JPH10265781A - Carbonization of coal charged in coke oven - Google Patents

Carbonization of coal charged in coke oven

Info

Publication number
JPH10265781A
JPH10265781A JP9071908A JP7190897A JPH10265781A JP H10265781 A JPH10265781 A JP H10265781A JP 9071908 A JP9071908 A JP 9071908A JP 7190897 A JP7190897 A JP 7190897A JP H10265781 A JPH10265781 A JP H10265781A
Authority
JP
Japan
Prior art keywords
carbonization
coal
gas
coke oven
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9071908A
Other languages
Japanese (ja)
Inventor
Nozomi Tamura
望 田村
Tatsuya Ozawa
達也 小沢
Tetsuo Uchida
哲郎 内田
Hidetaka Sugibe
英孝 杉辺
Katsuhiko Sato
克彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9071908A priority Critical patent/JPH10265781A/en
Priority to TW087104309A priority patent/TW409142B/en
Priority to DE69803892T priority patent/DE69803892T2/en
Priority to US09/046,621 priority patent/US6139692A/en
Priority to EP98303719A priority patent/EP0867496B1/en
Priority to CN98109238A priority patent/CN1092701C/en
Priority to KR1019980010310A priority patent/KR100262032B1/en
Publication of JPH10265781A publication Critical patent/JPH10265781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for carbonizing coal charged in a chamber oven type coke oven, enabling to effectively prevent the collapse of coal into the gas routes of the coke oven, etc., by supplying a combustion gas and combustion air to both the extruder and quenching vehicle side ends of a combustion chamber independently from the main burner of the combustion chamber under specific conditions. SOLUTION: Coal controlled to a water content of <=6% and charged in a chamber oven type coke oven is carbonized in the coke oven having gas routes 3 vertically formed between the end side surfaces of the carbonization chamber body 4 and the side surfaces of a door 1. The upper space of the coal-charging portion of the carbonization chamber is held at a pressure near to the atmospheric pressure from the early time of the carbonization. A gas generated in the carbonization is sucked through the gas routes 3, and a fuel gas and air for the combustion are supplied to both the extruder and quenching vehicle side ends of the combustion chamber, thereby independently setting the temperature of both the oven ends independently from those of the other portions of the combustion chamber to prevent retardation in the carbonization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コークス炉での製
鉄原料石炭の乾留方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for carbonizing raw coal for iron making in a coke oven.

【0002】[0002]

【従来の技術】近年、室炉式のコークス炉でのコークス
製造では、乾留熱量の低減、装炭密度の均一化のため
に、事前に石炭水分を調整して乾留する方法が採用され
ている。また、炉押し出し方向(以降、長手方向と称す
る)の炭化の不均一を改善する端フリュー昇温方法とし
ては、特開昭63−170487号公報に開示された技術があ
り、端フリューバーナによって窯の長手方向の炭化の均
一化が図られている。
2. Description of the Related Art In recent years, in coke production in a coke oven of a room furnace type, a method of adjusting the coal moisture in advance and carbonizing the coal has been adopted in order to reduce the amount of carbonization heat and to make the coal density uniform. . Further, as a method of increasing the temperature of the end flute to improve the non-uniformity of carbonization in the furnace extrusion direction (hereinafter referred to as the longitudinal direction), there is a technique disclosed in Japanese Patent Application Laid-Open No. 63-170487. Is made uniform in the longitudinal direction.

【0003】また、炭化期において、炭化室装炭部の上
部空間圧力を低圧に保つ方法として特開平3−177493号
公報に開示された技術があり、これによって炭化発生ガ
スを効果的に装炭部の上部空間に抽気し乾留効率の向上
を図っている。
[0003] As a method of keeping the pressure in the upper space of the coking portion of the coking chamber at a low pressure during the coking period, there is a technique disclosed in Japanese Patent Application Laid-Open No. 3-177493. The upper space of the section is bleed to improve the carbonization efficiency.

【0004】[0004]

【発明が解決しようとする課題】水分を少なく調整した
石炭を用いた室炉式コークス炉でのコークス製造では、
石炭の表面付着水分が少ないので、石炭同士の凝集性が
水分9〜12%の通常の湿炭に比べ著しく悪いことは周知
の事実である。その境目は水分約5〜6%にあるので、
装炭時の発塵防止対策をとりながら石炭水分を6%以下
に調整して操業するのが一般的である。
In coke production in a coke oven using a coal whose moisture content has been reduced,
It is a well-known fact that coal has a small amount of water adhering to the surface, so that the cohesion between coals is significantly worse than that of ordinary wet coal having a water content of 9 to 12%. Since the border is at about 5-6% moisture,
It is common practice to adjust the coal moisture to 6% or less while taking measures to prevent dusting during coal loading.

【0005】水分6%以下に調整した石炭は凝集性が悪
化しているため、ガス道を有し、乾留ガスの通気を改善
しドア面におけるガス圧の上昇を防止するタイプのドア
を用いた場合、ドア近傍において石炭の乾留が遅れる
と、図5のように凝集性の悪い石炭6がガス道3に崩れ
込み、乾留ガスの通気を阻害し、ドア面におけるガス圧
の上昇によるドアからのガス洩れを誘発する。
[0005] Coal adjusted to a water content of 6% or less uses a door of a type that has a gas path because the cohesiveness is deteriorated, and that improves the ventilation of the carbonized gas and prevents an increase in gas pressure on the door surface. In this case, if the coal carbonization is delayed in the vicinity of the door, the coal 6 having poor cohesion collapses into the gas passage 3 as shown in FIG. 5 and obstructs the ventilation of the carbonized gas, thereby increasing the gas pressure on the door surface. Induces gas leakage.

【0006】燃焼室窯端を選択的に昇温可能な特開昭63
−170487号公報記載の端フリューバーナを用いても、ド
ア面は炭化室壁面より低温のため初期の乾留遅れを防止
するに至らない。また、初期の乾留遅れを防止するため
に、炭化室の窯端を炭化室の他の部位と同じ温度に上昇
させるため1300℃を超える高温にすると、乾留熱量の損
失を招くのみならず、燃焼室耐火物である珪石レンガの
溶出を招き、炉寿命を大幅に縮めることとなる。
[0006] Japanese Patent Application Laid-Open (JP-A) No. 63-63, in which the temperature of the kiln end of the combustion chamber can be selectively raised
Even if the end flu burner described in JP-A-170487 is used, the door surface is at a lower temperature than the carbonization chamber wall surface, so that it is not possible to prevent an early dry distillation delay. To prevent the initial carbonization delay, raising the kiln end of the carbonization chamber to a temperature higher than 1300 ° C to raise it to the same temperature as other parts of the carbonization chamber not only causes a loss of carbonization heat, but also causes combustion. Elution of silica brick, which is a room refractory, will lead to a significant reduction in furnace life.

【0007】一方、抽気効率を高め、石炭層内の伝熱を
層内ガス流れによって効率を向上する方法として特開平
3−177493号公報に開示された技術は、炭化室装炭部の
上部空間への炭化発生ガスの効果的な抽気方法ではある
が、炭化室の窯端の乾留の改善には貢献しない。以上の
ように従来の技術によっては、炉体レンガとドアレンガ
間で、かつ炭化室の外気側端部にガス道を有する室炉式
コークス炉で、水分を6%以下に調整した石炭を乾留す
る際に、乾留遅れによる該石炭のガス道への崩れ込み、
乾留ガスの通気阻害、ドア面におけるガス圧の上昇、ド
アからのガス洩れを効果的に防止する技術がなかったの
で、本発明は、石炭のガス道への崩れ込みなどを効果的
に防止できる技術を提供するためになされたものであ
る。
On the other hand, the technique disclosed in Japanese Patent Application Laid-Open No. 3-177493 as a method for improving the extraction efficiency and improving the heat transfer in the coal bed by the gas flow in the bed is disclosed in Japanese Patent Application Laid-Open No. 3-177493. Although it is an effective method of extracting carbonized gas into the furnace, it does not contribute to improving the dry distillation at the kiln end of the carbonization chamber. As described above, according to the conventional technology, coal whose water content is adjusted to 6% or less is carbonized in a room-type coke oven having a gas path between the furnace body brick and the door brick and at the outside air end of the coking chamber. At that time, the coal collapsed into the gas path due to carbonization delay,
The present invention can effectively prevent coal from collapsing into the gas path, because there was no technology for effectively preventing the gasification of the carbonized gas, increasing the gas pressure on the door surface, and preventing gas leakage from the door. It was made to provide technology.

【0008】[0008]

【課題を解決するための手段】本発明は、 (1)水分を6%以下に調整したコークス炉装入石炭
を、炭化室窯端部の炉体とドア内側側面の間に高さ方向
にガス道を有する室炉式コークス炉で乾留する、コーク
ス炉装入石炭の乾留方法において、燃焼室の押出し機
側、消火車側の両窯端部に燃料ガス、燃焼用空気を、燃
焼室のメインバーナとは別に供給することで、両窯端部
の温度を燃焼室のその他の部位とは独立に設定し、かつ
炭化初期から炭化室装炭部の上部空間圧力を大気圧近傍
に保持し、前記ガス道を経由して炭化発生ガスを吸引す
ることを特徴とするコークス炉装入石炭の乾留方法であ
る。 (2)また本発明は、前記燃焼室両窯端の温度を1000℃
以上に設定し、かつ全炭化時間のうち初期20%以内の炭
化室装炭部の上部空間圧力を大気圧−5mmAq以上、大気
圧+10mmAq以下の範囲に保つことを特徴とする上記
(1)記載のコークス炉装入石炭の乾留方法である。
Means for Solving the Problems The present invention provides: (1) Coal charged in a coke oven adjusted to a water content of 6% or less in a height direction between a furnace body at the end of a coking chamber kiln and a door inner side surface. In the method of carbonizing coal charged in a coke oven, which is carbonized in a coke oven having a gas path, a fuel gas and combustion air are supplied to both ends of the extruder and fire extinguisher of the combustion chamber. By supplying it separately from the main burner, the temperature of both kiln ends is set independently of the other parts of the combustion chamber, and the pressure in the upper part of the coking part of the coking chamber is kept close to atmospheric pressure from the initial stage of carbonization. And a carbonization charging method for the coal charged in a coke oven, wherein the carbonization gas is sucked through the gas passage. (2) In the present invention, the temperature of both kiln ends of the combustion chamber is 1000 ° C.
The above (1) is characterized in that the above is set, and the upper space pressure of the coking part of the coking chamber within the initial 20% of the total coking time is kept in the range of atmospheric pressure −5 mmAq or more and atmospheric pressure +10 mmAq or less. This is a method of carbonizing coal charged in a coke oven.

【0009】[0009]

【発明の実施の形態】以下に本発明がされるに至った経
緯を説明する。図1は、室式コークス炉における、ドア
近傍の燃焼室窯端温度とガス道での石炭堆積高さ/装炭
高さの関係を石炭の初期水分値ごとに示した特性図であ
る。用いたドアは図4、図5に示すような炉体レンガと
ドアレンガ間で、かつ炭化室に高さ方向に連通するガス
道を有するドアである。ここで、燃焼室窯端温度は押し
出し時の温度であり、石炭堆積高さは押し出し時ドアを
開放した際のガス道に固着した石炭高さである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. FIG. 1 is a characteristic diagram showing a relationship between a combustion chamber kiln end temperature near a door and a coal deposition height / coal charging height in a gas path for each initial moisture value of coal in a chamber coke oven. The door used is a door having a gas passage between the furnace brick and the door brick as shown in FIGS. 4 and 5 and communicating with the carbonization chamber in the height direction. Here, the combustion chamber kiln end temperature is the temperature at the time of extrusion, and the coal deposition height is the height of coal fixed to the gas passage when the door is opened at the time of extrusion.

【0010】石炭の初期水分が8%以上であれば、燃焼
室窯端温度が 900℃程度の低い温度でもガス道は閉塞し
ないが、石炭の初期水分が6%以下では、燃焼室窯端温
度を1000℃以上に昇温しても、ドア下端でのガス道閉塞
が発生する。ドアの繰り返し使用により、石炭堆積高さ
が増加することも観察された。よって、石炭の初期水分
が6%以下では、燃焼室窯端温度の上昇のみではガス道
閉塞は回避できないことが判った。
[0010] If the initial moisture of the coal is 8% or more, the gas path is not blocked even at a low temperature of the combustion chamber kiln temperature of about 900 ° C, but if the initial moisture of the coal is 6% or less, the combustion chamber kiln temperature is low. Even if the temperature is raised to 1000 ° C. or more, the gas path is blocked at the lower end of the door. It has also been observed that repeated use of the door increases the coal pile height. Therefore, it was found that when the initial moisture of the coal was 6% or less, gas path obstruction could not be avoided only by increasing the temperature of the combustion chamber kiln end.

【0011】図4に示すような炉体レンガとドアレンガ
間で、かつ炭化室の外気側端部に高さ方向に連通するガ
ス道を有するドアを用いた炭化室で、ガス道閉塞を少な
くするため燃焼室窯端温度を1000℃にし、一方、上昇管
に設置された水スプレーの供給水圧力とガス回収弁の開
度を変化させ、炭化室圧力を所定値に制御した。ドアレ
ンガを貫通してK型シース温度計を設置し、ドアレンガ
面から深さ10mm位置で石炭の温度を測定し図2に示し
た。すなわち、図2は、炭化室圧力(以下、大気圧基準
である)ごとのドア面側の石炭温度の経時変化を示した
特性図である。なお、本実験における炭化室全体の炭化
時間は25hであった。
[0011] In the carbonization chamber using a door having a gas path communicating between the furnace brick and the door brick as shown in FIG. 4 and the outside air end of the carbonization chamber in the height direction, the gas path is less obstructed. Therefore, the temperature of the combustion chamber was set to 1000 ° C., and the pressure of the carbonization chamber was controlled to a predetermined value by changing the supply water pressure of the water spray installed on the riser and the opening of the gas recovery valve. A K-type sheath thermometer was installed through the door brick, and the temperature of the coal was measured at a depth of 10 mm from the door brick surface, and the results are shown in FIG. That is, FIG. 2 is a characteristic diagram showing a temporal change of the coal temperature on the door surface side for each carbonization chamber pressure (hereinafter referred to as atmospheric pressure reference). The carbonization time of the entire carbonization chamber in this experiment was 25 hours.

【0012】発明者らは、図2から、炭化室圧力によっ
て、石炭温度の上昇曲線に大きな違いが出ることを見出
した。本実験時のガス道への石炭堆積高さと炭化室圧力
との関係を図3に白丸印で示した。燃焼室窯端の温度を
1000℃とし通常の炭化室内圧力を制御していない時は、
図1から判るようにガス道への石炭堆積高さ割合は20%
程度である。図3から、炭化室圧力が大気圧+20mmAq、
+30mmAqの場合はその石炭堆積高さ割合は21〜24%であ
り、大きな違いは見られない。しかし、炭化室圧力が+
10mmAqでは3%、−5mmAqでは石炭の堆積はほとんどな
く、ガス道の閉鎖がほとんど見られない結果となった。
The inventors have found from FIG. 2 that there is a large difference in the rise curve of the coal temperature depending on the pressure of the carbonization chamber. The relationship between the height of coal deposition on the gas path and the pressure in the carbonization chamber during this experiment is shown by white circles in FIG. The temperature of the combustion chamber
When the normal pressure in the carbonization chamber is not controlled at 1000 ° C,
As can be seen from Fig. 1, the coal deposition height ratio on the gas path is 20%
It is about. From FIG. 3, the pressure of the carbonization chamber is atmospheric pressure + 20 mmAq,
In the case of +30 mmAq, the coal deposition height ratio is 21 to 24%, and there is no significant difference. However, the carbonization chamber pressure is +
At 10 mmAq, 3%, and at -5 mmAq, there was almost no coal deposition, and the gas passage was hardly closed.

【0013】一方、燃焼室窯端の温度を 900℃として実
験を行った結果(図3に黒丸印で示した)、炭化室圧力
が大気圧+20mmAq、+30mmAqの場合はその石炭堆積高さ
割合は39〜50%、+10mmAq、−5mmAqでも35〜40%で大
きな改善効果は見られなかった。これは、ガス道を有す
るドアにおいて、炭化室圧力を低圧に保つのみではガス
道への石炭の崩れ込みの防止は不可能で、燃焼室窯端温
度の上昇と相まって始めて、ドア面石炭層内に向かう発
生ガス流れが発生し石炭層内伝熱を促進する効果を著し
く発揮することを示しているに他ならず、従来の技術の
延長線からは予測でき得ない新技術である。
On the other hand, as a result of an experiment conducted by setting the temperature of the kiln end of the combustion chamber to 900 ° C. (shown by a black circle in FIG. 3), when the pressure in the carbonization chamber is atmospheric pressure +20 mmAq and +30 mmAq, the coal deposition height ratio is Even at 39 to 50%, +10 mmAq, and -5 mmAq, no significant improvement was observed at 35 to 40%. This is because it is impossible to prevent coal from collapsing into the gas passage by simply keeping the pressure in the carbonization chamber at a low pressure in a door with a gas passage, and only when the temperature at the furnace end of the combustion chamber rises, and the This is a new technology that cannot be predicted from an extension of the conventional technology.

【0014】コークス用石炭のコークス化温度は一般的
に 700〜750 ℃であるが、図2において、炭化室圧力が
−2mmAq、+10mmAqでのコークス化温度到達時間は4時
間、5時間程度であり、+20mmAq以上ではコークス化温
度到達時間が10時間を超過するまでに延びていることを
見出した。つまり上記のガス道への石炭堆積高さ割合を
低減させるためには、石炭の炭化処理において、窯端部
のコークス化温度到達を4〜5時間程度のうちに達成さ
せる必要があった。これは乾留初期のうちに窯端部の石
炭のコークス化を促進することで、ガス道への石炭の崩
れ込みを抑制することができるためであると考えられ
る。この場合、全炭化時間が25時間であるが、一般的に
室炉式コークス炉の全炭化時間は20から25時間程度であ
るので、全炭化時間の初期20%以内に窯端部のコークス
化を完了させることで、窯端部のガス道への石炭の崩れ
込みを防止できることが判った。
Although the coking temperature of coal for coking is generally 700 to 750 ° C., in FIG. 2, the time to reach the coking temperature when the pressure in the carbonization chamber is −2 mmAq and +10 mmAq is about 4 hours and 5 hours. , +20 mmAq or more, it was found that the time to reach the coking temperature was extended until it exceeded 10 hours. In other words, in order to reduce the height of coal deposition on the gas path, it was necessary to achieve the coking temperature at the kiln end within about 4 to 5 hours in the carbonization treatment of coal. It is considered that this is because the collapse of coal into the gas path can be suppressed by promoting the coking of coal at the kiln end in the early stage of carbonization. In this case, the total carbonization time is 25 hours, but generally, the total carbonization time of a room-type coke oven is about 20 to 25 hours. It was found that by completing the above, the collapse of coal into the gas path at the kiln end could be prevented.

【0015】すなわち、コークス炉の全炭化時間の初期
から20%の時間帯に燃焼室窯端の温度を1000℃として、
かつ炭化室圧力を大気圧+10mmAq以下とすることで、炭
化室の窯端部に設置したガス道への石炭の崩れ込みをな
くし、ガス道に堆積する石炭に起因する炉蓋からのガス
漏れが防止できる。このとき燃焼室窯端の温度は高いほ
ど炭化室内の石炭温度を上昇させる効果があるため、10
00℃以上であれば良い。
That is, the temperature of the kiln end of the combustion chamber is set to 1000 ° C. in a time zone of 20% from the beginning of the total carbonization time of the coke oven,
In addition, by setting the pressure in the carbonization chamber at atmospheric pressure + 10 mmAq or less, collapse of coal into the gas path installed at the kiln end of the carbonization chamber is eliminated, and gas leakage from the furnace lid due to coal deposited on the gas path is prevented. Can be prevented. At this time, the higher the temperature of the kiln end of the combustion chamber, the higher the temperature of coal in the coking chamber is raised.
The temperature may be at least 00 ° C.

【0016】一方、炭化室圧力は大気圧+10mmAq以下で
あることが必要であるが、大気圧−5mmAqに保って実験
をおこなったところ、ガス道での堆積コークスの量は問
題なかったが、押出し後の目視観察で、ガス道部の炭化
室レンガの目地に付着充填されていたカーボンが焼失し
ている傾向が見いだされた。該付着カーボンの焼失は、
目地切れを誘発し発生ガスの燃焼室へのリークを生じさ
せる原因となるので防止する必要がある。従って本発明
では、炭化室圧力の下限は大気圧−5mmAqとする。
On the other hand, the pressure in the carbonization chamber must be equal to or lower than the atmospheric pressure + 10 mmAq. When the experiment was conducted while maintaining the atmospheric pressure at −5 mmAq, there was no problem with the amount of coke deposited in the gas path. Later visual observation revealed that the carbon that had adhered and filled the joints of the carbonized chamber bricks in the gas path tended to burn off. The burning of the attached carbon is
It is necessary to prevent joint breakage, which may cause the generated gas to leak into the combustion chamber. Therefore, in the present invention, the lower limit of the carbonization chamber pressure is set to the atmospheric pressure-5 mmAq.

【0017】[0017]

【実施例】平均炉巾 450mm、炉長15m、装入石炭量35to
n の室式コークス炉にて、全炭化時間を25時間となる燃
焼室炉温1100℃で、水分 5.5%に事前調湿処理した石炭
を乾留した。ドアは図4に示したドアを連続し用いた。 (実施例1)図6に示す端フリューバーナ7で燃焼室窯
端温度を1000〜1020℃の範囲に調整し、装炭以降5時間
の間、上昇管スプレー圧力を4〜7kg/cm2とし、炭化室
圧力を+5〜+10mmAqの間に調整する操業を10日間継続
した。 (比較例1)端フリューバーナ7で燃焼室窯端温度を11
00〜1150℃の範囲に調整し、装炭以降上昇管スプレー圧
力を2〜3kg/cm2とし、炭化室圧力を−2〜+30mmAqの
間に調整する操業を10日間継続した。 (比較例2)端フリューバーナ7で燃焼室窯端温度を 9
00〜 950℃の範囲に調整し、装端以降上昇管スプレー圧
力を4〜7kg/cm2とし、炭化室圧力を+5〜+10mmAqの
間に調整する操業を10日間継続した。
[Example] Average furnace width 450mm, furnace length 15m, charged coal amount 35to
The coal which had been preliminarily conditioned to a moisture of 5.5% was carbonized in a combustion chamber furnace temperature of 1100 ° C where the total carbonization time was 25 hours in a room coke oven of n. The door shown in FIG. 4 was used continuously. (Embodiment 1) The temperature of the furnace end of the combustion chamber was adjusted to a range of 1000 to 2020 ° C. by the end flue burner 7 shown in FIG. 6, and the riser spray pressure was set to 4 to 7 kg / cm 2 for 5 hours after coal charging. The operation for adjusting the carbonization chamber pressure between +5 and +10 mmAq was continued for 10 days. (Comparative Example 1) The temperature of the furnace end of the combustion chamber was set to 11
The operation was adjusted to the range of 00 to 1150 ° C., and the operation of adjusting the riser spray pressure to 2 to 3 kg / cm 2 and the pressure of the carbonization chamber between −2 and +30 mmAq was continued for 10 days. (Comparative Example 2) Combustion chamber kiln end temperature was 9
The operation was adjusted to the range of 00 to 950 ° C., the riser spray pressure was set to 4 to 7 kg / cm 2 and the carbonization chamber pressure was adjusted to +5 to +10 mmAq after the loading end, and the operation was continued for 10 days.

【0018】ドアのガス道の石炭堆積高さ割合を毎回の
押し出し時に測定すると共に、50%を超えた場合には、
ガス道の堆積物の除去作業を行った。また、新品ドアを
挿着し、ドアガス洩れのない状態から洩れ始めるまでの
ガス洩れ発生日数、10日間のガス洩れ率を調査した。ガ
ス洩れ率は毎回装炭後30分時に洩れを観察し有無判定を
行った結果である。
The coal deposit height ratio of the gas path of the door is measured at each extrusion, and when it exceeds 50%,
Work to remove deposits from the gas path was performed. In addition, the number of days of gas leakage from when a new door was inserted and the door gas leakage did not start until the leak started, and the gas leakage rate for 10 days were investigated. The gas leak rate is the result of observing the leak at every 30 minutes after coal charging to determine the presence or absence.

【0019】これらの結果をまとめて表1に示した。The results are summarized in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例1から明らかなように、本発明で
は、10日間もの間、ガス道への堆積付着物はほとんど見
受けられず、除去作業は不要で、ドアガス洩れも皆無で
あった。一方、比較例1では、燃焼室窯端温度が1000℃
以上と実施例1と同様であるので、ガス道への堆積付着
物の成長は抑制されたが、6日目には除去作業の必要な
50%を超えた。除去作業は操業中に人力で行ったため、
除去が完全ではなく、使用再開後は4日目(最終日)に
再度除去作業が必要となった。ガス洩れは3〜6日目、
9〜10日目に観察された。
As is apparent from Example 1, according to the present invention, deposits on the gas passage were hardly observed for 10 days, the removal operation was unnecessary, and there was no door gas leakage. On the other hand, in Comparative Example 1, the combustion chamber kiln end temperature was 1000 ° C.
Since the above is the same as in Example 1, the growth of the deposits on the gas path was suppressed, but on the sixth day, the removal work was required.
Exceeded 50%. Since the removal work was performed manually during operation,
The removal was not complete and the removal operation was required again on the fourth day (last day) after resuming use. Gas leaks on days 3-6,
Observed on day 9-10.

【0022】比較例2では、ガス道への堆積付着物の成
長は2日目には除去作業の必要な50%を超えるほど激し
く、以降毎日除去作業が必要となった。ガス洩れのなか
った日は初日のみであった。
In Comparative Example 2, the growth of the deposits on the gas path was so intense that the removal operation required for the second day exceeded 50%, and thereafter, the removal operation was required every day. There was no gas leak on the first day.

【0023】[0023]

【発明の効果】本発明によると、ガス道への石炭堆積固
化が大幅に減少し、ドアガス洩れの発生が無くなり、ド
アガス道の石炭除去作業の周期が大幅にのび、10日に1
回部分的に除去を行うだけであった。燃焼室窯端の乾留
保持時間が長くなり、コークスの塊歩止りが向上し、ま
たガス洩れが減少したので、乾留発生ガスの回収量が増
加した。
According to the present invention, the solidification of coal on gas passages is greatly reduced, the occurrence of door gas leakage is eliminated, and the cycle of coal removal work on door gas passages is greatly extended.
Only partial removal was performed. The retention time of carbonization at the kiln end of the combustion chamber was prolonged, the coke lump retention was improved, and gas leakage was reduced, resulting in an increase in the amount of gas generated by carbonization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃焼室窯端温度とガス道への石炭堆積高さ割合
の関係を示す特性図。
FIG. 1 is a characteristic diagram showing a relationship between a furnace end temperature of a combustion chamber and a height ratio of coal deposition on a gas path.

【図2】炭化室圧力ごとのドア面石炭の昇温状況の変化
を示す特性図。
FIG. 2 is a characteristic diagram showing a change in a temperature rise state of coal on a door surface for each pressure of a carbonization chamber.

【図3】炭化室圧力とガス道への石炭堆積高さ割合との
関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a pressure in a carbonization chamber and a height ratio of coal deposition on a gas path.

【図4】(a) はドアの側面図、(b) は(a) のA−A視断
面図。
4A is a side view of a door, and FIG. 4B is a cross-sectional view taken along line AA of FIG.

【図5】図4(b)の拡大図で、ガス道への石炭の崩れ込
みの説明図。
FIG. 5 is an enlarged view of FIG. 4 (b), illustrating the collapse of coal into a gas path.

【図6】コークス炉燃焼室の端フリューバーナ・ガスフ
ローの説明図。
FIG. 6 is an explanatory view of an end flue burner gas flow in a coke oven combustion chamber.

【符号の説明】[Explanation of symbols]

1 ドア 2 ドアレンガ 3 ガス道 4 炉体レンガ 5 石炭 6 石炭 7 端フリューバーナ 8 Cガス配管 9 空気配管 10 Mガス配管 11 小煙室 12 大煙室 13 煙突 14 蓄熱室 15 燃焼室 16 炭化室 17 装入口 18 ピンホール DESCRIPTION OF SYMBOLS 1 Door 2 Door brick 3 Gas path 4 Furnace body brick 5 Coal 6 Coal 7 End flew burner 8 C gas piping 9 Air piping 10 M gas piping 11 Small smoke room 12 Large smoke room 13 Chimney 14 Heat storage room 15 Combustion room 16 Carbonization room 17 Entrance 18 pinhole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 哲郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 杉辺 英孝 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 佐藤 克彦 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuro Uchida 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Chiba Works, Ltd. (72) Inventor Hidetaka Sugibe 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Chiba Works (72) Inventor Katsuhiko Sato 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水分を6%以下に調整したコークス炉装
入石炭を、炭化室窯端部の炉体とドア内側側面の間に高
さ方向にガス道を有する室炉式コークス炉で乾留する、
コークス炉装入石炭の乾留方法において、燃焼室の押出
し機側、消火車側の両窯端部に燃料ガス、燃焼用空気
を、燃焼室のメインバーナとは別に供給することで、両
窯端部の温度を燃焼室のその他の部位とは独立に設定
し、かつ炭化初期から炭化室装炭部の上部空間圧力を大
気圧近傍に保持し、前記ガス道を経由して炭化発生ガス
を吸引することを特徴とするコークス炉装入石炭の乾留
方法。
1. Coal charged in a coke oven adjusted to a water content of 6% or less is carbonized in a coke oven type coke oven having a gas path in the height direction between the furnace body at the end of the coking oven and the inner side surface of the door. Do
In the method of carbonization of coal charged in a coke oven, fuel gas and combustion air are supplied separately to the extruder side and fire extinguisher side of the combustion chamber separately from the main burner of the combustion chamber. The temperature of the section is set independently of the other parts of the combustion chamber, and from the beginning of carbonization, the pressure in the upper space of the carbonization section of the carbonization chamber is maintained near atmospheric pressure, and the carbonized gas is sucked through the gas passage. A method for carbonizing coal charged in a coke oven.
【請求項2】 前記燃焼室両窯端の温度を1000℃以上に
設定し、かつ全炭化時間のうち初期20%以内の炭化室装
炭部の上部空間圧力を大気圧−5mmAq以上、大気圧+10
mmAq以下の範囲に保つことを特徴とする請求項1記載の
コークス炉装入石炭の乾留方法。
2. The temperature of both kiln ends of the combustion chamber is set to 1000 ° C. or higher, and the upper space pressure of the coking chamber charging section within the initial 20% of the total carbonization time is set to the atmospheric pressure of -5 mmAq or more. +10
2. The method for carbonizing coal charged in a coke oven according to claim 1, wherein the coal is kept in a range of not more than mmAq.
JP9071908A 1997-03-25 1997-03-25 Carbonization of coal charged in coke oven Pending JPH10265781A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9071908A JPH10265781A (en) 1997-03-25 1997-03-25 Carbonization of coal charged in coke oven
TW087104309A TW409142B (en) 1997-03-25 1998-03-23 Method of operating coke and apparatus for implementing the method
DE69803892T DE69803892T2 (en) 1997-03-25 1998-03-24 Method for operating a coke oven and device for carrying it out
US09/046,621 US6139692A (en) 1997-03-25 1998-03-24 Method of controlling the operating temperature and pressure of a coke oven
EP98303719A EP0867496B1 (en) 1997-03-25 1998-03-24 Method of operating coke oven and apparatus for implementing the method
CN98109238A CN1092701C (en) 1997-03-25 1998-03-25 Coke furnace operation method and device thereof
KR1019980010310A KR100262032B1 (en) 1997-03-25 1998-03-25 Method of operating coke oven and apparatus for implementing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9071908A JPH10265781A (en) 1997-03-25 1997-03-25 Carbonization of coal charged in coke oven

Publications (1)

Publication Number Publication Date
JPH10265781A true JPH10265781A (en) 1998-10-06

Family

ID=13474121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9071908A Pending JPH10265781A (en) 1997-03-25 1997-03-25 Carbonization of coal charged in coke oven

Country Status (1)

Country Link
JP (1) JPH10265781A (en)

Similar Documents

Publication Publication Date Title
US6139692A (en) Method of controlling the operating temperature and pressure of a coke oven
JP2003342581A (en) Method for controlling combustion of gas in coke oven, and device for the same
CN109055713A (en) A kind of double-regenerative heating furnace board briquette and method for controlling furnace temperature
CN103757167B (en) Iron mouth pretreatment process during a kind of blast furnace opening
CN101353579B (en) 7.63m coke oven negative pressure in-furnace furnace drying method
KR100971258B1 (en) Apparatus for supplying gas into a combustion chamber of coke oven
CN109337697A (en) A method of solving the blowby of coke oven brick gas passage
JPH10265781A (en) Carbonization of coal charged in coke oven
CN105858649A (en) Graphite high-temperature expanding furnace
WO2016037582A1 (en) Low-temperature calcination process of pot furnace
CN215049884U (en) Coke oven negative pressure oven drying equipment adopting positive pressure oven drying technology
JPS6239190B2 (en)
JP2770713B2 (en) How to raise the temperature of the coke oven flue
JPS6154350B2 (en)
JPH0953078A (en) Operation of coke oven
JP5703852B2 (en) Coke oven hot transfer furnace wall temperature rising method
CN213747868U (en) Vertical tracery wall flue capable of effectively controlling pressure of hearth
CN204454989U (en) Ladder accumulation of heat mixed combustion room fume-eliminating energy-saving car
JP2000204374A (en) Control of emission of black smoke from chimney of coke oven
CN219772158U (en) Hot air furnace system using pure blast furnace gas
CN207945670U (en) A kind of boiler structure of stratiform cleaning burning
CN209210844U (en) Blast furnace winter building construction temperature-raising device
SU1014906A1 (en) Device for drying and heating air heaters
CN205223281U (en) Anti - heat preservation device of supplying air of twin exhaust pipes hot -blast furnace
CN206858607U (en) A kind of annealing treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524