component in the waste liquid is decomposed into carbon dioxide and ionic TOC.

【0032】したがって、最初に中空糸膜フィルタによ
るろ過器により廃液中の固体不純物を除去する(前処理
過程)。これを行うことで紫外線照射槽においてTOC
成分の照射効率が向上し、それに伴い、分解効率も向上
する。
Therefore, first, solid impurities in the waste liquid are removed by a filter using a hollow fiber membrane filter (pretreatment step). By doing this, the TOC in the UV irradiation tank
The irradiation efficiency of the components is improved, and accordingly, the decomposition efficiency is also improved.

【0033】しかして、ろ過器で固体不純物を除去した
廃液を電気分解してオゾンを発生させながら紫外線照射
槽26内に送り込む分解処理過程を経て分解処理後、最後
に残留したイオン性TOCを脱塩器2により除去する
(後処理過程)。このように3段階処理過程を踏むこと
により脱塩器のイオン交換樹脂出口からの廃液中のTO
C成分を数ppb程度にすることができる。
The waste liquid from which solid impurities have been removed by the filter is subjected to a decomposition process in which the waste liquid is electrolyzed and sent into the ultraviolet irradiation tank 26 while generating ozone. After the decomposition process, the last remaining ionic TOC is removed. It is removed by the salt vessel 2 (post-treatment step). By performing the three-step treatment process in this manner, the TO in the waste liquid from the outlet of the ion exchange resin of the desalter is removed.
The C component can be reduced to about several ppb.

【0034】なお、本実施の形態においてはろ過器1を
設置した場合について説明したが、ろ過器1の代りに濃
縮器を設置した場合についても、濃縮器と脱塩器2との
間に上記構成のTOC除去装置3を設置しても本実施の
形態とほぼ同様の作用効果が得られる。
Although the present embodiment has been described with respect to the case where the filter 1 is installed, the case where a concentrator is installed in place of the filter 1 is also used between the concentrator and the desalter 2. Even if the TOC removing device 3 having the configuration is installed, substantially the same operation and effect as in the present embodiment can be obtained.

【0035】つぎに図5により本発明に係る請求項2に
対応する原子力発電所内有機物低減装置の第2の実施の
形態を説明する。本実施の形態はろ過器1と脱塩器2と
の間に仕切弁40を有するバイパスライン4を設け、ろ過
器1の下流側に供給ライン6,TOC除去装置3および
ポンプ41を有する戻りライン13を直列接続して戻りライ
ン13の下流側を脱塩器2の上流側に接続したことにあ
る。
Next, a second embodiment of the apparatus for reducing organic matter in a nuclear power plant according to the present invention will be described with reference to FIG. In the present embodiment, a bypass line 4 having a gate valve 40 is provided between a filter 1 and a desalter 2, and a return line having a supply line 6, a TOC removing device 3, and a pump 41 downstream of the filter 1. 13 are connected in series and the downstream side of the return line 13 is connected to the upstream side of the desalter 2.

【0036】本実施の形態によれば、図1と同様に、ろ
過器1の出口水のTOC濃度が高い場合、供給ライン6
を経てTOC除去装置3によりTOC分解を行い、分解
により生成されたイオン種を脱塩器2により除去する。
一方、ろ過器1の出口水にTOC成分の存在が確認され
なかった場合、廃液はバイパスライン4に通して脱塩器
2入口に移送することができる。
According to the present embodiment, as in FIG. 1, when the TOC concentration of the outlet water of the filter 1 is high, the supply line 6
After that, TOC decomposition is performed by the TOC removal device 3, and the ionic species generated by the decomposition are removed by the desalter 2.
On the other hand, when the presence of the TOC component in the outlet water of the filter 1 is not confirmed, the waste liquid can be transferred to the inlet of the desalter 2 through the bypass line 4.

【0037】つぎに図6により本発明に係る請求項3に
対応する原子力発電所内有機物低減装置の第3の実施の
形態を説明する。本実施の形態は第2の実施の形態にお
いて、TOC除去装置3と戻りライン13との間にサージ
タンク5を設けるとともに、ろ過器1の上流側に収集タ
ンク9を設け、戻りライン13と収集タンク9との間に回
収ライン42を接続し、この回収ライン42の他端を収集タ
ンク9とろ過器1との接続配管43に接続し、接続配管43
にフィードバックライン44を設けている。
Next, a third embodiment of the organic matter reduction apparatus in a nuclear power plant according to the present invention will be described with reference to FIG. This embodiment is different from the second embodiment in that the surge tank 5 is provided between the TOC removing device 3 and the return line 13, and the collection tank 9 is provided on the upstream side of the filter 1. A collection line 42 is connected between the collection line 9 and the tank 9, and the other end of the collection line 42 is connected to a connection pipe 43 between the collection tank 9 and the filter 1.
Is provided with a feedback line 44.

【0038】本実施の形態によれば、図2と同様に、ろ
過器1の出口水のTOC濃度が高い場合、供給ライン6
を経てTOC除去装置3によりTOC分解を行い、サー
ジタンク5に回収する。サージタンク5でTOC成分の
存在が確認された場合には回収ライン42を通して上流側
の収集タンク9に回収して再処理を行う。
According to this embodiment, similarly to FIG. 2, when the TOC concentration of the outlet water of the filter 1 is high, the supply line 6
After that, the TOC is decomposed by the TOC removing device 3 and collected in the surge tank 5. When the presence of the TOC component is confirmed in the surge tank 5, the TOC component is collected in the collection tank 9 on the upstream side through the collection line 42 and reprocessed.

【0039】一方、TOC成分の存在が確認されない場
合には脱塩器2の入口に移送される。またろ過器1の出
口水にTOC成分の存在が確認されなかった場合、廃液
はバイパスライン4に通して下流側に移送することがで
きる。
On the other hand, if the presence of the TOC component is not confirmed, it is transferred to the inlet of the desalter 2. Further, when the presence of the TOC component in the outlet water of the filter 1 is not confirmed, the waste liquid can be transferred to the downstream side through the bypass line 4.

【0040】つぎに図7により本発明に係る請求項4に
対応する原子力発電所内有機物低減装置の第4の実施の
形態を説明する。本実施の形態はろ過器1とTOC分解
装置3との接続配管にサンプリングライン8を接続し、
このサンプリングライン8にTOC自動分析計7を設け
たことにある。本実施の形態によれば、TOC自動分析
計7においてろ過器1からの廃液を常時監視しておき、
廃液中にTOC成分の存在が確認された場合には、「T
OC濃度高」の信号がTOC自動分析計7から発信さ
れ、これに伴い、特に図5においてバイパスライン4に
設けた仕切弁40が「閉」の信号を受けるというインター
ロックを組むことができる。
Next, a fourth embodiment of the organic matter reduction apparatus in a nuclear power plant according to the present invention will be described with reference to FIG. In the present embodiment, a sampling line 8 is connected to a connection pipe between the filter 1 and the TOC decomposing device 3,
The TOC automatic analyzer 7 is provided on the sampling line 8. According to the present embodiment, the waste liquid from the filter 1 is constantly monitored in the TOC automatic analyzer 7,
If the presence of the TOC component in the waste liquid is confirmed, the "T
An "OC concentration high" signal is transmitted from the TOC automatic analyzer 7, and accordingly, an interlock can be set up in which the gate valve 40 provided in the bypass line 4 in FIG. 5 receives the "close" signal.

【0041】つぎに図8により本発明に係る請求項6に
対応する原子力発電所内有機物低減装置の第5の実施の
形態を説明する。本実施の形態は、復水浄化系に収集タ
ンク9を設置し、この収集タンク9に接続したろ過器1
の出口側に移送ライン10の一端を接続し、移送ライン10
の他端を燃料プール11に接続し、燃料プール11に接続ラ
イン45の一端を接続し、接続ライン15の他端を燃料プー
ル浄化系12に接続し、燃料プール浄化系12と収集タンク
9との間に回収ライン46を接続し、燃料プール浄化系12
と燃料プール11との間に戻りライン47を設けたことにあ
る。
Next, a fifth embodiment of the organic matter reduction apparatus in a nuclear power plant according to the present invention will be described with reference to FIG. In this embodiment, a collection tank 9 is installed in a condensate purification system, and a filter 1 connected to the collection tank 9 is installed.
One end of transfer line 10 is connected to the outlet side of
Is connected to the fuel pool 11, one end of a connection line 45 is connected to the fuel pool 11, the other end of the connection line 15 is connected to the fuel pool purification system 12, and the fuel pool purification system 12 and the collection tank 9 are connected. Connect the recovery line 46 between the fuel pool purification system 12
And a return line 47 is provided between the fuel pool 11 and the fuel pool 11.

【0042】本実施の形態によれば、ろ過器1の出口水
のTOC濃度が高い場合、移送ライン10を通して燃料プ
ール11に送り燃料プール11内で発生するオゾン等の酸化
剤によりTOC成分が酸化分解され、これにより生成さ
れたイオン種を燃料プール浄化系12により除去し、収集
ランク9に移送する。また、ろ過器1からの出口ろ水に
TOC成分の存在が確認されなかった場合、廃液はバイ
パスライン4に通して下流側の脱塩器4に移送される。
According to this embodiment, when the TOC concentration of the outlet water of the filter 1 is high, the TOC component is sent to the fuel pool 11 through the transfer line 10 and the TOC component is oxidized by the oxidizing agent such as ozone generated in the fuel pool 11. The ionic species generated by the decomposition are removed by the fuel pool purification system 12 and transferred to the collection rank 9. Further, when the presence of the TOC component in the outlet filtrate from the filter 1 is not confirmed, the waste liquid is transferred to the downstream desalter 4 through the bypass line 4.

【0043】[0043]

【発明の効果】請求項1の発明によれば、一般にTOC
除去装置は不純物を含まない方が除去率が高く、また、
分解処理後にはイオン成分が生成されることから、ろ過
器またはろ過器の代りに設置する濃縮器の下流側,脱塩
器の上流側にTOC除去装置を設置することにより、分
解,除去の効果を高め、短時間で除去が期待できる。
According to the first aspect of the present invention, TOC is generally used.
The removal device has a higher removal rate if it does not contain impurities,
Since ionic components are generated after the decomposition treatment, the effect of decomposition and removal can be obtained by installing a TOC removal device downstream of the filter or a concentrator installed in place of the filter, and upstream of the desalter. And removal can be expected in a short time.

【0044】請求項2の発明によれば、ろ過器または濃
縮器から脱塩器までの間に有機物(TOC)除去系ライ
ンとバイパスラインの2系統の流路を設けて、処理液の
選定ができるようにすることで請求項1の発明の効果以
上のものが期待できる。
According to the second aspect of the present invention, two flow paths, an organic matter (TOC) removal system line and a bypass line, are provided between the filter or the concentrator and the desalter to select a processing solution. By doing so, it is possible to expect more than the effects of the first aspect of the present invention.

【0045】請求項3の発明によれば、サージタンクに
TOC除去系による処理水を仮置できるようにすること
で、TOC成分が存在する廃液と存在しない廃液を分別
できるため合理性が増す。
According to the third aspect of the present invention, the treated water by the TOC removal system can be temporarily stored in the surge tank, so that the waste liquid containing the TOC component and the waste liquid not containing the TOC component can be separated, thereby increasing the rationality.

【0046】請求項4の発明によれば、TOCの有無の
確認とそれによる仕切弁の切り替えがオンラインでで
き、TOC成分を下流側に漏らすことはなくなる。請求
項5の発明によれば、電気分解装置と紫外線照射槽等と
を組み合わせることにより、2次廃液の処理を考える必
要がない。
According to the fourth aspect of the present invention, it is possible to check the presence or absence of TOC and to switch the gate valve based on the determination online, so that the TOC component does not leak to the downstream side. According to the invention of claim 5, it is not necessary to consider the treatment of the secondary waste liquid by combining the electrolysis apparatus with the ultraviolet irradiation tank and the like.

【0047】請求項6の発明によれば、既設の燃料プー
ルおよび燃料プール浄化系装置をそのまま転用すること
ができるので合理的な復水浄化系有機物低減装置を確立
できる。
According to the sixth aspect of the present invention, the existing fuel pool and fuel pool purifying system can be diverted as they are, so that a reasonable condensate purifying organic matter reducing system can be established.

【0048】また、請求項1〜6の発明に共通して云え
ることはTOC成分が除去され、原子炉および炉内構造
物への影響がなくなり、また、放射性廃棄物処理系全体
の運用が容易になることである。
Further, it can be said that the invention of claims 1 to 6 has a feature that the TOC component is removed, the influence on the reactor and the internal structure of the reactor is eliminated, and the operation of the entire radioactive waste treatment system is reduced. It is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る原子力発電所内有機物低減装置の
第1の実施の形態をブロック的に示す配管系統図。
FIG. 1 is a piping diagram showing a block diagram of a first embodiment of an organic matter reduction apparatus in a nuclear power plant according to the present invention.

【図2】図1におけるろ過器を示す縦断面図。FIG. 2 is a longitudinal sectional view showing the filter in FIG.

【図3】図1における脱塩器を概略的に示す縦断面図。FIG. 3 is a longitudinal sectional view schematically showing the desalter in FIG.

【図4】図1におけるTOC除去装置を概略的に示す縦
断面図。
FIG. 4 is a longitudinal sectional view schematically showing the TOC removing apparatus in FIG. 1;

【図5】本発明に係る原子力発電所内有機物低減装置の
第2の実施の形態をブロック的に示す配管系統図。
FIG. 5 is a piping diagram showing a second embodiment of the organic matter reduction apparatus in a nuclear power plant according to the present invention in a block diagram.

【図6】本発明に係る原子力発電所内有機物低減装置の
第3の実施の形態をブロック的に示す配管系統図。
FIG. 6 is a piping diagram showing a block diagram of a third embodiment of the organic matter reduction apparatus in a nuclear power plant according to the present invention.

【図7】本発明に係る原子力発電所内有機物低減装置の
第4の実施の形態をブロック的に示す配管系統図。
FIG. 7 is a piping diagram showing a fourth embodiment of the organic matter reduction apparatus in a nuclear power plant according to the present invention in a block diagram.

【図8】本発明に係る原子力発電所内有機物低減装置の
第5の実施の形態をブロック的に示す配管系統図。
FIG. 8 is a piping diagram showing a fifth embodiment of the organic matter reduction apparatus in a nuclear power plant according to the present invention in a block diagram.

【符号の説明】[Explanation of symbols]

1…ろ過器、2…脱塩器、3…TOC除去装置、4…バ
イパスライン、5…サージタンク、6…供給ライン、7
…TOC自動分析計、8…サンプリングライン、9…収
集タンク、10…移送ライン、11…燃料プール、12…燃料
プール浄化系、13…戻りライン、14…原液入口、15…ろ
液出口、16…中空糸膜モジュール、17…逆洗空気入口、
18…原水入口、19…処理水出口、20…固体電解質、21…
陰極、22…陽極、23…電気分解装置、24…紫外線照射ラ
ンプ、25…半導体光触媒化処理層、26…紫外線照射槽、
27…TOC除去系入口、28…酸化性物質、29…廃液+酸
化性物質、30…TOC成分、31…CO2 、32…処理液、
33…還元性物質、34…金属、35…TOC除去系出口、36
…イオン交換樹脂層、37…支持板、38…ストレーナ、39
…再生液流入管、40…仕切弁、41…ポンプ、42…回収ラ
イン、43…接続配管、44…フィードバックライン、45…
接続ライン、46…回収ライン、47…戻りライン。
DESCRIPTION OF SYMBOLS 1 ... Filter, 2 ... Demineralizer, 3 ... TOC removal apparatus, 4 ... Bypass line, 5 ... Surge tank, 6 ... Supply line, 7
... TOC automatic analyzer, 8 ... sampling line, 9 ... collection tank, 10 ... transfer line, 11 ... fuel pool, 12 ... fuel pool purification system, 13 ... return line, 14 ... stock solution inlet, 15 ... filtrate outlet, 16 ... hollow fiber membrane module, 17 ... backwash air inlet,
18 ... Raw water inlet, 19 ... Treated water outlet, 20 ... Solid electrolyte, 21 ...
Cathode, 22 ... Anode, 23 ... Electrolyzer, 24 ... Ultraviolet irradiation lamp, 25 ... Semiconductor photocatalyst treatment layer, 26 ... Ultraviolet irradiation tank,
27 ... TOC removal system inlet, 28 ... oxidizing substance, 29 ... waste + oxidizing agent, 30 ... TOC components, 31 ... CO 2, 32 ... treatment liquid,
33: reducing substance, 34: metal, 35: TOC removal system outlet, 36
... Ion exchange resin layer, 37 ... Support plate, 38 ... Strainer, 39
... regenerated liquid inflow pipe, 40 ... gate valve, 41 ... pump, 42 ... collection line, 43 ... connection pipe, 44 ... feedback line, 45 ...
Connection line, 46… Recovery line, 47… Return line.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/46 C02F 1/46 Z 1/461 1/78 1/78 9/00 502D 9/00 502 502F 502N 502R G21F 9/06 ZAB G21F 9/06 ZAB 551A 551 C02F 1/46 101C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/46 C02F 1/46 Z 1/461 1/78 1/78 9/00 502D 9/00 502 502F 502N 502R G21F 9 / 06 ZAB G21F 9/06 ZAB 551A 551 C02F 1/46 101C

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原子力発電所に設置されているろ過器と
脱塩器との間または濃縮器から脱塩器との間に全有機炭
素除去装置を設けてなることを特徴とする原子力発電所
内有機物低減装置。
1. A nuclear power plant having a total organic carbon removing device provided between a filter and a desalter installed in the nuclear power plant or between a concentrator and a desalter. Organic matter reduction equipment.
【請求項2】 前記ろ過器と脱塩器との間または濃縮器
から脱塩器までの間に全有機炭素除去ラインとバイパス
ラインの2系統の流路を設けてなることを特徴とする請
求項1記載の原子力発電所内有機物低減装置。
2. The system according to claim 1, wherein two lines of a total organic carbon removal line and a bypass line are provided between the filter and the desalter or between the concentrator and the desalter. Item 2. An organic matter reduction device in a nuclear power plant according to Item 1.
【請求項3】 前記ろ過器と脱塩器との間のバイパスラ
インまたは濃縮器から脱塩器までのラインから分岐して
前記TOC除去装置を設け、このTOC除去装置の下流
側にサージタンクを設け、このサージタンクから前記脱
塩器の上流側まで戻る戻りラインを設けてなることを特
徴とする請求項1記載の原子力発電所内有機物低減装
置。
3. The TOC removal device is provided by branching from a bypass line between the filter and the desalter or a line from a concentrator to a desalter, and a surge tank is provided downstream of the TOC removal device. 2. The organic matter reduction apparatus in a nuclear power plant according to claim 1, wherein a return line is provided to return from the surge tank to an upstream side of the desalter.
【請求項4】 前記ろ過器と前記全有機炭素除去装置と
の間から分岐してサンプリングポイントを設け、このサ
ンプリングラインに全有機炭素自動分析計を設けてなる
ことを特徴とする請求項1記載の原子力発電所内有機物
低減装置。
4. The apparatus according to claim 1, wherein a sampling point is provided by branching between the filter and the total organic carbon removing device, and an automatic organic carbon analyzer is provided on the sampling line. Organic matter reduction equipment in nuclear power plants.
【請求項5】 前記全有機炭素除去装置は電気分解装
置,オゾン分解機構,逆浸透膜,紫外線照射機構を2以
上組み合わせた全有機炭素分解装置からなることを特徴
とする請求項1記載の原子力発電所内有機物低減装置。
5. The nuclear power plant according to claim 1, wherein said total organic carbon removing device comprises an organic electrolytic device, an ozone decomposition mechanism, a reverse osmosis membrane, and an ultraviolet irradiation mechanism. Organic matter reduction equipment in power plants.
【請求項6】 復水浄化系に設置された収集タンクと、
この収集タンクに接続したろ過器と、このろ過器の出口
側配管から分岐し仕切弁を有するバイパスラインと、こ
のバイパスラインに接続した脱塩器と、前記ろ過器の出
口側配管に接続した移送ラインと、この移送ラインに接
続した使用済燃料を貯蔵した燃料プールと、この燃料プ
ールに供給ラインを介して接続した燃料プール浄化系
と、この燃料プール浄化系と前記収集タンクとを接続す
る回収ラインとを具備したことを特徴とする原子力発電
所内有機物低減装置。
6. A collection tank installed in a condensate purification system,
A filter connected to the collection tank, a bypass line branched from the outlet pipe of the filter and having a gate valve, a desalinator connected to the bypass line, and a transfer connected to the outlet pipe of the filter. Line, a fuel pool storing spent fuel connected to the transfer line, a fuel pool purification system connected to the fuel pool via a supply line, and a collection connecting the fuel pool purification system and the collection tank. A device for reducing organic matter in a nuclear power plant, comprising a line.
JP07177997A 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant Expired - Fee Related JP3846814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07177997A JP3846814B2 (en) 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07177997A JP3846814B2 (en) 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant

Publications (2)

Publication Number Publication Date
JPH10268092A true JPH10268092A (en) 1998-10-09
JP3846814B2 JP3846814B2 (en) 2006-11-15

Family

ID=13470406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07177997A Expired - Fee Related JP3846814B2 (en) 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant

Country Status (1)

Country Link
JP (1) JP3846814B2 (en)

Also Published As

Publication number Publication date
JP3846814B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3180348B2 (en) Pure water production method
KR100361799B1 (en) Method and apparatus for regenerating photoresist developing waste liquid
JP3518112B2 (en) Fuel cell water treatment equipment
JPH08126886A (en) Production of ultrapure water and device therefor
CN104108813A (en) Refining and chemical sewage desalting integrated treatment process and device
JP3864934B2 (en) Pure water production equipment
CN110349689A (en) Nuclear power station Spent Radioactive liquid processing device
CN110379532B (en) Method and device for treating radioactive waste liquid
JP4119966B2 (en) Elution recovery of metal from metal collector and method of regenerating eluent
JP5962135B2 (en) Ultrapure water production equipment
JP5285135B2 (en) Water treatment system and water treatment method
JPH11253968A (en) Water recovering apparatus
JPH10268092A (en) Organic matter reducing device in reactor power station
JP2010036173A (en) Water treatment system and water treatment method
KR20230110573A (en) Mineralization of organic compounds by boron-doped-diamond electrodes during radionuclide removal process
JP2006212540A (en) Treatment method of chemical-washing waste liquid
KR101063926B1 (en) Condensate polishing system and method thereof
KR100666309B1 (en) Deionization apparatus and Method for condensate with Continuous deionization equipment
Epimakhov et al. Reverse-osmosis filtration based water treatment and special water purification for nuclear power systems
CN209352693U (en) A kind of reclaiming system of etched foil cleaning waste water
JP3614995B2 (en) Condensate demineralizer
JPH09192643A (en) Ultrapure water producing device
KR100649653B1 (en) Deionization apparatus and method for condensate with electro-deionization equipment without the recycle pump
JP4218140B2 (en) TOC removal device
CN109336314A (en) A kind of reclaiming system and its reuse method of etched foil cleaning waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees