JPH10265220A - Production of thin multiple oxide film - Google Patents

Production of thin multiple oxide film

Info

Publication number
JPH10265220A
JPH10265220A JP7237497A JP7237497A JPH10265220A JP H10265220 A JPH10265220 A JP H10265220A JP 7237497 A JP7237497 A JP 7237497A JP 7237497 A JP7237497 A JP 7237497A JP H10265220 A JPH10265220 A JP H10265220A
Authority
JP
Japan
Prior art keywords
substrate
thin film
composite oxide
oxide
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7237497A
Other languages
Japanese (ja)
Inventor
Takeshi Yao
健 八尾
Keiichi Tanabe
圭一 田辺
Yoshio Masuda
喜男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kobe Steel Ltd
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Kobe Steel Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP7237497A priority Critical patent/JPH10265220A/en
Publication of JPH10265220A publication Critical patent/JPH10265220A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable film formation without requiring expensive equipment for evacuation or heating a substrate to a high temp. by adding a fluorine ion capturing agent to an aq. soln. in which a rare earth element and/or an alkaline earth metal and copper exist in a separate or combined state as a fluoro-metallic complex compd. SOLUTION: A powdery mixture of oxide of a rare earth element and/or oxide of an alkaline earth metal with copper oxide is allowed to react with hydrofluoric acid to prepare an aq. soln. in which the rare earth element and/or the alkaline earth metal and copper exist in a separate or combined state as a fluoro-metallic complex compd. Boric acid or aluminum chloride as a fluorine ion capturing agent is added to the aq. soln. by an amt. 0.2-0.3 times the amt. of fluoride ions in the soln. The soln. is then heated to 10-35 deg.C, preferably 20-30 deg.C and a substrate made of a crystalline polymer such as crystalline polyethylene terephthalate is immersed in the soln., taken out, washed and air-dried.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複合酸化物薄膜の製
造方法に関し、詳細には銅を含む複合酸化物からなる超
電導体薄膜を基材表面に形成する方法に関するものであ
り、利用分野の代表例としては線材,磁気遮蔽材または
回路基板等を挙げることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite oxide thin film, and more particularly to a method for forming a superconductor thin film made of a composite oxide containing copper on a substrate surface. Examples include a wire, a magnetic shielding material or a circuit board.

【0002】[0002]

【従来の技術】超電導体薄膜の製造方法としては、レー
ザアブレーション法やスパッタリング法等のPVD法
や,CVD法が知られている。しかしながら、従来の超
電導薄膜の製造方法は、気相において基材上に成膜を行
うものであることから、真空系を得る為の高価な設備が
必要である。またこれらの方法では、成膜をするにあた
って予め基材を高温度に加熱するものであるから特別な
加熱手段も必要である。更にレーザアブレーション法や
スパッタリング法では、凹凸や曲面を有する異形の基材
に適用することは困難であるという制約も有していた。
2. Description of the Related Art As a method of manufacturing a superconductor thin film, a PVD method such as a laser ablation method or a sputtering method, and a CVD method are known. However, the conventional method for producing a superconducting thin film involves forming a film on a substrate in a gas phase, and thus requires expensive equipment for obtaining a vacuum system. Further, in these methods, a special heating means is required because the base material is heated to a high temperature in advance when forming the film. Further, the laser ablation method and the sputtering method have a limitation that it is difficult to apply the method to a substrate having an irregular shape having irregularities or a curved surface.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、真空を得る為の高価な設
備を必要とせず、基材を高温度に加熱しなくとも成膜で
き、更には異形の基材にも薄膜を形成することのできる
複合酸化物薄膜の製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and does not require expensive equipment for obtaining a vacuum and does not require a substrate to be heated to a high temperature. It is an object of the present invention to provide a method for producing a composite oxide thin film capable of forming a thin film on a substrate having an irregular shape.

【0004】[0004]

【課題を解決するための手段】上記目的を達成した本発
明とは、希土類元素及び/又はアルカリ土類金属,銅,
酸素からなる複合酸化物を基材表面に成膜する複合酸化
物薄膜の製造方法であって、希土類元素及び/又はアル
カリ土類金属並びに銅が、個別に又は複合してフルオロ
金属錯化合物として存在する水溶液に、フッ素イオン捕
捉剤を添加した後、基材を浸漬することを要旨とするも
のである。上記複合酸化物としては、希土類元素がLa
であり、アルカリ土類金属がSrである銅酸化物が代表
例として挙げることができるが、希土類元素としては、
Laの他、Nd等のランタノイドやY等が挙げられ、ア
ルカリ土類金属としては、Srの他、CaやBa等を例
示できる。また、フッ素イオン捕捉剤としては、ほう酸
又は塩化アルミニウムを用いるのが良い。
The present invention, which has achieved the above objects, comprises a rare earth element and / or an alkaline earth metal, copper,
A method for producing a composite oxide thin film in which a composite oxide made of oxygen is formed on a substrate surface, wherein a rare earth element and / or an alkaline earth metal and copper are present individually or in combination as a fluorometal complex compound. The purpose is to add a fluorine ion scavenger to the aqueous solution to be immersed and then immerse the substrate. As the composite oxide, the rare earth element is La
And a copper oxide in which the alkaline earth metal is Sr can be cited as a typical example. As the rare earth element,
In addition to La, lanthanoids such as Nd, Y and the like can be mentioned, and examples of the alkaline earth metal include Ca and Ba in addition to Sr. As the fluorine ion scavenger, boric acid or aluminum chloride is preferably used.

【0005】[0005]

【発明の実施の形態】本発明者らは、PVD法やCVD
法といった気相における合成法ではなく、液相において
酸化物超電導体薄膜を基材上に形成する方法について鋭
意研究を重ねた。その結果、希土類元素及び/又はアル
カリ土類金属並びに銅が、個別に又は複合してフルオロ
金属錯化合物として存在する水溶液に、フッ素イオン捕
捉剤を添加して、基材を浸漬すれば、溶液中の化学反応
を利用して基材上に目的とする複合酸化物の皮膜を形成
できることを見出し、本発明に想到した。即ち、本発明
方法においては、溶液中で化学反応を起こさせるにあた
り、まず必要元素のフルオロ金属錯化合物(希土類元素
及び/又はアルカリ土類金属並びに銅を個別に又は複合
して含有するフルオロ金属錯化合物、以下同じ)を水溶
液中に形成させ、次いでほう酸などのフッ素イオン捕捉
剤を加えることにより反応させ、所望の複合酸化物を基
材上に生成させると同時に皮膜化させるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have proposed a PVD method and a CVD method.
Intensive research has been conducted on a method of forming an oxide superconductor thin film on a substrate in a liquid phase, instead of a synthesis method in a gas phase such as a gas phase method. As a result, if a rare-earth element and / or an alkaline-earth metal and copper are separately or combined and an aqueous solution containing a fluorometal complex compound is added with a fluoride ion scavenger and the substrate is immersed, The present inventors have found that a target composite oxide film can be formed on a substrate by utilizing the chemical reaction of the present invention, and have reached the present invention. That is, in the method of the present invention, when causing a chemical reaction in a solution, first, a fluorometal complex compound of a necessary element (a fluorometal complex compound containing a rare earth element and / or an alkaline earth metal and copper individually or in combination with copper). Compound, hereinafter the same) is formed in an aqueous solution and then reacted by adding a fluoride ion scavenger such as boric acid to form a desired composite oxide on a substrate and simultaneously form a film.

【0006】具体的な複合酸化物としては、La2 Cu
4 ,(La,Sr)2 CuO4 ,Sr2 CuO4
(いずれも酸素が少ない格子欠陥を含むものであっても
よい)が例示できる。
As a specific composite oxide, La 2 Cu
O 4 , (La, Sr) 2 CuO 4 , Sr 2 CuO 4 and the like (all of which may contain lattice defects with low oxygen content) can be exemplified.

【0007】フッ素イオン捕捉剤としては、ほう酸又は
塩化アルミニウム等が適用でき、フッ素イオンに対して
1当量前後のほう酸または塩化アルミニウムを添加する
のがよい。例えば、フッ素イオン捕捉剤としてほう酸を
用いる場合には、溶液中のフッ化物イオンに対して0.
2〜0.3倍(1当量は0.25倍)のほう酸を添加す
れば良い。
As a fluorine ion scavenger, boric acid or aluminum chloride can be used, and it is preferable to add boric acid or aluminum chloride in an amount of about 1 equivalent to fluorine ions. For example, when boric acid is used as a fluoride ion scavenger, the concentration of fluoride is 0.1 to 1.0 with respect to fluoride ions in the solution.
What is necessary is just to add 2 to 0.3 times (1 equivalent is 0.25 times) boric acid.

【0008】フルオロ金属錯化合物を生成するにあたっ
ては、目的とする複合酸化物薄膜と同一組成のバルク状
複合酸化物を通常の焼結法等で生成し、これを粉末にし
てフッ化水素酸を反応させることにより生成することが
できる。或いは、希土類元素酸化物及び/又はアルカリ
土類金属酸化物,銅酸化物の混合物の粉末にフッ化水素
酸を反応させてフルオロ金属錯化合物を生成してもよ
い。
[0008] In producing the fluorometal complex compound, a bulk composite oxide having the same composition as the target composite oxide thin film is produced by a usual sintering method or the like, and this is powdered to form hydrofluoric acid. It can be produced by reacting. Alternatively, a powder of a mixture of a rare earth element oxide and / or an alkaline earth metal oxide and a copper oxide may be reacted with hydrofluoric acid to form a fluorometal complex compound.

【0009】基材としては、結晶性材料を用いることに
よりアモルファスではなく結晶性を有する酸化物を成長
させることができる。上記結晶性材料として結晶性ポリ
エチレンテレフタレート等の結晶性ポリマーを用いても
良い。尚、本発明において結晶性ポリマーとは、ポリマ
ーの全ての部分が結晶となっている必要はなく、少なく
ともポリマーの一部に上記酸化物の結晶を成長させる核
となる結晶部分を有していれば良い。また前記結晶性材
料として酸化物基材を用いる場合には、目的とする複合
酸化物薄膜と同程度の原子間隔を有する酸化物を用いる
ことが望ましい。例えばLa2 CuO4 等を成膜する場
合には、(100)面が同程度の原子間隔を有するSr
TiO3 ,LaAlO3 ,MgOのいずれか用いれば良
いが、その他(110)面や(111)面が同程度の原
子間隔である酸化物基板を用いても良い。
By using a crystalline material as a substrate, it is possible to grow an oxide that is not amorphous but crystalline. A crystalline polymer such as crystalline polyethylene terephthalate may be used as the crystalline material. Note that, in the present invention, the crystalline polymer does not require that all portions of the polymer be crystals, and at least a portion of the polymer has a crystal portion that serves as a nucleus for growing the oxide crystal. Good. In the case where an oxide base is used as the crystalline material, it is desirable to use an oxide having the same atomic spacing as the target composite oxide thin film. For example, in the case of forming a film of La 2 CuO 4 or the like, Sr having a (100) plane having the same atomic spacing
Any of TiO 3 , LaAlO 3 , and MgO may be used. Alternatively, an oxide substrate in which the (110) plane and the (111) plane have substantially the same atomic spacing may be used.

【0010】基材を浸漬させる溶液の温度は、反応を促
進させる上で高い方が望ましいが、40℃を超えると弗
化水素水が蒸発し易く操作上支障をきたすので10〜3
5℃の範囲で行えばよく、20〜30℃が望ましい。
The temperature of the solution in which the substrate is immersed is desirably high in order to promote the reaction. However, if the temperature exceeds 40 ° C., the hydrogen fluoride water is easily evaporated, which hinders the operation.
The heat treatment may be performed at a temperature within the range of 5 ° C., preferably 20 to 30 ° C.

【0011】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and any design change based on the above and following gist is not limited to the present invention. Are included within the technical scope of

【0012】[0012]

【実施例】実施例1 La23 とCuOを、LaとCuのモル比が正確に
2:1となるように秤量し、アルミナ製自動乳鉢で5時
間混合粉砕した。混合物を加圧成形した後、空気中、1
100℃で20時間焼成し、そのまま炉内放冷してLa
2 CuO4 を作製した。これをアルミナ製自動乳鉢で5
時間粉砕した後、得られた粉末0.4gを46%のHF
水溶液400mlに加え30℃で24時間撹拌した。溶
け残った原料をろ過して取り除き、溶液を30mlずつ
分取した。各溶液には溶液内の弗化物イオンに対しモル
比で0.2倍,0.225倍,0.25倍のH3 BO3
をフッ素イオン捕捉剤として添加した。この溶液に、表
面研磨後エタノール中で10分間の超音波洗浄を行った
結晶性ポリエチレンテレフタレート(PET)基板を浸
漬し、30℃で6日間保持した。保持後に基板を取り出
し、蒸留水で洗浄し、風乾した後、XRD測定,SEM
観察,EPMA(EDX)を行った。
EXAMPLES Example 1 La 2 O 3 and CuO were weighed so that the molar ratio of La to Cu was exactly 2: 1 and mixed and pulverized for 5 hours in an automatic mortar made of alumina. After the mixture is molded under pressure,
Firing at 100 ° C for 20 hours
2 CuO 4 was produced. Put this in an automatic mortar made of alumina for 5
After milling for 0.4 hour, 0.4 g of the resulting powder was
The solution was added to 400 ml of an aqueous solution and stirred at 30 ° C. for 24 hours. The undissolved raw material was removed by filtration, and the solution was fractionated in 30 ml portions. Each solution contains 0.23, 0.225 and 0.25 times the molar ratio of H 3 BO 3 to the fluoride ions in the solution.
Was added as a fluorine ion scavenger. A crystalline polyethylene terephthalate (PET) substrate that had been subjected to ultrasonic cleaning for 10 minutes in ethanol after surface polishing was immersed in this solution, and was kept at 30 ° C. for 6 days. After holding, the substrate is taken out, washed with distilled water, air-dried, XRD measurement, SEM
Observation and EPMA (EDX) were performed.

【0013】その結果、La2 CuO4 のX線回折パタ
ーンのピークと一致するピークが観測された。基板表面
をSEM観察及びEPMAで定性分析を行ったところ、
基板上に薄膜または粒子が集合している部分が確認で
き、それらの薄膜または粒子はLa,Cuを含んでいる
ことが分かった。またEPMAで定量分析を行ったとこ
ろ、ほぼLa:Cu:O=2:1:4となる結果が得ら
れた。従って、基板表面に形成された薄膜は、La2
uO4 結晶であると同定できる。
As a result, a peak was observed which coincided with the peak of the X-ray diffraction pattern of La 2 CuO 4 . When the substrate surface was subjected to SEM observation and qualitative analysis by EPMA,
A portion where the thin films or particles aggregated on the substrate was confirmed, and it was found that those thin films or particles contained La and Cu. When quantitative analysis was performed by EPMA, a result of approximately La: Cu: O = 2: 1: 4 was obtained. Therefore, the thin film formed on the substrate surface is La 2 C
It can be identified as a uO 4 crystal.

【0014】実施例2 基板として、エタノール中で10分間の超音波洗浄を行
った単結晶SrTiO 3 基板,単結晶LaAlO3
板,単結晶MgO基板を用いたこと以外は実施例1と同
様にして、基板上に薄膜を形成した。
[0014]Example 2 The substrate was subjected to ultrasonic cleaning for 10 minutes in ethanol.
Single crystal SrTiO Three Substrate, single crystal LaAlOThree Base
Same as Example 1 except that a plate and a single crystal MgO substrate were used.
Thus, a thin film was formed on the substrate.

【0015】いずれの基板にも、La2 CuO4 のX線
回折パターンのピークと一致するピークが観測された。
基板表面をSEM観察及びEPMAで定性分析を行った
ところ、基板上に薄膜または粒子が集合している部分が
確認でき、それらの薄膜または粒子はLa,Cuを含ん
でいることが分かった。またEPMAで定量分析を行っ
たところ、ほぼLa:Cu:O=2:1:4となる結果
が得られた。従って、基板表面に形成された薄膜は、L
2 CuO4 結晶であると同定できる。
A peak which coincided with the peak of the X-ray diffraction pattern of La 2 CuO 4 was observed on each of the substrates.
When the surface of the substrate was subjected to SEM observation and qualitative analysis by EPMA, a portion where thin films or particles were aggregated on the substrate was confirmed, and it was found that those thin films or particles contained La and Cu. When quantitative analysis was performed by EPMA, a result of approximately La: Cu: O = 2: 1: 4 was obtained. Therefore, the thin film formed on the substrate surface is L
It can be identified as a 2 CuO 4 crystal.

【0016】実施例3 La23 ,SrCO3 ,CuOをLa,Sr,Cuの
モル比が正確に1.8:0.2:1となるように秤量
し、アルミナ製自動乳鉢で5時間混合粉砕した。混合物
を加圧成形した後、空気中、1100℃で20時間焼成
し、そのまま炉内放冷して(La0.9 Sr0.12 Cu
4 を作製した。これをアルミナ製自動乳鉢で5時間粉
砕した後、得られた粉末0.4gを46%のHF水溶液
400mlに加え30℃で24時間撹拌した。溶け残っ
た原料をろ過して取り除き、溶液を30mlずつ分取し
た。各溶液には溶液内の弗化物イオンに対しモル比で
0.2倍,0.225倍,0.25倍のH3 BO3 を添
加した。この溶液に、表面研磨後、エタノール中で10
分間の超音波洗浄を行った結晶性PET基板を浸漬し、
30℃で6日間保持した。保持後に基板を取り出し、蒸
留水で洗浄し、風乾した後、XRD測定,SEM観察,
EPMAを行った。
Example 3 La 2 O 3 , SrCO 3 , and CuO were weighed so that the molar ratio of La, Sr, and Cu was exactly 1.8: 0.2: 1, and the mixture was placed in an alumina mortar for 5 hours. It was mixed and ground. After pressure-molding the mixture, it is baked in air at 1100 ° C. for 20 hours, and is allowed to cool in a furnace as it is (La 0.9 Sr 0.1 ) 2 Cu
O 4 was produced. This was ground in an automatic mortar made of alumina for 5 hours, and then 0.4 g of the obtained powder was added to 400 ml of a 46% HF aqueous solution, followed by stirring at 30 ° C. for 24 hours. The undissolved raw material was removed by filtration, and the solution was fractionated in 30 ml portions. H 3 BO 3 was added to each solution at a molar ratio of 0.2, 0.225, and 0.25 times the fluoride ions in the solution. After polishing the surface, add 10
Immerse the crystalline PET substrate that has been ultrasonically cleaned for
It was kept at 30 ° C. for 6 days. After holding, the substrate is taken out, washed with distilled water, air-dried, and then subjected to XRD measurement, SEM observation,
EPMA was performed.

【0017】その結果、(La0.9 Sr0.12 CuO
4 のX線回折パターンのピークと一致するピークが観測
された。基板表面をSEM観察及びEPMAによる定性
分析を行ったところ、基板上に薄膜または粒子が集合し
ている部分が確認でき、それらの薄膜または粒子はL
a,Cuを含んでいることが分かった。基板表面に形成
された薄膜は、xが0.1に近い(La1-x Srx2
CuO4 結晶であると考えられる。
As a result, (La 0.9 Sr 0.1 ) 2 CuO
A peak which coincided with the peak of the X-ray diffraction pattern of No. 4 was observed. When the substrate surface was subjected to SEM observation and qualitative analysis by EPMA, a portion where thin films or particles were aggregated on the substrate was confirmed.
a, Cu was found to be contained. In the thin film formed on the substrate surface, x is close to 0.1 (La 1−x Sr x ) 2
It is considered to be a CuO 4 crystal.

【0018】実施例4 基板として、エタノール中で10分間の超音波洗浄を行
った単結晶SrTiO 3 基板,単結晶LaAlO3
板,単結晶MgO基板を用いたこと以外は実施例2と同
様にして、基板上に薄膜を形成した。
[0018]Example 4 The substrate was subjected to ultrasonic cleaning for 10 minutes in ethanol.
Single crystal SrTiO Three Substrate, single crystal LaAlOThree Base
Same as Example 2 except that a plate and a single crystal MgO substrate were used.
Thus, a thin film was formed on the substrate.

【0019】いずれの基板にも、(La0.9 Sr0.1
2 CuO4 のX線回折パターンのピークと一致するピー
クが観測された。基板表面をSEM観察及びEPMAに
よる定性分析を行ったところ、基板上に薄膜または粒子
が集合している部分が確認でき、それらの薄膜または粒
子はLa,Sr,Cuを含んでいることが分かった。基
板表面に形成された薄膜は、xが0.1に近い(La
1-x Srx2 CuO4結晶であると考えられる。
Both substrates have (La 0.9 Sr 0.1 )
Peaks coinciding with the peak of the X-ray diffraction pattern of 2 CuO 4 was observed. When the substrate surface was subjected to SEM observation and qualitative analysis by EPMA, a portion where thin films or particles were aggregated on the substrate was confirmed, and it was found that those thin films or particles contained La, Sr, and Cu. . In the thin film formed on the substrate surface, x is close to 0.1 (La
It is considered to be 1-x Sr x ) 2 CuO 4 crystal.

【0020】実施例5 La23 とCuOを、LaとCuのモル比が正確に
2:1となるように秤量し、アルミナ製自動乳鉢で5時
間混合粉砕した。混合物を加圧成形した後、空気中、1
100℃で20時間焼成し、そのまま炉内放冷してLa
2 CuO4 を作製した。これをアルミナ製自動乳鉢で5
時間粉砕した後、得られた粉末0.4gを46%のHF
水溶液400mlに加え30℃で24時間撹拌した。溶
け残った原料をろ過して取り除き、溶液を30mlずつ
分取した。
Example 5 La 2 O 3 and CuO were weighed so that the molar ratio of La to Cu was exactly 2: 1 and mixed and pulverized in an alumina automatic mortar for 5 hours. After the mixture is molded under pressure,
Firing at 100 ° C for 20 hours
2 CuO 4 was produced. Put this in an automatic mortar made of alumina for 5
After milling for 0.4 hour, 0.4 g of the resulting powder was
The solution was added to 400 ml of an aqueous solution and stirred at 30 ° C. for 24 hours. The undissolved raw material was removed by filtration, and the solution was fractionated in 30 ml portions.

【0021】別に0.46%HF水溶液100mlを用
意し、Sr(OH)2・8H2 Oを3.056g加え、そ
の上澄み液を、先のLa2 CuO4 から得られた濾液に
夫々5ml,10ml,15ml加え、各溶液に溶液内
の弗化物イオンに対しモル比で0.2,0.225,
0.25倍のH3 BO3 を添加した。この溶液に、表面
研磨後エタノール中で10分間の超音波洗浄を行った結
晶性ポリエチレンテレフタレート(PET)基板を浸漬
し、30℃で6日間保持した。保持後に基板を取り出
し、蒸留水で洗浄し、風乾した後、XRD測定,SEM
観察,EPMAを行った。
[0021] Separately prepared 0.46% HF aqueous solution 100ml, Sr (OH) 2 · 8H 2 O was added 3.056G, the supernatant, s husband filtrate obtained from the previous La 2 CuO 4 5 ml, 10 ml and 15 ml were added, and a molar ratio of 0.2, 0.225,
0.25 times H 3 BO 3 was added. A crystalline polyethylene terephthalate (PET) substrate that had been subjected to ultrasonic cleaning for 10 minutes in ethanol after surface polishing was immersed in this solution, and was kept at 30 ° C. for 6 days. After holding, the substrate is taken out, washed with distilled water, air-dried, XRD measurement, SEM
Observation and EPMA were performed.

【0022】いずれの基板にも、(La0.9 Sr0.1
2 CuO4 のX線回折パターンのピークと類似するピー
クが観測された。基板表面をSEM観察及びEPMAに
よる定性分析を行ったところ、基板上に薄膜または粒子
が集合している部分が確認でき、それらの薄膜または粒
子はLa,Sr,Cuを含んでいることが分かった。基
板表面に形成された薄膜は、Srを固溶するLa2 Cu
4 結晶であると考えられる。
Each of the substrates has (La 0.9 Sr 0.1 )
Peak similar to the peak of the X-ray diffraction pattern of 2 CuO 4 was observed. When the substrate surface was subjected to SEM observation and qualitative analysis by EPMA, a portion where thin films or particles were aggregated on the substrate was confirmed, and it was found that those thin films or particles contained La, Sr, and Cu. . The thin film formed on the substrate surface is made of La 2 Cu which dissolves Sr.
It is considered to be an O 4 crystal.

【0023】比較例1 基板としてアモルファスPET基板を用いたこと以外
は、実施例1と同様にして、基板上に薄膜を形成した。
その結果、La2 CuO4 のXRDパターンのピークと
一致するピークは観測されなかった。基板表面をSEM
観察及びEPMAによる定性分析を行ったところ、基板
上に薄膜または粒子が集合している部分が確認でき、そ
れらの薄膜または粒子はLa,Cuを含んでいることが
分かった。従って、基板表面に形成された薄膜は、アモ
ルファスのLa2 CuO4 であると考えられる。
Comparative Example 1 A thin film was formed on a substrate in the same manner as in Example 1 except that an amorphous PET substrate was used as the substrate.
As a result, a peak that coincided with the peak of the XRD pattern of La 2 CuO 4 was not observed. SEM on substrate surface
As a result of observation and qualitative analysis by EPMA, it was confirmed that thin films or particles were aggregated on the substrate, and it was found that those thin films or particles contained La and Cu. Therefore, it is considered that the thin film formed on the substrate surface is amorphous La 2 CuO 4 .

【0024】比較例2 基板としてアモルファスPET基板を用いたこと以外
は、実施例1と同様にして、基板上に薄膜を形成した。
その結果、(La0.9 Sr0.12 CuO4 のX線回折
パターンのピークと一致するピークは観測されなかっ
た。基板表面をSEM観察及びEPMAによる定性分析
を行ったところ、基板上に薄膜または粒子が集合してい
る部分が確認でき、それらの薄膜または粒子はLa,S
r,Cuを含んでいることが分かった。従って、基板表
面に形成された薄膜は、アモルファスの(La0.9 Sr
0.12 CuO4 であると考えられる。
Comparative Example 2 A thin film was formed on a substrate in the same manner as in Example 1 except that an amorphous PET substrate was used.
As a result, a peak that coincided with the peak of the X-ray diffraction pattern of (La 0.9 Sr 0.1 ) 2 CuO 4 was not observed. When the substrate surface was subjected to SEM observation and qualitative analysis by EPMA, a portion where thin films or particles were aggregated on the substrate could be confirmed, and the thin films or particles were La, S
It was found to contain r and Cu. Therefore, the thin film formed on the substrate surface is amorphous (La 0.9 Sr
0.1 ) 2 CuO 4 .

【0025】[0025]

【発明の効果】本発明は以上の様に構成されているの
で、真空を得る為の高価な設備を必要とせず、基材を高
温度に加熱しなくとも成膜でき、しかも異形の基材にも
薄膜を形成することのできる複合酸化物薄膜の製造方法
が提供できることとなった。
Since the present invention is constructed as described above, it does not require expensive equipment for obtaining a vacuum, can form a film without heating the substrate to a high temperature, and has a deformed substrate. Thus, a method for producing a composite oxide thin film capable of forming a thin film can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田辺 圭一 東京都江東区東雲一丁目10番13号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 増田 喜男 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Keiichi Tanabe 1-10-13 Shinonome, Koto-ku, Tokyo Foundation International Research Institute for Superconductivity Technology, Superconductivity Engineering Laboratory (72) Inventor Yoshio Masuda Nishi-ku, Kobe-shi 1-5-5 Takatsukadai Inside Kobe Research Institute, Kobe Steel, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素及び/又はアルカリ土類金
属,銅,酸素からなる複合酸化物を基材表面に成膜する
複合酸化物薄膜の製造方法であって、 希土類元素及び/又はアルカリ土類金属並びに銅が、個
別に又は複合してフルオロ金属錯化合物として存在する
水溶液に、フッ素イオン捕捉剤を添加した後、基材を浸
漬することを特徴とする複合酸化物薄膜の製造方法。
1. A method for producing a composite oxide thin film, comprising forming a composite oxide comprising a rare earth element and / or an alkaline earth metal, copper, and oxygen on a surface of a base material, comprising the steps of: A method for producing a composite oxide thin film, comprising adding a fluoride ion scavenger to an aqueous solution in which a metal and copper are present individually or in combination as a fluorometal complex compound, and then immersing the substrate.
【請求項2】 希土類元素がランタンであり、アルカリ
土類金属がストロンチウムである請求項1に記載の製造
方法。
2. The method according to claim 1, wherein the rare earth element is lanthanum and the alkaline earth metal is strontium.
【請求項3】 フッ素イオン捕捉剤が、ほう酸又は塩化
アルミニウムである請求項1または2に記載の製造方
法。
3. The method according to claim 1, wherein the fluorine ion scavenger is boric acid or aluminum chloride.
【請求項4】 目的とする複合酸化物薄膜と同一組成の
複合酸化物の粉末にフッ化水素酸を反応させて前記フル
オロ金属錯化合物を生成する請求項1〜3のいずれかに
記載の製造方法。
4. The production according to claim 1, wherein the fluorometal complex compound is produced by reacting hydrofluoric acid with a composite oxide powder having the same composition as the target composite oxide thin film. Method.
【請求項5】 希土類元素酸化物及び/又はアルカリ土
類金属酸化物,銅酸化物の混合物の粉末にフッ化水素酸
を反応させて前記フルオロ金属錯化合物を生成する請求
項1〜3のいずれかに記載の製造方法。
5. The fluorometal complex compound according to claim 1, wherein a powder of a mixture of a rare earth element oxide and / or an alkaline earth metal oxide and copper oxide is reacted with hydrofluoric acid to produce the fluorometal complex compound. The production method described in Crab.
【請求項6】 基材として、結晶性ポリマーを用いる請
求項1〜5のいずれかに記載の製造方法。
6. The method according to claim 1, wherein a crystalline polymer is used as the substrate.
【請求項7】 上記結晶性ポリマーが結晶性ポリエチレ
ンテレフタレートである請求項6に記載の製造方法。
7. The method according to claim 6, wherein the crystalline polymer is crystalline polyethylene terephthalate.
【請求項8】 基材として、目的とする複合酸化物薄膜
と同程度の原子間隔を有する酸化物を用いる請求項1〜
5のいずれかに記載の製造方法。
8. The substrate according to claim 1, wherein the base material is an oxide having the same atomic spacing as the target composite oxide thin film.
5. The production method according to any one of 5.
【請求項9】 上記基材が、SrTiO3 ,LaAlO
3 ,MgOのいずれかである請求項8に記載の製造方
法。
9. The method according to claim 1, wherein the base material is SrTiO 3 , LaAlO.
9. The production method according to claim 8, wherein the production method is one of 3 , MgO.
JP7237497A 1997-03-25 1997-03-25 Production of thin multiple oxide film Withdrawn JPH10265220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7237497A JPH10265220A (en) 1997-03-25 1997-03-25 Production of thin multiple oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7237497A JPH10265220A (en) 1997-03-25 1997-03-25 Production of thin multiple oxide film

Publications (1)

Publication Number Publication Date
JPH10265220A true JPH10265220A (en) 1998-10-06

Family

ID=13487473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7237497A Withdrawn JPH10265220A (en) 1997-03-25 1997-03-25 Production of thin multiple oxide film

Country Status (1)

Country Link
JP (1) JPH10265220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679996B1 (en) 1999-10-05 2004-01-20 Hoya Corporation Metal oxide pattern forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679996B1 (en) 1999-10-05 2004-01-20 Hoya Corporation Metal oxide pattern forming method

Similar Documents

Publication Publication Date Title
Rodriguez et al. Formation of SrBi2Ta2O9: Part II. Evidence of a bismuth-deficient pyrochlore phase
JP6565950B2 (en) Method for producing garnet-type oxide solid electrolyte
US10044061B2 (en) Methods for growth of lithium-rich antiperovskite electrolyte films and use thereof
KR20190132152A (en) Layered AlN, manufacturing method thereof and exfoliated AlN nanosheet therefrom
US6589453B1 (en) Process for preparing a target for use in the production of a thin metal oxide film
JP2010208923A (en) Artificial superlattice dielectric nanoparticle and method of manufacturing the same
JP3526886B2 (en) Method for producing composite oxide
CN110498448B (en) Layered FeAs, preparation method thereof and FeAs nanosheet stripped therefrom
JPH10265220A (en) Production of thin multiple oxide film
JP3509491B2 (en) Shape anisotropic ceramic powder and method for producing the same
CN114873636B (en) Lead titanate substrate crystal template and preparation method thereof
JPS63277569A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS6086022A (en) Production of titanic acid salt
US11817550B2 (en) Method of synthesizing a solid-state electrolyte for use in a lithium-ion battery
JPH1087330A (en) Production of zirconium titanate deposit
US11384450B2 (en) Method of making thin films
CN101693548B (en) Aluminum-magnesium acid scandium nano powder and preparation method thereof
JP2016160150A (en) Manufacturing method of s12a7 electride compound and manufacturing method of thin film of s12a7 electride compound
JP3742875B2 (en) Method for producing yttrium / aluminum / iron composite oxide
JPH01298020A (en) Production of copper alkoxide and production of superconducting powder using the same alkoxide
JP2002274845A (en) Superconducting material
JPH026366A (en) Oxide-based ceramic, substrate for producing superconducting ceramic film and production of superconducting ceramic film
Katayama et al. Fabrication of Bi 2 Sr 2 CaCu 2 O x films on metal substrates by the chemical process using metal alkoxides
JPH05148273A (en) Copper complex and its production
JPS63248014A (en) Manufacture of superconductive composite oxide thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601