JP3846814B2 - Organic substance reduction device in nuclear power plant - Google Patents

Organic substance reduction device in nuclear power plant Download PDF

Info

Publication number
JP3846814B2
JP3846814B2 JP07177997A JP7177997A JP3846814B2 JP 3846814 B2 JP3846814 B2 JP 3846814B2 JP 07177997 A JP07177997 A JP 07177997A JP 7177997 A JP7177997 A JP 7177997A JP 3846814 B2 JP3846814 B2 JP 3846814B2
Authority
JP
Japan
Prior art keywords
toc
desalter
nuclear power
filter
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07177997A
Other languages
Japanese (ja)
Other versions
JPH10268092A (en
Inventor
紀之 南方
孝夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07177997A priority Critical patent/JP3846814B2/en
Publication of JPH10268092A publication Critical patent/JPH10268092A/en
Application granted granted Critical
Publication of JP3846814B2 publication Critical patent/JP3846814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

【0001】
【発明の属する技術分野】
本発明は原子力発電所に設置されている復水浄化系や放射性廃液処理系の廃液中の全有機炭素を除去するための原子力発電所内有機物低減装置に関する。
【0002】
【従来の技術】
最近の沸騰水型原子力発電所内,放射性廃棄物処理建屋において主な全有機炭素(以下、TOCと記す)発生源は復水浄化系の復水脱塩装置に充填されているイオン交換樹脂である。その内カチオン樹脂は鉄イオン等の金属イオンを吸着させるが、金属イオンが酸化触媒となり、復水脱塩装置の逆洗時の酸素飽和水が酸化剤となって樹脂を酸化劣化させ、TOCを溶出させるものと思われる。
【0003】
その他の発生源は、使用済樹脂貯蔵タンクに長期貯蔵されている樹脂も同様に劣化され、デカント水からもTOCを含む廃液が発生しているものと思われる。このような廃液を機器ドレン系で処理すると機器ドレン系のイオン交換樹脂の表面に付着し、イオン交換能力が低下する。
【0004】
これを避けるため、TOCを含む廃液を放射性廃棄物処理系においては濃縮蒸留処理している。また、復水貯蔵タンク内の回収水を抜き出し、抜き出した回収水からTOCを除去した後、再び復水貯蔵タンクに戻す循環ループを設けて処理する復水中の有機性不純物の防去方法およびシステムとして、例えば特開平5-134094号公報に開示されている。
【0005】
【発明が解決しようとする課題】
上記技術において、濃縮蒸留処理方法では比較的高分子有機物のみ除去でき、低分子有機物は除去できないのが現状である。また、特開平5-134094号公報記載の場合、復水貯蔵タンクはほとんどすべての浄化処理系からの回収水を集める大容量タンクであるため、タンク内に貯蔵されている回収水をすべて脱TOCするには処理時間が非常にかかってしまう。よって、復水貯蔵タンクからの処理時間が限定されてしまい必ずしも効果が期待できない。
【0006】
また、TOC除去における既知の技術の多くは分解方法であるが、分解処理液にイオン性のTOCが残留してしまい、イオン成分を除去するための除去装置を設ける必要があった。
【0007】
本発明の目的は、上記課題を解決するためになされたもので、TOCの分解および除去効率を高め、短時間でTOCを除去処理することができる原子力発電所内有機物低減装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明においては、原子力発電所に設置されているろ過器と脱塩器との間または濃縮器と脱塩器との間に全有機炭素除去装置を設け、この全有機炭素除去装置は、原液を流入させこの原液を電気分解させて酸化性物質を発生させる電気分解装置の陽極室と、この陽極室で発生させた酸化性物質を含む原液を紫外線処理して原液中の全有機炭素成分を分解し処理液とする紫外線照射槽と、この紫外線処理された処理液を電気分解させて還元性物質を発生させこの処理液に残留する前記酸化性物質を還元処理する電気分解装置の陰極室とを備えていることを特徴とする。
【0009】
請求項1の発明によれば、上流側に設置したろ過器および濃縮器等である程度不純物を除去し、全有機炭素(TOC)除去装置において速やかに酸化性物質を発生させこの酸化性物質を活性化して原液中のTOCを分解するので、TOC分解処理ができ、残留イオン性TOCを下流の脱塩器により除去できる。よって、TOC除去装置の縮小化および効率化が図ることができる。
【0010】
請求項2の発明においては、前記ろ過器と脱塩器との間または濃縮器から脱塩器までの間に全有機炭素(TOC)除去ラインとバイパスラインの2系統の流路を設けてなることを特徴とする。
【0011】
請求項2の発明によれば、請求項1の発明とほぼ同じであるが、異なるところはTOC除去系に通水できなくなるという事態が発生した場合にはバイパスラインにより正常に下流の脱塩器に移送できることである。
【0012】
請求項3の発明においては、前記ろ過器と脱塩器との間のバイパスラインまたは濃縮器から脱塩器までのラインから分岐してTOC除去装置を設け、このTOC除去装置の下流側にサージタンクを設け、このサージタンクから前記脱塩器の上流側まで戻る戻りラインを設けてなることを特徴とする。
【0013】
請求項3の発明によれば、ろ過器の下流側に接続したバイパスラインから分岐してTOC除去装置とサージタンクとを直列接続し、サージタンクの下流側を脱塩器の上流側に接続する戻りラインにより循環ループを構成することにより、TOCを確実に除去できる。
【0014】
請求項4の発明においては、前記ろ過器と前記全有機炭素(TOC)除去装置との間から分岐してサンプリングラインを設け、このサンプリングラインにTOC自動分析計を設けてなることを特徴とする。
【0015】
請求項4の発明によれば、TOC自動分析計によりろ過器から流出する廃液中のTOC成分の存在の有無を確認し、存在すればバイパスライン中のバルブが閉となりTOC除去装置が稼働し、存在しなければバルブが開となりバイパスさせることができ、TOC除去装置の無駄な運用をさけることができる。
【0016】
請求項5の発明においては、前記全有機炭素(TOC)除去装置は電気分解装置,オゾン分解機構,逆浸透(RO)膜,紫外線(UV)照射機構を組み合わせたTOC分解装置からなることを特徴とする。請求項5の発明によれば、多装置構成にすることで、さまざまな形態のTOCを確実に除去することができる。
【0019】
【発明の実施の形態】
本発明に係る原子力発電所内有機物低減装置の第1の実施の形態を図1から図4を参照して説明する。
本実施の形態は図1に示すように原子力発電所の放射性廃液処理設備や復水浄化系に設置されているろ過器1と脱塩器2との間にTOC除去装置3を設けたことを特徴とし、ろ過器1からの廃液中のTOC成分をTOC除去装置3で除去することにある。
【0020】
ここで、ろ過器1には図2に示す構造の中空糸膜モジュール16を組み込んだ中空糸膜フィルタを適用し、脱塩器2に図3に示す構造のイオン交換樹脂層36を内蔵した脱塩器を適用し、TOC除去装置3には図4に示した電気分解装置23と紫外線(UV)照射槽26とを組み合わせたTOC除去装置を適用する。
【0021】
図2におけるろ過器1は、沸騰水型原子力発電所の放射性廃液処理設備内で用いられている中空糸膜フィルタで、この中空糸膜フィルタは胴本体aの側面に原液入口14を有し、上蓋bに液出口15を有し、胴本体a内の管板Cに多数本の中空糸膜モジュール16を設置した構造からなり、数μmの超微細粒子を除去することができる。
【0022】
固体不純物を除去する場合には原液入口14から原液を胴本体a内に送り込み、中空糸膜モジュール16により固液分離を行う。中空糸膜モジュール16内を通過したろ液はろ液出口15から排出される。また、中空糸膜モジュール16の中空糸膜面が固体不純物により目詰まりしてきた場合には原液の送り込みを中止し、ろ液出口15に接続した逆洗空気入口17から圧縮空気を注入して固体不純物を剥離させ、逆洗水とともに胴本体aの底部dから排出する。
【0023】
図3における脱塩器2は、沸騰水型原子力発電所の放射性廃液処理設備内で用いられているもので、胴本体の上下両端に原水入口18と処理水出口19を有し、胴本体内にイオン交換樹脂層36,支持板37,ストレーナ38および再生液流入管39が設けられ、原水(廃液)中のイオン成分をイオン交換樹脂層36により水素イオンおよび水酸化物イオンに交換する装置である。
【0024】
不純イオン成分を除去する場合には、原水入口18から原水を胴本体e内に送り込み、イオン交換樹脂層36によりイオン交換を行う。その後、処理水は胴本体e底部fの処理水出口19から排出される。図4におけるTOC除去装置3は、下部の電気分解装置23と、上部の紫外線照射槽26とを組み合わせたものからなっている。
【0025】
すなわち、電気分解装置23は固体電解質20を境界としてその両側に陰極21および陽極22を有し、陽極22側に原液を流入するTOC除去系入口27を接続した陽極室22aと、陰極21側に電気分解処理された純水を流出するTOC除去系出口35を接続した陰極室21aとを有する。
【0026】
一方、紫外線照射槽26は電気分解装置23の陽極室22aで電気分解された酸化性物質28を含む原液29を流入して紫外線処理するもので、この紫外線照射槽26は紫外線ランプ24を内蔵しかつ槽内面に半導体光触媒化処理層25を有し、前記紫外線ランプ24で紫外線処理された処理液を流出する流出口を有している。
【0027】
ここで、上記構成に係るTOC除去装置を使用した場合のTOC分解方法を説明する。
(1) TOC除去系入口27から陽極室22a内に廃液を送り込む。
(2) 陽極22に二酸化鉛電極を用いて電気分解することにより、廃液中の水から酸化性物質28である溶解性オゾン(O3 )が発生する。
【0028】
(3) 廃液+酸化性物質(O3 )29を紫外線照射槽26内に送り込む。
(4) オゾン(O3 )を紫外線ランプ24からの紫外線で強制分解することにより、強力な酸化力を持たせる。
【0029】
(5) 強制分解したオゾンで廃液中のTOC成分30を分解する。
(6) TOC成分30を分解後、処理液32として電気分解装置23の陰極室21a内に戻す。
【0030】
(7) 酸化性物質28が残留する処理液32は陰極21側で発生する還元性物質33の水素ガスにより還元処理される。
(8) TOC成分が完全に分解されるまで循環を行い(2) 〜(7) の手段を繰り返す。
(9) TOC成分が完全に分解されたことを確認して、TOC除去系出口35から陰極室21a内の廃液を排出する。
【0031】
本実施の形態によれば、ろ過器1に使用する中空糸膜フィルタは数μmの超微細粒子を除去することができる高性能フィルタである。また、脱塩装置2は廃液中のイオン成分をイオン交換樹脂により水素イオンおよび水酸化物イオンにイオン交換装置である。さらに、全有機炭素除去装置の紫外線照射槽は廃液に紫外線を照射することによって廃液中のTOC成分が分解されて二酸化炭素およびイオン性TOCになる特性を有している。
【0032】
したがって、最初に中空糸膜フィルタによるろ過器により廃液中の固体不純物を除去する(前処理過程)。これを行うことで紫外線照射槽においてTOC成分の照射効率が向上し、それに伴い、分解効率も向上する。
【0033】
しかして、ろ過器で固体不純物を除去した廃液を電気分解してオゾンを発生させながら紫外線照射槽26内に送り込む分解処理過程を経て分解処理後、最後に残留したイオン性TOCを脱塩器2により除去する(後処理過程)。このように3段階処理過程を踏むことにより脱塩器のイオン交換樹脂出口からの廃液中のTOC成分を数ppb程度にすることができる。
【0034】
なお、本実施の形態においてはろ過器1を設置した場合について説明したが、ろ過器1の代りに濃縮器を設置した場合についても、濃縮器と脱塩器2との間に上記構成のTOC除去装置3を設置しても本実施の形態とほぼ同様の作用効果が得られる。
【0035】
つぎに図5により本発明に係る請求項2に対応する原子力発電所内有機物低減装置の第2の実施の形態を説明する。
本実施の形態はろ過器1と脱塩器2との間に仕切弁40を有するバイパスライン4を設け、ろ過器1の下流側に供給ライン6,TOC除去装置3およびポンプ41を有する戻りライン13を直列接続して戻りライン13の下流側を脱塩器2の上流側に接続したことにある。
【0036】
本実施の形態によれば、図1と同様に、ろ過器1の出口水のTOC濃度が高い場合、供給ライン6を経てTOC除去装置3によりTOC分解を行い、分解により生成されたイオン種を脱塩器2により除去する。一方、ろ過器1の出口水にTOC成分の存在が確認されなかった場合、廃液はバイパスライン4に通して脱塩器2入口に移送することができる。
【0037】
つぎに図6により本発明に係る請求項3に対応する原子力発電所内有機物低減装置の第3の実施の形態を説明する。
本実施の形態は第2の実施の形態において、TOC除去装置3と戻りライン13との間にサージタンク5を設けるとともに、ろ過器1の上流側に収集タンク9を設け、戻りライン13と収集タンク9との間に回収ライン42を接続し、この回収ライン42の他端を収集タンク9とろ過器1との接続配管43に接続し、接続配管43にフィードバックライン44を設けている。
【0038】
本実施の形態によれば、図2と同様に、ろ過器1の出口水のTOC濃度が高い場合、供給ライン6を経てTOC除去装置3によりTOC分解を行い、サージタンク5に回収する。サージタンク5でTOC成分の存在が確認された場合には回収ライン42を通して上流側の収集タンク9に回収して再処理を行う。
【0039】
一方、TOC成分の存在が確認されない場合には脱塩器2の入口に移送される。またろ過器1の出口水にTOC成分の存在が確認されなかった場合、廃液はバイパスライン4に通して下流側に移送することができる。
【0040】
つぎに図7により本発明に係る請求項4に対応する原子力発電所内有機物低減装置の第4の実施の形態を説明する。
本実施の形態はろ過器1とTOC分解装置3との接続配管にサンプリングライン8を接続し、このサンプリングライン8にTOC自動分析計7を設けたことにある。本実施の形態によれば、TOC自動分析計7においてろ過器1からの廃液を常時監視しておき、廃液中にTOC成分の存在が確認された場合には、「TOC濃度高」の信号がTOC自動分析計7から発信され、これに伴い、特に図5においてバイパスライン4に設けた仕切弁40が「閉」の信号を受けるというインターロックを組むことができる。
【0041】
つぎに図8により本発明原子力発電所内有機物低減装置の第5の実施の形態を説明する。
本実施の形態は、復水浄化系に収集タンク9を設置し、この収集タンク9に接続したろ過器1の出口側に移送ライン10の一端を接続し、移送ライン10の他端を燃料プール11に接続し、燃料プール11に接続ライン45の一端を接続し、接続ライン15の他端を燃料プール浄化系12に接続し、燃料プール浄化系12と収集タンク9との間に回収ライン46を接続し、燃料プール浄化系12と燃料プール11との間に戻りライン47を設けたことにある。
【0042】
本実施の形態によれば、ろ過器1の出口水のTOC濃度が高い場合、移送ライン10を通して燃料プール11に送り燃料プール11内で発生するオゾン等の酸化剤によりTOC成分が酸化分解され、これにより生成されたイオン種を燃料プール浄化系12により除去し、収集ランク9に移送する。また、ろ過器1からの出口ろ水にTOC成分の存在が確認されなかった場合、廃液はバイパスライン4に通して下流側の脱塩器4に移送される。
【0043】
【発明の効果】
請求項1の発明によれば、一般にTOC除去装置は不純物を含まない方が除去率が高く、また、分解処理後にはイオン成分が生成されることから、ろ過器またはろ過器の代りに設置する濃縮器の下流側,脱塩器の上流側に全有機炭素(TOC除去装置を設置し、この全有機炭素(TOC)除去装置において酸化性物質を発生させこの酸化性物質を活性化して原液中のTOCを分解するので、分解,除去の効果を高め、短時間で除去が期待できる。
【0044】
請求項2の発明によれば、ろ過器または濃縮器から脱塩器までの間に有機物(TOC)除去系ラインとバイパスラインの2系統の流路を設けて、処理液の選定ができるようにすることで請求項1の発明の効果以上のものが期待できる。
【0045】
請求項3の発明によれば、サージタンクにTOC除去系による処理水を仮置できるようにすることで、TOC成分が存在する廃液と存在しない廃液を分別できるため合理性が増す。
【0046】
請求項4の発明によれば、TOCの有無の確認とそれによる仕切弁の切り替えがオンラインででき、TOC成分を下流側に漏らすことはなくなる。
請求項5の発明によれば、電気分解装置と紫外線照射槽等とを組み合わせることにより、2次廃液の処理を考える必要がない。
【0048】
また、請求項1〜の発明に共通して云えることはTOC成分が除去され、原子炉および炉内構造物への影響がなくなり、また、放射性廃棄物処理系全体の運用が容易になることである。
【図面の簡単な説明】
【図1】本発明に係る原子力発電所内有機物低減装置の第1の実施の形態をブロック的に示す配管系統図。
【図2】図1におけるろ過器を示す縦断面図。
【図3】図1における脱塩器を概略的に示す縦断面図。
【図4】図1におけるTOC除去装置を概略的に示す縦断面図。
【図5】本発明に係る原子力発電所内有機物低減装置の第2の実施の形態をブロック的に示す配管系統図。
【図6】本発明に係る原子力発電所内有機物低減装置の第3の実施の形態をブロック的に示す配管系統図。
【図7】本発明に係る原子力発電所内有機物低減装置の第4の実施の形態をブロック的に示す配管系統図。
【図8】本発明に係る原子力発電所内有機物低減装置の第5の実施の形態をブロック的に示す配管系統図。
【符号の説明】
1…ろ過器、2…脱塩器、3…TOC除去装置、4…バイパスライン、5…サージタンク、6…供給ライン、7…TOC自動分析計、8…サンプリングライン、9…収集タンク、10…移送ライン、11…燃料プール、12…燃料プール浄化系、13…戻りライン、14…原液入口、15…ろ液出口、16…中空糸膜モジュール、17…逆洗空気入口、18…原水入口、19…処理水出口、20…固体電解質、21…陰極、22…陽極、23…電気分解装置、24…紫外線照射ランプ、25…半導体光触媒化処理層、26…紫外線照射槽、27…TOC除去系入口、28…酸化性物質、29…廃液+酸化性物質、30…TOC成分、31…CO2 、32…処理液、33…還元性物質、34…金属、35…TOC除去系出口、36…イオン交換樹脂層、37…支持板、38…ストレーナ、39…再生液流入管、40…仕切弁、41…ポンプ、42…回収ライン、43…接続配管、44…フィードバックライン、45…接続ライン、46…回収ライン、47…戻りライン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic matter reducing device in a nuclear power plant for removing all organic carbon in the waste liquid of a condensate purification system or a radioactive liquid waste treatment system installed in a nuclear power plant.
[0002]
[Prior art]
The main source of all organic carbon (hereinafter referred to as TOC) in radioactive waste processing buildings in boiling water nuclear power plants is ion exchange resin filled in the condensate demineralizer of the condensate purification system. . Among them, the cation resin adsorbs metal ions such as iron ions, but the metal ions serve as an oxidation catalyst, and oxygen saturated water at the time of backwashing of the condensate demineralizer serves as an oxidant to oxidize and degrade the resin. It seems to elute.
[0003]
As for other sources, it is considered that the resin stored for a long time in the used resin storage tank is deteriorated in the same manner, and waste liquid containing TOC is generated from decant water. When such a waste liquid is treated with an equipment drain system, it adheres to the surface of the equipment drain-based ion exchange resin, and the ion exchange capacity decreases.
[0004]
In order to avoid this, waste liquid containing TOC is concentrated and distilled in the radioactive waste treatment system. Further, a method and system for removing organic impurities in condensate, in which the recovered water in the condensate storage tank is extracted, the TOC is removed from the extracted recovered water, and then a circulation loop is provided to return to the condensate storage tank. For example, it is disclosed by Unexamined-Japanese-Patent No. 5-134094.
[0005]
[Problems to be solved by the invention]
In the above technique, the concentrated distillation treatment method can remove only relatively high molecular organic substances and cannot remove low molecular organic substances. In addition, in the case of JP-A-5-134094, the condensate storage tank is a large-capacity tank that collects recovered water from almost all purification treatment systems, so that all the recovered water stored in the tank is de-TOCCed. It takes a lot of processing time. Therefore, the processing time from the condensate storage tank is limited, and the effect cannot be expected.
[0006]
In addition, many of the known techniques in TOC removal are decomposition methods, but ionic TOC remains in the decomposition treatment liquid, and it is necessary to provide a removal device for removing ionic components.
[0007]
An object of the present invention is to provide an organic matter reducing device in a nuclear power plant that can improve the decomposition and removal efficiency of TOC and remove TOC in a short time. .
[0008]
[Means for Solving the Problems]
In the invention of claim 1 , a total organic carbon removing device is provided between a filter and a desalter installed in a nuclear power plant or between a concentrator and a desalter, and this total organic carbon removing device is provided. The anode chamber of the electrolyzer that generates an oxidizable substance by injecting the stock solution and electrolyzing the stock solution, and the stock solution containing the oxidizing material generated in the anode chamber is treated with ultraviolet rays to treat all organic matter in the stock solution. An ultraviolet irradiation tank for decomposing a carbon component into a treatment liquid, and an electrolysis apparatus for electrolyzing the ultraviolet-treated treatment liquid to generate a reducing substance and reducing the oxidizing substance remaining in the treatment liquid. characterized that you have a cathode chamber.
[0009]
According to the first aspect of the present invention, impurities are removed to some extent by a filter and a concentrator installed on the upstream side, and an oxidizing substance is quickly generated in the total organic carbon (TOC) removing device to activate the oxidizing substance. Since the TOC in the stock solution is decomposed , the TOC decomposition treatment can be performed, and the residual ionic TOC can be removed by the downstream desalinator. Therefore, the TOC removing apparatus can be reduced in size and efficiency.
[0010]
In the invention of claim 2, between the filter and the desalter or between the concentrator and the desalter, there are provided two channels of a total organic carbon (TOC) removal line and a bypass line. It is characterized by that.
[0011]
According to the invention of claim 2, it is almost the same as that of the invention of claim 1, but the difference is that when a situation occurs in which water cannot be passed through the TOC removal system, the demineralizer is normally downstream by the bypass line. It can be transferred to.
[0012]
In a third aspect of the present invention, a TOC removal device is provided by branching from a bypass line between the filter and the desalter or a line from the concentrator to the desalter, and a surge is provided downstream of the TOC removal device. A tank is provided, and a return line that returns from the surge tank to the upstream side of the demineralizer is provided.
[0013]
According to invention of Claim 3, it branches from the bypass line connected to the downstream of a filter, connects a TOC removal apparatus and a surge tank in series, and connects the downstream of a surge tank to the upstream of a desalter. By configuring the circulation loop with the return line, the TOC can be reliably removed.
[0014]
The invention according to claim 4 is characterized in that a sampling line is provided by branching between the filter and the total organic carbon (TOC) removing device, and a TOC automatic analyzer is provided on the sampling line. .
[0015]
According to the invention of claim 4, the presence or absence of the TOC component in the waste liquid flowing out from the filter is confirmed by the TOC automatic analyzer, and if it exists, the valve in the bypass line is closed and the TOC removing device is operated. If it does not exist, the valve is opened and can be bypassed, and wasteful operation of the TOC removal device can be avoided.
[0016]
In the invention of claim 5, wherein the total organic carbon (TOC) removal device electrolyzer, ozonolysis mechanism, reverse osmosis (RO) membranes, ultraviolet (UV) to become the irradiation mechanism from the set look combined TOC cracker It is characterized by. According to the invention of claim 5, various configurations of TOC can be reliably removed by adopting a multi-device configuration.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of an organic matter reducing apparatus in a nuclear power plant according to the present invention will be described with reference to FIGS.
In the present embodiment, as shown in FIG. 1, a TOC removal device 3 is provided between a filter 1 and a desalter 2 installed in a radioactive liquid waste treatment facility or a condensate purification system of a nuclear power plant. It is characterized in that the TOC component in the waste liquid from the filter 1 is removed by the TOC removing device 3.
[0020]
Here, a hollow fiber membrane filter incorporating a hollow fiber membrane module 16 having the structure shown in FIG. 2 is applied to the filter 1, and a deionizer 2 having a built-in ion exchange resin layer 36 having the structure shown in FIG. A salt container is applied, and a TOC removing device combining the electrolysis device 23 and the ultraviolet (UV) irradiation tank 26 shown in FIG.
[0021]
The filter 1 in FIG. 2 is a hollow fiber membrane filter used in a radioactive liquid waste treatment facility of a boiling water nuclear power plant, and this hollow fiber membrane filter has a stock solution inlet 14 on the side surface of the trunk body a, The upper lid b has a liquid outlet 15 and has a structure in which a large number of hollow fiber membrane modules 16 are installed on a tube plate C in the trunk body a, and ultrafine particles of several μm can be removed.
[0022]
When removing solid impurities, the stock solution is fed into the trunk body a from the stock solution inlet 14 and solid-liquid separation is performed by the hollow fiber membrane module 16. The filtrate that has passed through the hollow fiber membrane module 16 is discharged from the filtrate outlet 15. If the hollow fiber membrane surface of the hollow fiber membrane module 16 has become clogged with solid impurities, the feed of the stock solution is stopped and compressed air is injected from the backwash air inlet 17 connected to the filtrate outlet 15 to Impurities are peeled off and discharged from the bottom d of the trunk body a together with backwash water.
[0023]
The desalter 2 in FIG. 3 is used in a radioactive liquid waste treatment facility of a boiling water nuclear power plant, and has a raw water inlet 18 and a treated water outlet 19 at both upper and lower ends of the trunk body e. An ion exchange resin layer 36, a support plate 37, a strainer 38, and a regeneration liquid inflow pipe 39 are provided in e , and ion components in the raw water (waste liquid) are exchanged into hydrogen ions and hydroxide ions by the ion exchange resin layer 36. Device.
[0024]
In order to remove the impure ion component, raw water is fed into the trunk body e from the raw water inlet 18 and ion exchange is performed by the ion exchange resin layer 36. Thereafter, the treated water is discharged from the treated water outlet 19 of the trunk body e bottom f. The TOC removing device 3 in FIG. 4 is composed of a combination of a lower electrolyzer 23 and an upper ultraviolet irradiation tank 26.
[0025]
That is, the electrolyzer 23 has a cathode 21 and an anode 22 on both sides of the solid electrolyte 20 as a boundary, an anode chamber 22a connected to a TOC removal system inlet 27 through which the stock solution flows into the anode 22 side, and a cathode 21 side. And a cathode chamber 21a connected to a TOC removal system outlet 35 through which the electrolyzed pure water flows out.
[0026]
On the other hand, the ultraviolet irradiation tank 26 is an ultraviolet treatment by flowing a stock solution 29 containing an oxidizing substance 28 electrolyzed in the anode chamber 22a of the electrolyzer 23, and this ultraviolet irradiation tank 26 has a built-in ultraviolet lamp 24. In addition, a semiconductor photocatalyst treatment layer 25 is provided on the inner surface of the tank, and an outflow port through which the treatment liquid subjected to ultraviolet treatment by the ultraviolet lamp 24 flows out.
[0027]
Here, the TOC decomposition method when the TOC removing apparatus according to the above configuration is used will be described.
(1) The waste liquid is fed into the anode chamber 22a from the TOC removal system inlet 27.
(2) Electrolysis using a lead dioxide electrode for the anode 22 generates soluble ozone (O 3 ), which is the oxidizing substance 28, from the water in the waste liquid.
[0028]
(3) Send waste liquid + oxidizing substance (O 3 ) 29 into the ultraviolet irradiation tank 26.
(4) Ozone (O 3 ) is forcibly decomposed with ultraviolet rays from the ultraviolet lamp 24 to give a strong oxidizing power.
[0029]
(5) Decompose TOC component 30 in the waste liquid with ozone that was forcibly decomposed.
(6) After the TOC component 30 is decomposed, it is returned to the cathode chamber 21a of the electrolyzer 23 as the treatment liquid 32.
[0030]
(7) The treatment liquid 32 in which the oxidizing substance 28 remains is reduced by the hydrogen gas of the reducing substance 33 generated on the cathode 21 side.
(8) Repeat the steps (2) to (7) until the TOC component is completely decomposed.
(9) After confirming that the TOC component is completely decomposed, the waste liquid in the cathode chamber 21a is discharged from the TOC removal system outlet 35.
[0031]
According to the present embodiment, the hollow fiber membrane filter used in the filter 1 is a high-performance filter that can remove ultrafine particles of several μm. The desalinator 2 is an ion exchanger that converts ion components in the waste liquid into hydrogen ions and hydroxide ions by an ion exchange resin. Moreover, ultraviolet irradiation tank of total organic carbon removal device has a characteristic that TOC components in the effluent by Rukoto be irradiated with ultraviolet rays to the waste is decomposed into carbon dioxide and ionic TOC.
[0032]
Therefore, first, solid impurities in the waste liquid are removed by a filter using a hollow fiber membrane filter (pretreatment process). By doing this, the irradiation efficiency of the TOC component is improved in the ultraviolet irradiation tank, and the decomposition efficiency is also improved accordingly.
[0033]
Then, the waste liquid from which the solid impurities have been removed by the filter is electrolyzed and decomposed through a decomposition process that sends ozone into the ultraviolet irradiation tank 26 while generating ozone, and finally the remaining ionic TOC is removed from the desalter 2. (Post-processing step). Thus, the TOC component in the waste liquid from the ion exchange resin outlet of the demineralizer can be reduced to about several ppb by following the three-stage treatment process.
[0034]
In addition, although the case where the filter 1 was installed was demonstrated in this Embodiment, also when the concentrator is installed instead of the filter 1, the TOC of the said structure between a concentrator and the desalinator 2 is demonstrated. Even if the removing device 3 is installed, the same operation and effect as the present embodiment can be obtained.
[0035]
Next, a second embodiment of the organic matter reducing apparatus in a nuclear power plant corresponding to claim 2 according to the present invention will be described with reference to FIG.
In this embodiment, a bypass line 4 having a gate valve 40 is provided between the filter 1 and the desalter 2, and a return line having a supply line 6, a TOC removing device 3 and a pump 41 on the downstream side of the filter 1. 13 is connected in series, and the downstream side of the return line 13 is connected to the upstream side of the desalter 2.
[0036]
According to the present embodiment, as in FIG. 1, when the TOC concentration of the outlet water of the filter 1 is high, the TOC decomposition is performed by the TOC removal device 3 through the supply line 6, and the ionic species generated by the decomposition are obtained. Removed by desalter 2. On the other hand, when the presence of the TOC component is not confirmed in the outlet water of the filter 1, the waste liquid can be transferred to the demineralizer 2 inlet through the bypass line 4.
[0037]
Next, a third embodiment of the organic matter reducing apparatus in a nuclear power plant corresponding to claim 3 according to the present invention will be described with reference to FIG.
In this embodiment, in the second embodiment, a surge tank 5 is provided between the TOC removing device 3 and the return line 13, and a collection tank 9 is provided upstream of the filter 1, and the return line 13 and the collection line are collected. A recovery line 42 is connected to the tank 9, the other end of the recovery line 42 is connected to a connection pipe 43 between the collection tank 9 and the filter 1, and a feedback line 44 is provided in the connection pipe 43.
[0038]
According to the present embodiment, as in FIG. 2, when the TOC concentration of the outlet water of the filter 1 is high, the TOC removal device 3 performs TOC decomposition through the supply line 6 and collects it in the surge tank 5. When the presence of the TOC component is confirmed in the surge tank 5, it is recovered to the upstream collection tank 9 through the recovery line 42 and reprocessed.
[0039]
On the other hand, when the presence of the TOC component is not confirmed, the TOC component is transferred to the inlet of the demineralizer 2. When the presence of the TOC component is not confirmed in the outlet water of the filter 1, the waste liquid can be transferred to the downstream side through the bypass line 4.
[0040]
Next, a fourth embodiment of the organic matter reducing apparatus in a nuclear power plant corresponding to claim 4 according to the present invention will be described with reference to FIG.
In this embodiment, a sampling line 8 is connected to a connecting pipe between the filter 1 and the TOC decomposition apparatus 3, and a TOC automatic analyzer 7 is provided in the sampling line 8. According to the present embodiment, the waste liquid from the filter 1 is constantly monitored in the TOC automatic analyzer 7, and when the presence of the TOC component is confirmed in the waste liquid, a signal of “high TOC concentration” is output. With the transmission from the TOC automatic analyzer 7, an interlock that the gate valve 40 provided in the bypass line 4 in particular in FIG.
[0041]
Next a fifth embodiment of a nuclear power plant organic matter reducing apparatus of the present invention will be described with reference to FIG.
In this embodiment, the collection tank 9 is installed in the condensate purification system, one end of the transfer line 10 is connected to the outlet side of the filter 1 connected to the collection tank 9, and the other end of the transfer line 10 is connected to the fuel pool. 11, one end of the connection line 45 is connected to the fuel pool 11, the other end of the connection line 15 is connected to the fuel pool purification system 12, and the recovery line 46 is connected between the fuel pool purification system 12 and the collection tank 9. And a return line 47 is provided between the fuel pool purification system 12 and the fuel pool 11.
[0042]
According to this embodiment, when the TOC concentration of the outlet water of the filter 1 is high, the TOC component is oxidatively decomposed by an oxidant such as ozone that is sent to the fuel pool 11 through the transfer line 10 and generated in the fuel pool 11. The ion species thus generated are removed by the fuel pool purification system 12 and transferred to the collection rank 9. If the presence of the TOC component is not confirmed in the outlet filtrate from the filter 1, the waste liquid is transferred to the downstream desalter 4 through the bypass line 4.
[0043]
【The invention's effect】
According to the first aspect of the present invention, the TOC removal device generally has a higher removal rate when it does not contain impurities, and an ionic component is generated after the decomposition treatment, so it is installed in place of a filter or a filter. A total organic carbon ( TOC ) removal device is installed on the downstream side of the concentrator and upstream of the desalter . The total organic carbon (TOC) removal device generates an oxidizing substance and activates the oxidizing substance to produce a stock solution. Since the TOC inside is decomposed, the effect of decomposition and removal is enhanced, and removal can be expected in a short time.
[0044]
According to the second aspect of the present invention, there are provided two channels of the organic matter (TOC) removal system line and the bypass line between the filter or the concentrator and the desalter so that the processing liquid can be selected. By doing so, the effect more than the effect of the invention of claim 1 can be expected.
[0045]
According to the invention of claim 3, since the treated water by the TOC removal system can be temporarily placed in the surge tank, the waste liquid in which the TOC component is present and the waste liquid in which the TOC component is not present can be separated, thereby increasing the rationality.
[0046]
According to the invention of claim 4, the presence / absence of the TOC and the switching of the gate valve can be performed online, and the TOC component is not leaked downstream.
According to invention of Claim 5, it is not necessary to consider the processing of a secondary waste liquid by combining an electrolyzer and an ultraviolet irradiation tank.
[0048]
In addition, what can be said common to the inventions of claims 1 to 5 is that the TOC component is removed, there is no influence on the reactor and the reactor internal structure, and the operation of the entire radioactive waste treatment system is facilitated. That is.
[Brief description of the drawings]
FIG. 1 is a piping diagram showing a block diagram of a first embodiment of an organic matter reducing apparatus in a nuclear power plant according to the present invention.
2 is a longitudinal sectional view showing the filter in FIG. 1. FIG.
FIG. 3 is a longitudinal sectional view schematically showing a desalter in FIG. 1;
4 is a longitudinal sectional view schematically showing a TOC removing device in FIG. 1. FIG.
FIG. 5 is a piping diagram showing a block diagram of a second embodiment of the organic matter reducing apparatus in a nuclear power plant according to the present invention.
FIG. 6 is a piping diagram showing a block diagram of a third embodiment of the organic matter reducing apparatus in a nuclear power plant according to the present invention.
FIG. 7 is a piping diagram showing a block diagram of a fourth embodiment of the organic matter reducing apparatus in a nuclear power plant according to the present invention.
FIG. 8 is a piping system diagram showing in block form a fifth embodiment of the organic matter reducing apparatus in a nuclear power plant according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Filter, 2 ... Demineralizer, 3 ... TOC removal apparatus, 4 ... Bypass line, 5 ... Surge tank, 6 ... Supply line, 7 ... TOC automatic analyzer, 8 ... Sampling line, 9 ... Collection tank, 10 ... transfer line, 11 ... fuel pool, 12 ... fuel pool purification system, 13 ... return line, 14 ... raw liquid inlet, 15 ... filtrate outlet, 16 ... hollow fiber membrane module, 17 ... backwash air inlet, 18 ... raw water inlet , 19 ... treated water outlet, 20 ... solid electrolyte, 21 ... cathode, 22 ... anode, 23 ... electrolysis device, 24 ... ultraviolet irradiation lamp, 25 ... semiconductor photocatalytic treatment layer, 26 ... ultraviolet irradiation tank, 27 ... TOC removal system inlet, 28 ... oxidizing substance, 29 ... waste + oxidizing agent, 30 ... TOC components, 31 ... CO 2, 32 ... treatment liquid, 33 ... reducing agent, 34 ... metal, 35 ... TOC removal system outlet, 36 ... Ion exchange resin layer, 37 ... Support plate, 38 ... Strainer, 39 ... Regeneration liquid inflow pipe, 40 ... Gate valve, 41 ... Pump 42 ... Recovery line, 43 ... Connection piping, 44 ... Feedback line, 45 ... Connection line, 46 ... Recovery line, 47 ... Return line.

Claims (5)

原子力発電所に設置されているろ過器と脱塩器との間または濃縮器脱塩器との間に全有機炭素除去装置を設け、この全有機炭素除去装置は、原液を流入させこの原液を電気分解させて酸化性物質を発生させる電気分解装置の陽極室と、この陽極室で発生させた酸化性物質を含む原液を紫外線処理して原液中の全有機炭素成分を分解し処理液とする紫外線照射槽と、この紫外線処理された処理液を電気分解させて還元性物質を発生させこの処理液に残留する前記酸化性物質を還元処理する電気分解装置の陰極室とを備えていることを特徴とする原子力発電所内有機物低減装置。A total organic carbon removal device is provided between a filter and a desalter installed in a nuclear power plant or between a concentrator and a desalter, and this total organic carbon removal device allows the stock solution to flow into the stock solution. An anode chamber of an electrolyzer that generates an oxidizing substance by electrolyzing, and a raw solution containing the oxidizing substance generated in the anode chamber is subjected to ultraviolet treatment to decompose all organic carbon components in the raw solution and an ultraviolet irradiation chamber for, have a cathode chamber of the UV treated process liquid electrolysis apparatus the oxidizing agent remaining in the treatment solution to generate a reducing substance by electrolysis reduction treatment the Rukoto A device for reducing organic matter in nuclear power plants. 前記ろ過器と脱塩器との間または濃縮器から脱塩器までの間に全有機炭素除去ラインとバイパスラインの2系統の流路を設けてなることを特徴とする請求項1記載の原子力発電所内有機物低減装置。  2. The nuclear power plant according to claim 1, wherein two channels of a total organic carbon removal line and a bypass line are provided between the filter and the desalter or between the concentrator and the desalter. Equipment for reducing organic matter in power plants. 前記ろ過器と脱塩器との間のバイパスラインまたは濃縮器から脱塩器までのラインから分岐して前記TOC除去装置を設け、このTOC除去装置の下流側にサージタンクを設け、このサージタンクから前記脱塩器の上流側まで戻る戻りラインを設けてなることを特徴とする請求項1記載の原子力発電所内有機物低減装置。  The TOC removal device is provided by branching from a bypass line between the filter and the desalter or a line from the concentrator to the desalter, and a surge tank is provided downstream of the TOC removal device. 2. The organic matter reducing device in a nuclear power plant according to claim 1, wherein a return line is provided to return to the upstream side of the desalter. 前記ろ過器と前記全有機炭素除去装置との間から分岐してサンプリングラインを設け、このサンプリングラインに全有機炭素自動分析計を設けてなることを特徴とする請求項1記載の原子力発電所内有機物低減装置。The organic matter in a nuclear power plant according to claim 1, wherein a sampling line is provided by branching between the filter and the total organic carbon removing device, and an automatic analyzer for total organic carbon is provided on the sampling line. Reduction device. 前記全有機炭素除去装置は電気分解装置,オゾン分解機構,逆浸透膜,紫外線照射機構組み合わせた全有機炭素分解装置からなることを特徴とする請求項1記載の原子力発電所内有機物低減装置。2. The apparatus for reducing organic matter in a nuclear power plant according to claim 1, wherein the total organic carbon removing apparatus comprises an total organic carbon decomposing apparatus that combines an electrolysis apparatus, an ozone decomposing mechanism, a reverse osmosis membrane, and an ultraviolet irradiation mechanism.
JP07177997A 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant Expired - Fee Related JP3846814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07177997A JP3846814B2 (en) 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07177997A JP3846814B2 (en) 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant

Publications (2)

Publication Number Publication Date
JPH10268092A JPH10268092A (en) 1998-10-09
JP3846814B2 true JP3846814B2 (en) 2006-11-15

Family

ID=13470406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07177997A Expired - Fee Related JP3846814B2 (en) 1997-03-25 1997-03-25 Organic substance reduction device in nuclear power plant

Country Status (1)

Country Link
JP (1) JP3846814B2 (en)

Also Published As

Publication number Publication date
JPH10268092A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3518112B2 (en) Fuel cell water treatment equipment
JP3180348B2 (en) Pure water production method
JPH08126886A (en) Production of ultrapure water and device therefor
JP5909281B2 (en) Water treatment equipment
EA011830B1 (en) Method (embodiments) for liquid treatment by reverse osmosis under acidic conditions
JP5782229B2 (en) Wastewater treatment method
CN104108813A (en) Refining and chemical sewage desalting integrated treatment process and device
CN205603387U (en) Strong brine zero release divides membrane concentrator of matter crystallization
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
CN107098526A (en) The film concentrator and handling process of strong brine zero-emission sub-prime crystallization
JP4439674B2 (en) Deionized water production equipment
JP5962135B2 (en) Ultrapure water production equipment
JP3846814B2 (en) Organic substance reduction device in nuclear power plant
CN110379532B (en) Method and device for treating radioactive waste liquid
JP5285135B2 (en) Water treatment system and water treatment method
JP2010036173A (en) Water treatment system and water treatment method
KR101063926B1 (en) Condensate polishing system and method thereof
JP2006212540A (en) Treatment method of chemical-washing waste liquid
KR100666309B1 (en) Deionization apparatus and Method for condensate with Continuous deionization equipment
JP3058952B2 (en) Method of treating boric acid-containing liquid
JPH09192643A (en) Ultrapure water producing device
CN111977850A (en) Heavy metal wastewater reduction and concentration technology
JP4218140B2 (en) TOC removal device
JP6007282B2 (en) Waste water treatment method and waste water treatment equipment
CN218811072U (en) System for decomposing unsymmetrical dimethylhydrazine wastewater by electro-catalytic coupling reverse osmosis membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees