JPH10259714A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH10259714A
JPH10259714A JP10040555A JP4055598A JPH10259714A JP H10259714 A JPH10259714 A JP H10259714A JP 10040555 A JP10040555 A JP 10040555A JP 4055598 A JP4055598 A JP 4055598A JP H10259714 A JPH10259714 A JP H10259714A
Authority
JP
Japan
Prior art keywords
catalyst
nox
temperature
sensor
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10040555A
Other languages
Japanese (ja)
Inventor
Kanehito Nakamura
兼仁 中村
Tsukasa Kuboshima
司 窪島
Hajime Suguro
肇 勝呂
Koichi Ohata
耕一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP10040555A priority Critical patent/JPH10259714A/en
Publication of JPH10259714A publication Critical patent/JPH10259714A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To always supply the best HC amount, by detecting information that the distribution of a reaction material in the inside of a catalyst is reflected so that the NOx purifying condition of the catalyst is estimated by purifying condition estimating means, and setting an EC supply amount to the catalyst on the basis of detected information of the estimated NOx purifying condition and operational conditions. SOLUTION: When catalyst activation is controlled by a control circuit 26, firstly, respective signals from an accelerator sensor 27, an engine speed sensor 28 and an air flow sensor 16, are read in, and an NOx concentration is calculated. Next, signals of NOx sensors 14, 15 are read in, and the NOx purifying rate of an NOx catalyst 13, is calculated. Also, the changing of the NOx concentration of a downstream side part in the NOx catalyst 13, is calculated. Next, the catalyst activation condition of the NOx catalyst 13 is estimated on the basis of the NOx purifying rate and the changing of the NOx concentration of the downstream side part. Then, in the case that the catalyst activation condition is judged that it is on the low temprature side of an NOx purifying temperature window, an HC reference supply amount is calculated, and also a command to rise the temperature of the NOx catalyst 13, is outputted thereby, for example, an EGR flow rate can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気ガ
ス中に含まれる窒素酸化物を浄化する装置に関するもの
であり、より詳しくは触媒の窒素酸化物浄化状態を推定
する機能を備えた内燃機関の排気浄化装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for purifying nitrogen oxides contained in exhaust gas of an internal combustion engine, and more particularly, to an internal combustion engine having a function of estimating a state of purifying nitrogen oxides of a catalyst. The present invention relates to an exhaust gas purification device for an engine.

【0002】[0002]

【従来の技術】ディーゼルエンジン等の酸素過剰下で燃
料の燃焼が行われる内燃機関から排出される排気中の窒
素酸化物(NOx)を浄化するために、排気管内にNO
x触媒を設置し、炭化水素(燃料)を還元剤としてNO
x触媒に供給してNOxを還元浄化する技術が提案され
ている。この触媒の浄化特性は、図2に示すように、炭
化水素(HC)の浄化率は触媒温度が高くなるに従って
高くなるが、NOxの浄化率は所定の活性温度範囲(例
えばPt触媒では200℃から300℃)においてのみ
高いことが知られている。
2. Description of the Related Art In order to purify nitrogen oxides (NOx) in exhaust gas discharged from an internal combustion engine in which fuel is burned under an excessive amount of oxygen such as a diesel engine, a NO.
x catalyst is installed, and hydrocarbon (fuel) is used as a reducing agent and NO
A technique for reducing and purifying NOx by supplying it to an x catalyst has been proposed. As shown in FIG. 2, the purification rate of this catalyst is such that the purification rate of hydrocarbons (HC) increases as the catalyst temperature increases, but the purification rate of NOx falls within a predetermined active temperature range (for example, 200 ° C. for a Pt catalyst). At 300 ° C.).

【0003】しかし、通常の内燃機関の排気ガス中には
ほとんどHCが含まれていないため、NOx触媒でNO
xを還元浄化するためには、排気ガスに還元剤であるH
Cを添加する必要がある。NOxの浄化率を高くするに
はHCを多量に供給すれば良いが、燃費が悪化したり、
触媒の活性状態によっては、未反応のまま排出されてし
まったり、或は、HCの反応熱で触媒温度が上昇し、上
記所定温度範囲を外れてしまい、却ってNOxの浄化率
が低下してしまう場合がある。従って、運転中にNOx
触媒のNOx浄化性能を精度良く推定しながら、供給す
る炭化水素量を制御したり、NOx触媒の温度を制御し
たり、NOx触媒の劣化を判定する必要がある。そのた
めに、特開平7−54641号公報に示すように、NO
x触媒の上流側と下流側にそれぞれNOxセンサを設
け、これら2つのNOxセンサで検出したNOx濃度の
差からNOx浄化率を算出してNOx触媒のNOx浄化
性能を推定するようにしたものがある。
However, since the exhaust gas of a normal internal combustion engine contains almost no HC, the NOx catalyst
In order to reduce and purify x, the exhaust gas contains H as a reducing agent.
C must be added. In order to increase the NOx purification rate, it is sufficient to supply a large amount of HC.
Depending on the activation state of the catalyst, the catalyst is discharged without reacting, or the temperature of the catalyst rises due to the heat of reaction of HC and falls outside the above-mentioned predetermined temperature range, and on the contrary, the purification rate of NOx decreases. There are cases. Therefore, NOx during operation
It is necessary to control the amount of hydrocarbons to be supplied, control the temperature of the NOx catalyst, and determine the deterioration of the NOx catalyst while accurately estimating the NOx purification performance of the catalyst. Therefore, as shown in JP-A-7-54641, NO
An NOx sensor is provided on each of an upstream side and a downstream side of an x catalyst, and a NOx purification rate is calculated from a difference between NOx concentrations detected by these two NOx sensors to estimate a NOx purification performance of the NOx catalyst. .

【0004】[0004]

【発明が解決しようとする課題】しかし、NOx触媒の
NOx浄化率は、NOx触媒内部のHC濃度分布や触媒
温度分布で大きく変化してしまう。また、図2に示すよ
うに触媒温度が上記所定温度範囲の低温側の領域(昇温
によりNOx浄化率が向上する領域)と高温側の領域
(降温によりNOx浄化率が向上する領域)との間で同
じNOx浄化率になる場合があるため、NOx浄化率だ
けでは低温側か高温側かを判別できない。従って、NO
x浄化率からNOx触媒のNOx浄化性能を推定する
と、HC濃度が低いためにNOx浄化率が低いのか、触
媒温度が低い(又は高い)ためにNOx浄化率が低いの
か、それとも、NOx触媒の劣化によりNOx浄化率が
低いのかが判別できず、NOx触媒へのHC供給量の制
御が不適切になったり、NOx触媒の劣化を誤判定する
おそれがある。
However, the NOx purification rate of the NOx catalyst greatly changes depending on the HC concentration distribution and the catalyst temperature distribution inside the NOx catalyst. Further, as shown in FIG. 2, the catalyst temperature is divided into a low-temperature region (a region where the NOx purification rate is improved by increasing the temperature) and a high-temperature region (a region where the NOx purification ratio is improved by decreasing the temperature) in the predetermined temperature range. Since the NOx purification rate may be the same between the two cases, it is not possible to determine whether the temperature is low or high based only on the NOx purification rate. Therefore, NO
Estimating the NOx purification performance of the NOx catalyst from the x purification rate indicates whether the NOx purification rate is low because the HC concentration is low, the NOx purification rate is low because the catalyst temperature is low (or high), or the NOx catalyst is deteriorated. Therefore, it is impossible to determine whether the NOx purification rate is low, and there is a possibility that the control of the amount of HC supplied to the NOx catalyst becomes inappropriate or the deterioration of the NOx catalyst is erroneously determined.

【0005】本発明は、このような事情を考慮してなさ
れたものであり、従ってその目的は、触媒の窒素酸化物
浄化状態を精度よく推定することができ、それによっ
て、触媒への炭化水素供給量又は触媒温度を適正に制御
することができ、或は、NOx触媒の劣化を精度良く判
定することができる内燃機関の排気浄化装置を提供する
ことにある。
[0005] The present invention has been made in view of such circumstances, and it is therefore an object of the present invention to accurately estimate the state of purifying nitrogen oxides of a catalyst, thereby enabling the catalyst to emit hydrocarbons. An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can appropriately control a supply amount or a catalyst temperature, or can accurately determine deterioration of a NOx catalyst.

【0006】[0006]

【課題を解決するための手段】NOx浄化率とNOx触
媒内部の反応物質であるNOxとHCの濃度分布の関係
を詳細に調査したところ、以下のことが判明した。これ
を図2から図5を用いて説明する。図2は触媒温度に対
するNOxとHCの浄化特性を示す。HCは触媒温度が
高温になるに従って浄化率が高くなるが、NOxの浄化
率は所定温度範囲(たとえばPt触媒では200から3
00℃)でのみ高くなる(以下、NOxの浄化可能な温
度範囲T1 〜T3 を「NOx浄化温度ウインド」と呼
ぶ)。
When the relationship between the NOx purification rate and the concentration distribution of NOx and HC, which are reactants in the NOx catalyst, was investigated in detail, the following was found. This will be described with reference to FIGS. FIG. 2 shows the NOx and HC purification characteristics with respect to the catalyst temperature. The purification rate of HC increases as the catalyst temperature increases, but the purification rate of NOx is within a predetermined temperature range (for example, 200 to 3 for a Pt catalyst).
(Hereinafter, the temperature range T1 to T3 in which NOx can be purified is referred to as a "NOx purification temperature window").

【0007】図3は図2のA点(NOx浄化温度ウイン
ドの低温側)での触媒内部のNOxとHCの濃度分布を
示す。この場合は、触媒の活性が低いため触媒内部のH
C濃度は緩やかに低下していき、HCの反応に応じてN
Ox濃度も緩やかに低下していくため、触媒内部の下流
側部分のHCとNOxの濃度変化は小さい。この状態で
は、多量のHCを供給しても未反応なまま触媒から排出
されてしまうことになり、NOx浄化率の向上効果は少
ない。従って、NOx浄化温度ウインドの低温側では、
HC供給量は少量が適し、触媒を昇温することが有効に
なる。
FIG. 3 shows the concentration distribution of NOx and HC inside the catalyst at point A (lower temperature side of the NOx purification temperature window) in FIG. In this case, since the activity of the catalyst is low, H
The C concentration gradually decreases, and according to the reaction of HC, the N concentration increases.
Since the Ox concentration also gradually decreases, the change in the concentration of HC and NOx in the downstream portion inside the catalyst is small. In this state, even if a large amount of HC is supplied, it is discharged from the catalyst without being reacted, and the effect of improving the NOx purification rate is small. Therefore, on the low temperature side of the NOx purification temperature window,
The small amount of HC supply is suitable, and it is effective to raise the temperature of the catalyst.

【0008】図4は図2のB点(NOx浄化率が最大に
なるNOx浄化温度ウインドの中央)での触媒内部のN
OxとHCの濃度分布を示す。この場合は、触媒の活性
が適度に高いため触媒内部のHC濃度は速やかに低下し
ていき、触媒出口でHC濃度が丁度ゼロになり、触媒の
全領域でHCの反応に応じてNOx濃度も速やかに低下
していくため、触媒内部の中央から出口までのHC、N
Ox濃度変化は大きくなり、NOx浄化率は最大にな
る。この状態では、多量のHCを供給しても、そのHC
が触媒の全領域を有効に使用してNOxの還元反応に十
分に消費され、NOx浄化率の向上を期待できる。従っ
て、NOx浄化温度ウインドの中央では、HC供給量は
多量が適し、触媒は昇温も降温もするべきではない。
FIG. 4 shows the N inside the catalyst at point B (the center of the NOx purification temperature window at which the NOx purification rate is maximized) in FIG.
2 shows the concentration distribution of Ox and HC. In this case, since the activity of the catalyst is moderately high, the HC concentration inside the catalyst rapidly decreases, the HC concentration becomes just zero at the catalyst outlet, and the NOx concentration also increases in accordance with the reaction of HC in the entire region of the catalyst. HC, N from the center to the outlet inside the catalyst to decrease rapidly
The change in the Ox concentration becomes large, and the NOx purification rate becomes the maximum. In this state, even if a large amount of HC is supplied,
Is effectively consumed in the NOx reduction reaction by effectively using the entire region of the catalyst, and an improvement in the NOx purification rate can be expected. Therefore, at the center of the NOx purification temperature window, a large amount of HC is suitably supplied, and the catalyst should not be heated or cooled.

【0009】図5は図2のC点(NOx浄化温度ウイン
ドの高温側)での触媒内部のNOxとHCの濃度分布を
示す。この場合は、触媒の活性が高すぎるため、触媒内
部のHC濃度は急激に低下していき、触媒前半部でゼロ
になり、触媒前半部ではHCの反応に応じてNOx濃度
も急激に低下するが、触媒後半部では還元剤となるHC
が存在しないためNOxが浄化されず、一定濃度にな
り、触媒内部の下流側部分のHC、NOx濃度変化は極
めて小さくほぼゼロになる。この状態では、多量のHC
を供給しても触媒前半部でほとんど全て消費されてしま
うばかりか、そのHCの反応熱で触媒が過昇温してしま
うため、NOx浄化率がむしろ低下してしまうことがあ
る。従って、NOx浄化温度ウインドの高温側では、H
C供給量は中程度の量が適し、触媒は降温すべきであ
る。
FIG. 5 shows the concentration distribution of NOx and HC inside the catalyst at point C (high temperature side of the NOx purification temperature window) in FIG. In this case, since the activity of the catalyst is too high, the HC concentration in the catalyst rapidly decreases, becomes zero in the first half of the catalyst, and the NOx concentration also rapidly decreases in the first half of the catalyst according to the reaction of HC. However, in the latter half of the catalyst, HC
Since NOx does not exist, NOx is not purified and the concentration becomes constant, and the change in the concentrations of HC and NOx in the downstream portion inside the catalyst is extremely small and almost zero. In this state, a large amount of HC
Even if is supplied, almost all of the catalyst is consumed in the first half of the catalyst, and the reaction heat of the HC causes the temperature of the catalyst to rise excessively, so that the NOx purification rate may rather decrease. Therefore, on the high temperature side of the NOx purification temperature window, H
A medium supply amount of C is suitable, and the temperature of the catalyst should be lowered.

【0010】ところが、前述した特開平7−54641
号公報のように、NOx浄化率で触媒のNOx浄化性能
を推定すると、図2のA点なのかB点なのか区別できな
い。また、HC浄化率で触媒のNOx浄化性能を推定す
ると、B点なのかC点なのか区別できない。以上より、
触媒内部の反応物質(HC、NOx)の濃度分布が分か
れば、触媒の活性状態が図2に示したNOx浄化温度ウ
インドのどの位置であるかを精度良く推定でき、HC供
給量を常に最適に制御したり、触媒温度を最適に制御す
ることが可能になる。
However, Japanese Patent Application Laid-Open No. 7-54641 described above.
When the NOx purification performance of the catalyst is estimated based on the NOx purification rate as in the publication, it cannot be distinguished between the point A and the point B in FIG. Further, when the NOx purification performance of the catalyst is estimated based on the HC purification rate, it cannot be distinguished between the point B and the point C. From the above,
If the concentration distribution of the reactants (HC, NOx) in the catalyst is known, it is possible to accurately estimate the position of the catalyst active state in the NOx purification temperature window shown in FIG. 2 and always optimize the HC supply amount. It is possible to control and optimally control the catalyst temperature.

【0011】そこで、請求項1の発明によると、触媒状
態検出手段により触媒の内部の反応物質濃度分布を反映
した情報を検出し、その検出情報に基づいて触媒のNO
x浄化状態を浄化状態推定手段により推定し(例えばN
Ox浄化温度ウインドのA点、B点、C点かを判別
し)、推定したNOx浄化状態と運転状態検出手段の検
出情報とに基づいて触媒へのHC供給量を設定する。こ
のようにすれば、触媒状態検出手段の検出情報から触媒
のNOx浄化状態(触媒内部の反応活性分布)を推定で
きるため、触媒温度や触媒の劣化に拘らず、常に最適な
HC量を触媒に供給することができる。
Therefore, according to the first aspect of the present invention, the information reflecting the concentration distribution of the reactant inside the catalyst is detected by the catalyst state detecting means, and the NO of the catalyst is determined based on the detected information.
x The purification state is estimated by the purification state estimation means (for example, N
It is determined whether point A, point B or point C of the Ox purification temperature window), and the amount of HC supply to the catalyst is set based on the estimated NOx purification state and the detection information of the operating state detecting means. This makes it possible to estimate the NOx purification state of the catalyst (reaction distribution inside the catalyst) from the detection information of the catalyst state detection means, so that the optimum amount of HC is always used for the catalyst regardless of the catalyst temperature or the deterioration of the catalyst. Can be supplied.

【0012】この場合、請求項2のように、浄化状態推
定手段により推定したNOx浄化状態に基づいて触媒温
度調整手段により触媒温度をNOx浄化率を高める方向
に調整するようにしても良い。例えば、触媒の反応活性
が低い場合(NOx浄化温度ウインドの低温側)では、
触媒を昇温して触媒の反応活性を増加させ、逆に触媒の
反応活性が高い場合(NOx浄化温度ウインドの高温
側)では、触媒を降温して触媒の反応活性を減少させ
て、NOx浄化率を向上させる。
In this case, the catalyst temperature may be adjusted by the catalyst temperature adjusting means in a direction to increase the NOx purification rate based on the NOx purification state estimated by the purification state estimating means. For example, when the reaction activity of the catalyst is low (low temperature side of the NOx purification temperature window),
When the temperature of the catalyst is raised to increase the reaction activity of the catalyst, and conversely, when the reaction activity of the catalyst is high (higher side of the NOx purification temperature window), the temperature of the catalyst is decreased to decrease the reaction activity of the catalyst, thereby purifying NOx. Improve rate.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施形態(1)]以下、本発明の実施形態(1)を図
1乃至図7に基づいて説明する。まず、図1に基づいて
システム全体の構成を説明する。内燃機関であるディー
ゼルエンジン11の吸気管10には、吸入空気量を測定
するエアーフローセンサ16が設置されている。一方、
排気管12(排ガス通路)の途中には、排気中の窒素酸
化物(NOx)を還元浄化するNOx触媒13が設けら
れ、このNOx触媒13の中央側と下流側には、それぞ
れ排気中のNOx濃度を検出するNOxセンサ14,1
5(窒素酸化物センサ)が設置されている。これら両N
Oxセンサ14,15は、NOx触媒13の内部の反応
物質濃度分布であるNOx濃度分布を検出する触媒状態
検出手段として用いられる。
[Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS. First, the configuration of the entire system will be described with reference to FIG. An air flow sensor 16 for measuring the amount of intake air is provided in an intake pipe 10 of a diesel engine 11 which is an internal combustion engine. on the other hand,
In the middle of the exhaust pipe 12 (exhaust gas passage), a NOx catalyst 13 for reducing and purifying nitrogen oxides (NOx) in the exhaust gas is provided. NOx sensor 14, 1 for detecting concentration
5 (nitrogen oxide sensors) are provided. These two N
The Ox sensors 14 and 15 are used as catalyst state detecting means for detecting a NOx concentration distribution which is a concentration distribution of a reactant inside the NOx catalyst 13.

【0014】上記NOx触媒13の上流側には、NOx
触媒13に還元剤として炭化水素(軽油等の燃料)を供
給するHC供給装置17(炭化水素供給手段)が設けら
れている。このHC供給装置17には、燃料噴射ポンプ
18から中圧燃料配管19を介して燃料が供給される。
燃料噴射ポンプ18は、ディーゼルエンジン11の動力
を駆動源とし、燃料タンク(図示せず)から吸い込んだ
燃料を高圧化して高圧燃料配管20を介してディーゼル
エンジン11の各気筒の燃料噴射ノズル21に供給し、
各燃料噴射ノズル21から燃料を各気筒内に噴射して燃
焼させる。
On the upstream side of the NOx catalyst 13, NOx
An HC supply device 17 (hydrocarbon supply means) for supplying a hydrocarbon (fuel such as light oil) as a reducing agent to the catalyst 13 is provided. Fuel is supplied to the HC supply device 17 from a fuel injection pump 18 via a medium-pressure fuel pipe 19.
The fuel injection pump 18 uses the power of the diesel engine 11 as a drive source, increases the pressure of fuel sucked from a fuel tank (not shown), and supplies the fuel to a fuel injection nozzle 21 of each cylinder of the diesel engine 11 via a high-pressure fuel pipe 20. Supply,
Fuel is injected from each fuel injection nozzle 21 into each cylinder and burned.

【0015】また、ディーゼルエンジン11の排気管1
2と吸気管10との間には、排気ガスの一部を吸気管1
0に還流させるEGR配管23が接続され、このEGR
配管23の途中にEGRバルブ24が設けられている。
このEGRバルブ24は、制御バルブ25によりバルブ
開度が可変され、その開度調整によりEGR配管23を
通過するEGRガス量を制御する。制御バルブ25はエ
ンジン運転状態に応じて制御回路26により制御され
る。
The exhaust pipe 1 of the diesel engine 11
A part of exhaust gas is supplied between the intake pipe 1 and the intake pipe 10.
The EGR pipe 23 for returning to 0 is connected.
An EGR valve 24 is provided in the middle of the pipe 23.
The opening of the EGR valve 24 is varied by a control valve 25, and the amount of EGR gas passing through the EGR pipe 23 is controlled by adjusting the opening. The control valve 25 is controlled by a control circuit 26 in accordance with the operating state of the engine.

【0016】制御回路26は、マイクロコンピュータを
主体として構成され、アクセルセンサ27、エンジン回
転数センサ28等の運転状態検出手段から出力されるエ
ンジン運転状態の情報とNOxセンサ14,15から出
力されるNOx濃度の情報を読み込み、これらの情報に
基づいて後述する図6の触媒活性制御プログラムによっ
てNOx触媒13へのHC供給量を算出し、それに応じ
てHC供給装置17を制御する制御手段として機能す
る。また、この制御回路26は、触媒温度調整手段とし
ての役割も果たし、推定した触媒の温度状態(活性状
態)に応じて、燃料噴射時期を進角、遅角したり、EG
R流量を増減補正することで排気温度を昇温又は降温さ
せて触媒温度を制御する。
The control circuit 26 is mainly composed of a microcomputer, and outputs information on the engine operating state output from operating state detecting means such as an accelerator sensor 27 and an engine speed sensor 28 and the NOx sensors 14 and 15. It reads the information of the NOx concentration, calculates the amount of HC supply to the NOx catalyst 13 by the catalyst activation control program of FIG. 6 described later based on the information, and functions as a control unit that controls the HC supply device 17 accordingly. . Further, the control circuit 26 also functions as a catalyst temperature adjusting unit, and advances or retards the fuel injection timing or adjusts the EG according to the estimated catalyst temperature state (active state).
By increasing or decreasing the R flow rate, the exhaust gas temperature is raised or lowered to control the catalyst temperature.

【0017】以下、この制御回路26によって実行され
る図6の触媒活性制御プログラムの処理内容を説明す
る。本プログラムは、所定時間毎又は所定クランク角毎
に実行される。本プログラムが起動されると、まずステ
ップ101で、アクセルセンサ27とエンジン回転数セ
ンサ28とエアーフローセンサ16から出力される各信
号を読み込む。この後、ステップ102で、アクセルセ
ンサ27とエンジン回転数センサ28の出力信号に基づ
いてディーゼルエンジン11から排出されるNOx濃
度、つまり、NOx触媒13に流入する排気ガス(触媒
入ガス)のNOx濃度S1 と、該触媒入ガスのNOx量
を算出する。
Hereinafter, the processing content of the catalyst activation control program of FIG. 6 executed by the control circuit 26 will be described. This program is executed every predetermined time or every predetermined crank angle. When the program is started, first, in step 101, signals output from the accelerator sensor 27, the engine speed sensor 28, and the air flow sensor 16 are read. Thereafter, in step 102, the NOx concentration discharged from the diesel engine 11 based on the output signals of the accelerator sensor 27 and the engine speed sensor 28, that is, the NOx concentration of the exhaust gas (catalyst-containing gas) flowing into the NOx catalyst 13. S1 and the NOx amount of the gas entering the catalyst are calculated.

【0018】この後、ステップ103で、触媒中央側の
NOxセンサ14の信号S2 (触媒中央側のNOx濃
度)と下流側NOxセンサ15の信号S3 (下流側NO
x濃度)を読み込む。次のステップ104で、NOx触
媒13のNOx浄化率を、 NOx浄化率=(S1 −S3 )/S1 の式で算出し、更に、S2 一S3 なる式で、NOx触媒
13内部の下流側部分のNOx濃度変化(分布)を算出
する。
Thereafter, at step 103, the signal S2 (NOx concentration at the catalyst center side) of the NOx sensor 14 at the center of the catalyst and the signal S3 (NO at the downstream side) of the NOx sensor 15 at the downstream side.
x density). In the next step 104, the NOx purification rate of the NOx catalyst 13 is calculated by the following equation: NOx purification rate = (S1-S3) / S1. The NOx concentration change (distribution) is calculated.

【0019】次に、ステップ105に進み、上記ステッ
プ104で算出したNOx浄化率とNOx触媒13内部
の下流側部分のNOx濃度変化に基づいて、NOx触媒
13のNOx浄化状態、つまり触媒活性状態を推定す
る。このステップ105の処理が特許請求の範囲でいう
浄化状態推定手段としての役割を果たす。ここで、触媒
活性状態の推定方法を図7を用いて説明する。図7は触
媒活性状態に対するNOx浄化率と基準NOx排出量時
のHC基準供給量を示している。HC基準供給量は、N
Ox浄化特性から適合され、NOx浄化率が高い時はH
C供給量を大きくし、NOx浄化率が低い時はHC供給
量を小さくするように設定されている。例えば、ステッ
プ104で算出したNOx浄化率が図7のMであるとす
ると、このNOx浄化率Mに対応する触媒活性状態D
点,E点を現在の触媒活性状態として求める。この後、
NOx触媒13内部の下流側部分のNOx濃度変化に基
づいて現在の触媒活性状態がD点かE点かを判別する。
この判別法は、図3から図5で説明したように、NOx
触媒13内部の下流側部分のNOx濃度変化が大きけれ
ば、触媒活性状態はNOx浄化温度ウインドの中央にあ
り、NOx濃度変化が小さければ、NOx浄化温度ウイ
ンドの低温側にあり、NOx濃度変化が極めて小さくほ
ぼゼロであれば、NOx浄化温度ウインドの高温側にあ
ると判断する。
Next, the routine proceeds to step 105, where the NOx purification state of the NOx catalyst 13, that is, the catalyst activation state, is determined based on the NOx purification rate calculated in step 104 and the NOx concentration change in the downstream portion inside the NOx catalyst 13. presume. The processing of step 105 plays a role as a purification state estimating means referred to in the claims. Here, a method of estimating the catalyst activation state will be described with reference to FIG. FIG. 7 shows the NOx purification rate with respect to the catalyst activation state and the HC reference supply amount at the time of the reference NOx emission amount. The HC reference supply amount is N
It is adapted from the Ox purification characteristics, and when the NOx purification rate is high, H
The C supply amount is set to be large, and the HC supply amount is set to be small when the NOx purification rate is low. For example, if the NOx purification rate calculated in step 104 is M in FIG. 7, the catalyst activation state D corresponding to the NOx purification rate M
Points E and E are determined as the current catalyst activation state. After this,
Based on the NOx concentration change in the downstream portion inside the NOx catalyst 13, it is determined whether the current catalyst activation state is point D or point E.
As described with reference to FIG. 3 to FIG.
If the NOx concentration change in the downstream portion inside the catalyst 13 is large, the catalyst activation state is at the center of the NOx purification temperature window, and if the NOx concentration change is small, it is on the low temperature side of the NOx purification temperature window, and the NOx concentration change is extremely small. If it is small and almost zero, it is determined that the temperature is on the high temperature side of the NOx purification temperature window.

【0020】以上のようにして、ステップ105で、N
Ox浄化率とNOx触媒13内部の下流側部分のNOx
濃度変化に基づいて触媒活性状態を推定し、その結果、
NOx浄化温度ウインドの低温側(D点)と判断した場
合は、ステップ106に進み、HC基準供給量を図7の
特性から算出すると共に、NOx触媒13を昇温する指
令を出力し、ステップ109に進む。ここで、NOx触
媒13を昇温する手段としては、例えば燃料噴射時期を
遅角したり、EGR流量を増量すれば良い。
As described above, in step 105, N
Ox purification rate and NOx in the downstream portion inside the NOx catalyst 13
The catalyst activation state is estimated based on the concentration change, and as a result,
If it is determined that the temperature is on the low temperature side (point D) of the NOx purification temperature window, the process proceeds to step 106, where the HC reference supply amount is calculated from the characteristics shown in FIG. 7, and a command to raise the temperature of the NOx catalyst 13 is output. Proceed to. Here, as means for raising the temperature of the NOx catalyst 13, for example, the fuel injection timing may be retarded or the EGR flow rate may be increased.

【0021】一方、ステップ105でNOx浄化温度ウ
インドの中央と判断した場合は、ステップ108に進
み、HC基準供給量を図7の特性から算出し、ステップ
109に進む。また、NOx浄化温度ウインドの高温側
(E点)と判断した場合は、ステップ107に進み、H
C基準供給量を図7の特性から算出すると共に、触媒を
降温する指令を出力し、ステップ109に進む。ここ
で、触媒を降温する手段としては、例えば燃料噴射時期
を進角したり、EGR流量を減量すれば良い。
On the other hand, if it is determined in step 105 that the temperature is at the center of the NOx purification temperature window, the routine proceeds to step 108, where the reference HC supply amount is calculated from the characteristics shown in FIG. On the other hand, if it is determined that the temperature is on the high temperature side (point E) of the NOx purification temperature window, the routine proceeds to step 107, where H
The C reference supply amount is calculated from the characteristics shown in FIG. 7, and a command to lower the temperature of the catalyst is output. Here, as a means for lowering the temperature of the catalyst, for example, the fuel injection timing may be advanced or the EGR flow rate may be reduced.

【0022】そして、次のステップ109では、ステッ
プ106〜108で算出したHC基準供給量にステップ
102で算出したNOx量を乗算してHC供給量を算出
し、その指令値をHC供給装置17に出力してNOx触
媒13に適量のHCを供給する。ここで、NOx量を乗
算してHC供給量を算出するのは、NOx量が多いほど
HC供給量を多くして、NOx浄化率を高めるためであ
る。
In the next step 109, the HC supply amount is calculated by multiplying the HC reference supply amount calculated in steps 106 to 108 by the NOx amount calculated in step 102, and the command value is sent to the HC supply device 17. Then, an appropriate amount of HC is supplied to the NOx catalyst 13. Here, the reason why the HC supply amount is calculated by multiplying the NOx amount is to increase the HC supply amount and increase the NOx purification rate as the NOx amount increases.

【0023】以上説明した実施形態(1)では、NOx
触媒13内部の反応物質濃度を検出するためにNOxセ
ンサを用いたが、NOxセンサに代えて、HCセンサ
(炭化水素センサ)を用いても良い。この場合、ステッ
プ105で触媒活性状態を推定する時に、HC浄化率が
低い場合はNOx浄化温度ウインドの低温側であると判
断し、HC浄化率が高い(100%に近い)場合は、ま
ずNOx浄化温度ウインドの中央又は高温側であると判
断し、次に、NOx触媒13内部の下流側部分のHC濃
度変化の大きさに応じて触媒活性を決定する。つまり、
HC濃度変化が大きければNOx浄化温度ウインドの中
央であり、HC濃度変化が小さくなるほどNOx浄化温
度ウインドのより高温側であると判断する。
In the embodiment (1) described above, NOx
Although the NOx sensor is used to detect the concentration of the reactant inside the catalyst 13, an HC sensor (hydrocarbon sensor) may be used instead of the NOx sensor. In this case, when estimating the catalyst activation state in step 105, when the HC purification rate is low, it is determined that the temperature is on the low temperature side of the NOx purification temperature window, and when the HC purification rate is high (close to 100%), first, NOx It is determined that the temperature is the center or the high temperature side of the purification temperature window, and then the catalytic activity is determined according to the magnitude of the change in the HC concentration in the downstream portion inside the NOx catalyst 13. That is,
If the change in HC concentration is large, it is determined to be the center of the NOx purification temperature window, and the smaller the change in HC concentration is, the higher the temperature of the NOx purification temperature window is.

【0024】このようにすれば、NOx触媒13内部、
特に下流側部分の反応物質濃度分布を検出することで、
NOx触媒13の活性状態を精度良く推定できる。これ
により、NOx触媒13に温度分布がある場合でも、最
適なHC供給量制御や触媒温度制御が可能になり、NO
x触媒13全体の浄化能力を有効に活用でき、HC、N
Oxの排出量を効果的に低減できる。
By doing so, the inside of the NOx catalyst 13
Especially by detecting the reactant concentration distribution in the downstream part,
The activation state of the NOx catalyst 13 can be accurately estimated. As a result, even when the NOx catalyst 13 has a temperature distribution, it is possible to perform optimal HC supply amount control and catalyst temperature control,
The purification capacity of the entire x-catalyst 13 can be effectively utilized, and HC, N
Ox emissions can be effectively reduced.

【0025】尚、本実施形態(1)では、NOxセンサ
14(HCセンサ)をNOx触媒13の中央付近に設置
したが、例えば、NOx触媒13内部の中央よりやや下
流側の部位にNOxセンサ(HCセンサ)を設置しても
良く、また、NOx触媒13の内部に2個以上のNOx
センサ(HCセンサ)を設置しても良い。 [実施形態(2)]上記実施形態(1)では、NOx触
媒13内部の下流側部分のNOx濃度をNOxセンサ1
4,15で検出して触媒活性状態(NOx浄化状態)を
推定したが、図8乃至図11に示す本発明の実施形態
(2)では、NOx触媒13の下流側に、NOxセンサ
15に代えて、HCセンサ30を設置し、このHCセン
サ30によってNOx触媒13の出口のHC濃度を検出
して触媒活性状態を推定する。これは、図1から図4で
説明したように、NOx触媒13の出口で丁度HCが無
くなる状態が最もNOx浄化率が高くなることに着眼
し、この状態になるようHC供給量や触媒温度を制御す
るものである。
In this embodiment (1), the NOx sensor 14 (HC sensor) is installed near the center of the NOx catalyst 13. For example, the NOx sensor (HC sensor) HC sensor), and two or more NOx
A sensor (HC sensor) may be provided. [Embodiment (2)] In the embodiment (1), the NOx concentration in the downstream portion inside the NOx catalyst 13 is measured by the NOx sensor 1.
Although the catalyst activation state (NOx purification state) is estimated by detecting at steps 4 and 15, in the embodiment (2) of the present invention shown in FIGS. 8 to 11, the NOx sensor 15 is provided downstream of the NOx catalyst 13. Then, the HC sensor 30 is installed, and the HC concentration at the outlet of the NOx catalyst 13 is detected by the HC sensor 30 to estimate the catalyst activation state. As described with reference to FIGS. 1 to 4, this focuses on the fact that the NOx purification rate is highest when the HC is just removed at the outlet of the NOx catalyst 13, and the HC supply amount and the catalyst temperature are adjusted so as to achieve this state. To control.

【0026】本実施形態(2)では、図8に示すよう
に、NOx触媒13の下流側にHCセンサ30を設置す
ると共に、NOx触媒13の上流側に排気温度センサ3
1(触媒温度判定手段に相当)を設置し、上記実施形態
(1)で用いた触媒中央側のNOxセンサ14は設けら
れていない。これ以外のシステム構成は、前述した実施
形態(1)と同じである。
In this embodiment (2), as shown in FIG. 8, an HC sensor 30 is installed downstream of the NOx catalyst 13 and an exhaust gas temperature sensor 3 is installed upstream of the NOx catalyst 13.
1 (corresponding to catalyst temperature determination means), and the NOx sensor 14 on the center side of the catalyst used in the embodiment (1) is not provided. The rest of the system configuration is the same as the above-described embodiment (1).

【0027】以下、本実施形態(2)で実行する図9及
び図10の触媒活性制御プログラムの処理内容を説明す
る。本プログラムも、所定時間毎又は所定クランク角毎
に実行される。本プログラムが起動されると、まずステ
ップ201で、アクセルセンサ27、エンジン回転数セ
ンサ28、エアーフローセンサ16及びHCセンサ30
から出力される各信号を読み込む。そして、次のステッ
プ202で、アクセルセンサ27とエンジン回転数セン
サ28の出力信号に基づいてディーゼルエンジン11か
らのNOx排出量、つまり、触媒入ガスのNOx量を算
出する。
Hereinafter, processing contents of the catalyst activity control program of FIGS. 9 and 10 executed in the embodiment (2) will be described. This program is also executed at every predetermined time or every predetermined crank angle. When this program is started, first, in step 201, the accelerator sensor 27, the engine speed sensor 28, the air flow sensor 16, and the HC sensor 30
Read each signal output from. Then, in the next step 202, the NOx emission amount from the diesel engine 11, that is, the NOx amount of the catalyst input gas is calculated based on the output signals of the accelerator sensor 27 and the engine speed sensor 28.

【0028】この後、ステップ203で、排気温度セン
サ31の出力信号(排気温度)を読み込んだ後、ステッ
プ204で、排気温度センサ31の出力信号からおおよ
その触媒活性状態(触媒温度)を推定し、現在の触媒活
性状態がNOx浄化温度ウインドの低温側か、中央か、
高温側かを判別する。このステップ204で、NOx浄
化温度ウインドの低温側と判断した場合は、ステップ2
05に進み、HCセンサ30の出力(触媒出口のHC濃
度)を所定範囲と比較する。ここで、所定範囲とは、供
給するHC濃度に対して十分に小さな範囲であり、且
つ、ゼロより大きな値であり、例えば、供給するHC濃
度の2%から10%に設定するのが望ましい。これは、
所定範囲を2%以下にすると、図2において最高NOx
浄化率となるB点かNOx浄化率が低下したC点かが判
別できないからである。また、所定範囲を10%以上に
すると、NOx触媒13から排出される未燃のHCが多
くなるためである。
Thereafter, in step 203, the output signal (exhaust gas temperature) of the exhaust gas temperature sensor 31 is read, and then in step 204, the approximate catalyst activation state (catalyst temperature) is estimated from the output signal of the exhaust gas temperature sensor 31. Whether the current catalyst activation state is the low side or the center of the NOx purification temperature window,
Determine if it is on the high temperature side. If it is determined in step 204 that the temperature is on the low temperature side of the NOx purification temperature window, step 2 is executed.
In step 05, the output of the HC sensor 30 (HC concentration at the catalyst outlet) is compared with a predetermined range. Here, the predetermined range is a range sufficiently smaller than the supplied HC concentration, and is a value larger than zero. For example, it is desirable to set the HC concentration to be 2% to 10% of the supplied HC concentration. this is,
When the predetermined range is set to 2% or less, the highest NOx in FIG.
This is because it cannot be determined whether the point B is the purification rate or the point C at which the NOx purification rate has decreased. Further, if the predetermined range is set to 10% or more, unburned HC discharged from the NOx catalyst 13 increases.

【0029】このステップ205で、HCセンサ30の
出力(触媒出口のHC濃度)が所定範囲より小さいと判
断した場合は、NOx触媒13の活性が高く、供給した
HCがNOx触媒13の途中までで全て消費され、NO
x触媒13内部の下流側部分にはHCが到達しない場合
に相当する。この場合は、ステップ206に進み、HC
基準供給量HC0 を増量補正し、ステップ208に進
む。
If it is determined in step 205 that the output of the HC sensor 30 (HC concentration at the catalyst outlet) is smaller than the predetermined range, the activity of the NOx catalyst 13 is high, and the supplied HC reaches a point in the middle of the NOx catalyst 13. All consumed, NO
This corresponds to the case where HC does not reach the downstream portion inside the x catalyst 13. In this case, the routine proceeds to step 206, where HC
The reference supply amount HC0 is increased and corrected, and the routine proceeds to step 208.

【0030】これに対し、ステップ205で、HCセン
サ30の出力が所定範囲内と判断した場合は、供給した
HCが丁度触媒出口で無くなる最もNOx浄化率が高い
場合に相当する。この場合は、現在のHC基準供給量H
C0 を変更する必要がないので、そのままステップ20
8に進む。また、ステップ205で、HCセンサ30の
出力が所定範囲より大きいと判断した場合は、NOx触
媒13の活性が低く、供給したHCの一部がNOx浄化
に使われず、未燃のまま排出されている場合に相当す
る。この場合は、ステップ207に進み、HC基準供給
量HC0 を減量補正し、ステップ208に進む。
On the other hand, when it is determined in step 205 that the output of the HC sensor 30 is within the predetermined range, it corresponds to the case where the supplied HC is just at the catalyst outlet and the NOx purification rate is the highest. In this case, the current HC reference supply amount H
Since there is no need to change C0, step 20
Proceed to 8. If it is determined in step 205 that the output of the HC sensor 30 is larger than the predetermined range, the activity of the NOx catalyst 13 is low, and a part of the supplied HC is not used for NOx purification and is discharged unburned. Is equivalent to In this case, the routine proceeds to step 207, in which the reference HC supply amount HC0 is corrected to decrease, and the routine proceeds to step 208.

【0031】このステップ208では、HC供給量の指
令値をHC基準供給量HC0を中心に所定量(±HC1
)変動させてHC供給装置17に出力すると共に、燃
料噴射時期の遅角補正又はEGR流量の増量補正により
排気温度(触媒温度)を昇温し、本プログラムを終了す
る。ここで、HC供給量を所定量変動させるのは、NO
x触媒13の出口でHC濃度がゼロなのか、微量のHC
があるのかを精度良く判別するためである。
In step 208, the command value of the HC supply amount is set to a predetermined amount (± HC1) around the HC reference supply amount HC0.
) The output is varied and output to the HC supply device 17, and at the same time, the exhaust gas temperature (catalyst temperature) is raised by the retard correction of the fuel injection timing or the increase correction of the EGR flow rate, and this program ends. Here, the reason why the HC supply amount is fluctuated by a predetermined amount is NO.
x Whether the HC concentration at the outlet of the catalyst 13 is zero
This is for accurately determining whether there is any.

【0032】一方、前述したステップ204で、NOx
浄化温度ウインドの中央と判断した場合には、図10の
ステップ209に進み、HCセンサ30の出力(触媒出
口のHC濃度)を所定範囲と比較する。このステップ2
09で所定範囲より小さいと判断した場合は、NOx触
媒13の活性が高く、供給したHCがNOx触媒13の
途中までで全て消費され、NOx触媒13内部の下流側
部分にはHCが到達しない場合に相当する。この場合に
は、ステップ210に進み、HC基準供給量HC0 を増
量補正し、ステップ212に進む。
On the other hand, in step 204 described above, NOx
If it is determined that the temperature is in the center of the purification temperature window, the process proceeds to step 209 in FIG. 10, and the output of the HC sensor 30 (HC concentration at the catalyst outlet) is compared with a predetermined range. This step 2
If it is determined in step 09 that the NOx catalyst 13 is smaller than the predetermined range, the activity of the NOx catalyst 13 is high, the supplied HC is consumed up to the middle of the NOx catalyst 13, and the HC does not reach the downstream portion inside the NOx catalyst 13. Is equivalent to In this case, the routine proceeds to step 210, where the reference HC supply amount HC0 is increased and corrected, and the routine proceeds to step 212.

【0033】これに対し、ステップ209で、HCセン
サ30の出力が所定範囲内と判断した場合は、供給した
HCが丁度触媒出口でなくなる最もNOx浄化率が高い
場合に相当し、そのままステップ212に進む。また、
ステップ209で、HCセンサ30の出力が所定範囲よ
り大きいと判断した場合は、NOx触媒13の活性が低
く、供給したHCの一部がNOx浄化に使われず、未燃
のまま排出されている場合に相当する。この場合は、ス
テップ211に進み、HC基準供給量HC0 を減量補正
し、ステップ212に進む。
On the other hand, if it is determined in step 209 that the output of the HC sensor 30 is within the predetermined range, it corresponds to the case where the supplied HC is just at the catalyst outlet and the NOx purification rate is the highest. move on. Also,
If it is determined in step 209 that the output of the HC sensor 30 is larger than the predetermined range, the activity of the NOx catalyst 13 is low, and a part of the supplied HC is not used for NOx purification and is discharged unburned. Is equivalent to In this case, the routine proceeds to step 211, where the HC reference supply amount HC0 is reduced and corrected, and the routine proceeds to step 212.

【0034】このステップ212では、HC供給量の指
令値をHC基準供給量HC0 を中心に所定量(±HC1
)変動させてHC供給装置17に出力し、本プログラ
ムを終了する。一方、前述したステップ204で、NO
x浄化温度ウインドの高温側と判断した場合は、ステッ
プ213に進み、排気温度センサ31の出力信号とディ
ーゼルエンジン11からのNOx排出量とに基づいてH
C基準供給量HC0 を算出する。この後、ステップ21
4で、HC供給量の指令値をHC基準供給量HC0 を中
心に所定量(±HC1 )変動させてHC供給装置17に
出力すると共に、燃料噴射時期の進角補正又はEGR流
量の減量補正により排気温度(触媒温度)を降温し、本
プログラムを終了する。
In step 212, the command value of the HC supply amount is set to a predetermined amount (± HC1) around the HC reference supply amount HC0.
) Fluctuate and output to the HC supply device 17 and end this program. On the other hand, in step 204 described above,
If it is determined that the temperature is higher than the x purification temperature window, the process proceeds to step 213, where H is determined based on the output signal of the exhaust temperature sensor 31 and the NOx emission amount from the diesel engine 11.
The C reference supply amount HC0 is calculated. After this, step 21
In step 4, the command value of the HC supply amount is varied by a predetermined amount (± HC1) around the HC reference supply amount HC0 and output to the HC supply device 17, and the fuel injection timing is advanced or the EGR flow rate is reduced. The temperature of the exhaust gas (catalyst temperature) is lowered, and this program ends.

【0035】以上説明した触媒活性制御プログラムによ
る制御例を図11に示すタイムチャートを用いて説明す
る。時間Fでは、HCセンサ30の出力(触媒出口のH
C濃度)が所定範囲内になるようHC供給量が制御され
ている。この状態からエンジン負荷が低下して排気温度
が低下すると、触媒温度が徐々に低下して触媒活性も低
下していく。そのため、NOx触媒13の出口では未燃
のHCが増加し、HCセンサ30の出力は増加して所定
範囲を越える。このとき、触媒活性状態はNOx浄化温
度ウインドの低温側にあるので、HC供給量は減量補正
され、それに応じてHCセンサ30の出力が低下し、時
間Gで所定範囲内になるようHC供給量が制御される。
An example of control by the above-described catalyst activity control program will be described with reference to a time chart shown in FIG. At time F, the output of the HC sensor 30 (H at the catalyst outlet)
(C concentration) is controlled within a predetermined range. When the engine load decreases and the exhaust gas temperature decreases from this state, the catalyst temperature gradually decreases and the catalyst activity also decreases. Therefore, unburned HC increases at the outlet of the NOx catalyst 13, and the output of the HC sensor 30 increases to exceed a predetermined range. At this time, since the catalyst activation state is on the lower temperature side of the NOx purification temperature window, the HC supply amount is corrected to be reduced, and the output of the HC sensor 30 is reduced accordingly. Is controlled.

【0036】次に、時間Hで、エンジン負荷が増加し
て、排気温度が昇温すると、触媒温度が徐々に昇温して
触媒活性も増加していく。そのため、NOx触媒13の
出口では未燃のHCがほぼゼロになり、HCセンサ30
の出力は低下して所定範囲を下回る。このとき、触媒活
性状態はNOx浄化温度ウインドの中央にあるので、H
C供給量は増量補正され、それに応じてHCセンサ30
の出力が増加し、時間Iで所定範囲内になるようHC供
給量が制御される。
Next, at time H, when the engine load increases and the exhaust gas temperature rises, the catalyst temperature gradually rises and the catalyst activity also increases. Therefore, the unburned HC at the outlet of the NOx catalyst 13 becomes almost zero, and the HC sensor 30
Output falls below a predetermined range. At this time, since the catalyst activation state is at the center of the NOx purification temperature window, H
The C supply amount is increased and corrected, and the HC sensor 30
Is increased, and the HC supply amount is controlled so as to be within a predetermined range at time I.

【0037】この後、時間Jで、エンジン負荷が増加し
て、排気温度が昇温すると、触媒温度が徐々に昇温して
触媒活性も増加していく。そのため、NOx触媒13の
出口では未燃のHCがほぼゼロになり、HCセンサ30
の出力は低下して所定範囲を下回る。この状態では、触
媒活性状態はNOx浄化温度ウインドの高温側にあるの
で、排気温度センサ31の信号とディーゼルエンジン1
1からのNOx排出量とに基づいてHC供給量が算出さ
れる。このとき、HCセンサ30の出力による制御は行
われず、HCセンサ30の出力は所定範囲以下になって
いる。
Thereafter, at time J, when the engine load increases and the exhaust gas temperature rises, the catalyst temperature gradually rises and the catalyst activity also increases. Therefore, the unburned HC at the outlet of the NOx catalyst 13 becomes almost zero, and the HC sensor 30
Output falls below a predetermined range. In this state, since the catalyst activation state is on the high temperature side of the NOx purification temperature window, the signal of the exhaust temperature sensor 31 and the diesel engine 1
The HC supply amount is calculated based on the NOx emission amount from No. 1. At this time, the control based on the output of the HC sensor 30 is not performed, and the output of the HC sensor 30 is below a predetermined range.

【0038】以上説明した実施形態(2)では、ステッ
プ204で触媒活性状態を推定する手段として排気温度
センサ31を用いたが、HCセンサ30の出力信号から
HC浄化率を算出して触媒活性状態を推定しても良い。
つまり、触媒入ガスのHC濃度はエアーフローセンサ1
6の出力信号とHC基準供給量HC0 とから算出でき、
触媒出ガスのHC濃度はHCセンサ30で検出できるた
め、それらの差からHC浄化率を算出できる。HC浄化
率が算出できれば、図2に示すNOx触媒13の浄化特
性から触媒活性状態がNOx浄化温度ウインドの低温側
か中央か高温側かを判別できる。
In the embodiment (2) described above, the exhaust gas temperature sensor 31 is used as the means for estimating the catalyst activation state in step 204. However, the HC purification rate is calculated from the output signal of the HC sensor 30 to calculate the catalyst activation state. May be estimated.
In other words, the HC concentration of the gas entering the catalyst is
6 and the HC reference supply amount HC0,
Since the HC concentration of the catalyst output gas can be detected by the HC sensor 30, the HC purification rate can be calculated from the difference therebetween. If the HC purification rate can be calculated, it can be determined from the purification characteristics of the NOx catalyst 13 shown in FIG. 2 whether the catalyst activation state is on the low temperature side, the center or the high temperature side of the NOx purification temperature window.

【0039】以上により、NOx触媒13の出口のHC
濃度をHCセンサ30により検出し、このHC濃度が所
定範囲になるようにHC供給量や触媒温度を制御するこ
とによって、HC供給による燃費悪化を抑え、高いNO
x浄化浄化率を得ることができる。尚、本実施形態で
(2)では、HCセンサ30をNOx触媒13の出口に
設置したが、これをNOx触媒13内部の下流側部分
(出口に近い位置が好ましい)に設置しても良い。 [実施形態(3)]次に、図12乃至図15を用いて本
発明の実施形態(3)を説明する。前記実施形態(2)
では、NOx触媒13の上流側に排気温度センサ31を
設置し、NOx触媒13の下流側にHCセンサ30を設
置して触媒活性状態を推定して、HC供給量と触媒温度
を制御するようにしたが、本実施形態(3)では、NO
x触媒13の上流側に排気温度センサ31を設置し、N
Ox触媒13の下流側にNOxセンサ15を設置し、触
媒活性状態(NOx浄化状態)を推定して、その推定結
果に基づいてNOx触媒13の劣化を判定する。
As described above, the HC at the outlet of the NOx catalyst 13
The HC concentration is detected by the HC sensor 30 and the HC supply amount and the catalyst temperature are controlled so that the HC concentration falls within a predetermined range.
x Purification A purification rate can be obtained. In this embodiment, in (2), the HC sensor 30 is installed at the outlet of the NOx catalyst 13. However, the HC sensor 30 may be installed at the downstream side inside the NOx catalyst 13 (a position near the outlet is preferable). [Embodiment (3)] Next, an embodiment (3) of the present invention will be described with reference to FIGS. Embodiment (2)
Then, an exhaust gas temperature sensor 31 is installed on the upstream side of the NOx catalyst 13, and an HC sensor 30 is installed on the downstream side of the NOx catalyst 13, to estimate the catalyst activation state, and to control the HC supply amount and the catalyst temperature. However, in the present embodiment (3), NO
An exhaust temperature sensor 31 is installed on the upstream side of the
A NOx sensor 15 is installed downstream of the Ox catalyst 13 to estimate a catalyst activation state (NOx purification state), and determine deterioration of the NOx catalyst 13 based on the estimation result.

【0040】ここで、触媒劣化の判定方法を図14及び
図15に説明する。図14は劣化していないNOx触媒
のHC供給濃度に対するNOx浄化特性を示し、図15
は劣化したNOx触媒のHC供給濃度に対するNOx浄
化特性を示す。NOx浄化率は、触媒温度とHC供給濃
度と触媒の劣化度合により変化する。図14に示すよう
に、劣化していないNOx触媒は、NOx浄化温度ウイ
ンド内であれば、HC供給濃度を増加させるとNOx浄
化率の変化が大きくなるのに対し、図15に示すよう
に、劣化したNOx触媒は、NOx浄化温度ウインド内
で、HC供給濃度を増加させてもNOx浄化率の変化が
小さい。従って、触媒活性がNOx浄化温度ウインド内
にある時に、触媒温度が変化しない短時間にHC供給濃
度を変化させ、その時のNOx浄化率の変化からNOx
触媒の劣化度合を判定することができる。
Here, a method of determining catalyst deterioration will be described with reference to FIGS. FIG. 14 shows the NOx purification characteristics with respect to the HC supply concentration of the undegraded NOx catalyst.
Shows NOx purification characteristics with respect to the HC supply concentration of the deteriorated NOx catalyst. The NOx purification rate changes depending on the catalyst temperature, the HC supply concentration, and the degree of deterioration of the catalyst. As shown in FIG. 14, the NOx catalyst that has not deteriorated has a large change in the NOx purification rate when the HC supply concentration is increased within the NOx purification temperature window, whereas, as shown in FIG. The deteriorated NOx catalyst has a small change in the NOx purification rate even when the HC supply concentration is increased within the NOx purification temperature window. Therefore, when the catalyst activity is within the NOx purification temperature window, the HC supply concentration is changed in a short time when the catalyst temperature does not change, and the change in the NOx purification rate at that time is used to determine the NOx.
The degree of deterioration of the catalyst can be determined.

【0041】以下、本実施形態(3)で実行する図13
の触媒活性制御プログラムの処理内容を説明する。本プ
ログラムも、所定時間毎又は所定クランク角毎に実行さ
れる。本プログラムが起動されると、まずステップ30
1で、アクセルセンサ27、エンジン回転数センサ2
8、エアーフローセンサ16及び排気温度センサ31か
ら出力される各信号を読み込む。この後、ステップ30
2で、アクセルセンサ27とエンジン回転数センサ28
の出力信号に基づいてディーゼルエンジン11から排出
されるNOx濃度、つまり、触媒入ガスのNOx濃度S
1 と、該触媒入ガスのNOx量を算出する。
Hereinafter, FIG. 13 executed in the embodiment (3) will be described.
Of the catalyst activity control program will be described. This program is also executed at every predetermined time or every predetermined crank angle. When this program is started, first, in step 30
1, the accelerator sensor 27, the engine speed sensor 2
8. Each signal output from the air flow sensor 16 and the exhaust temperature sensor 31 is read. After this, step 30
2, the accelerator sensor 27 and the engine speed sensor 28
NOx concentration that is discharged from the diesel engine 11 based on the output signal of the
1 and the NOx amount of the catalyst-containing gas are calculated.

【0042】この後、ステップ303で、触媒入ガスの
NOx量と排気温度センサ31の出力信号に基づいてH
C供給量を算出し、その指令値をHC供給装置17に出
力する。次のステップ304で、NOxセンサ15の出
力信号、つまり、触媒出口のNOx濃度S2 を読み込ん
だ後、ステップ305で、NOx浄化率η1 を、 NOx浄化率η1 =(S1 −S2 )/S1 の式で算出する。
Thereafter, at step 303, H is determined based on the NOx amount of the gas entering the catalyst and the output signal of the exhaust gas temperature sensor 31.
The C supply amount is calculated, and the command value is output to the HC supply device 17. In step 304, the output signal of the NOx sensor 15, that is, the NOx concentration S2 at the catalyst outlet, is read. In step 305, the NOx purification rate η1 is calculated by the following equation: NOx purification rate η1 = (S1-S2) / S1. Is calculated by

【0043】そして、次のステップ306で、排気温度
センサ31の出力信号とNOx浄化率η1 とに基づいて
触媒活性状態を推定し、現在の触媒活性状態がNOx浄
化温度ウインド内であるか否かを判定する。このステッ
プ306で、現在の触媒活性状態がNOx浄化温度ウイ
ンド内と判断した場合は、ステップ307に進み、HC
供給量を増量補正し、その指令値をHC供給装置17に
出力する。この後、ステップ308で、再度、NOxセ
ンサ15の出力信号S3 を読み込み、続くステップ30
9で、HC供給量増量補正後のNOx浄化率η2 を、 NOx浄化率η2 =(S1 −S3 )/S1 の式で算出する。
In the next step 306, the catalyst activation state is estimated based on the output signal of the exhaust gas temperature sensor 31 and the NOx purification rate η1, and whether or not the current catalyst activation state is within the NOx purification temperature window is determined. Is determined. If it is determined in this step 306 that the current catalyst activation state is within the NOx purification temperature window, the routine proceeds to step 307, where HC is determined.
The supply amount is increased and corrected, and the command value is output to the HC supply device 17. Thereafter, at step 308, the output signal S3 of the NOx sensor 15 is read again, and at step 30
In step 9, the NOx purification rate η2 after the correction of the increase in the HC supply amount is calculated by the following equation: NOx purification rate η2 = (S1 -S3) / S1.

【0044】この後、ステップ310で、HC供給量増
量補正前後でのNOx浄化率の変化量(η2 −η1 )を
算出して、これを予め設定された劣化判定値と比較す
る。このステップ310で、NOx浄化率の変化量が劣
化判定値未満になった場合は、ステップ311に進み、
触媒劣化と判定して警告クランプ等の警告手段(図示せ
ず)に警告信号を出力し、本プログラムを終了する。ま
た、ステップ310で、NOx浄化率の変化量が劣化判
定値以上になった場合は、正常と判断し、本プログラム
を終了する。上記ステップ310の処理が特許請求の範
囲でいう触媒劣化判定手段としての役割を果たす。
Thereafter, in step 310, the amount of change in the NOx purification rate (η2−η1) before and after the correction of the increase in the HC supply amount is calculated, and is compared with a preset deterioration determination value. If it is determined in step 310 that the amount of change in the NOx purification rate is less than the deterioration determination value, the process proceeds to step 311 and
When it is determined that the catalyst has deteriorated, a warning signal is output to a warning means (not shown) such as a warning clamp, and the program ends. If it is determined in step 310 that the amount of change in the NOx purification rate is equal to or greater than the deterioration determination value, it is determined to be normal, and the program is terminated. The processing of step 310 serves as a catalyst deterioration determining means referred to in the claims.

【0045】以上の処理により、触媒活性がNOx浄化
温度ウインド内にある時に、触媒温度が変化しない短時
間にHC供給濃度を変化させ、その時のNOx浄化率の
変化から触媒の劣化度合を精度良く検出することができ
る。尚、本実施形態(3)では、触媒劣化判定のため
に、HC供給量を増量補正したが(ステップ307)、
HC供給量を減量補正しても良い。
By the above processing, when the catalyst activity is within the NOx purification temperature window, the HC supply concentration is changed in a short time when the catalyst temperature does not change, and the degree of deterioration of the catalyst is accurately determined from the change in the NOx purification rate at that time. Can be detected. In the present embodiment (3), the HC supply amount is increased and corrected to determine the catalyst deterioration (step 307).
The HC supply amount may be reduced.

【0046】また、本実施形態(3)では、NOxセン
サ15をNOx触媒13の出口に設置したが、これをN
Ox触媒13の内部の下流側部分に設置しても良い。ま
た、NOxセンサに代えて、HCセンサを設置しても良
い。また、前記各実施形態では、NOx触媒13にHC
を供給する手段として、排気管12にHC供給装置17
を設けたが、これに代え、燃料噴射ノズル21から燃料
を噴射した後の膨脹行程で、燃料噴射ノズル21から後
噴射により少量の燃料を噴射し、これをNOx触媒13
に供給するようにしても良い。
In this embodiment (3), the NOx sensor 15 is installed at the outlet of the NOx catalyst 13, but this is
The Ox catalyst 13 may be installed at a downstream portion. Further, an HC sensor may be provided instead of the NOx sensor. In each of the above embodiments, the NOx catalyst 13
As a means for supplying the HC supply device 17 to the exhaust pipe 12.
However, instead of this, in the expansion stroke after the fuel is injected from the fuel injection nozzle 21, a small amount of fuel is injected from the fuel injection nozzle 21 by post-injection, and the NOx catalyst 13
You may make it supply to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示す排気浄化システ
ム全体の構成図
FIG. 1 is a configuration diagram of an entire exhaust gas purification system showing an embodiment (1) of the present invention.

【図2】触媒温度とHC浄化率及びNOx浄化率との関
係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between a catalyst temperature, an HC purification rate, and a NOx purification rate.

【図3】図2のA点(NOx浄化温度ウインドの低温
側)での触媒内部のNOxとHCの濃度分布を示す図
FIG. 3 is a diagram showing the concentration distribution of NOx and HC inside a catalyst at point A (lower side of a NOx purification temperature window) in FIG. 2;

【図4】図2のB点(NOx浄化率が最大になるNOx
浄化温度ウインドの中央)での触媒内部のNOxとHC
の濃度分布を示す図
FIG. 4 shows a point B in FIG. 2 (NOx at which the NOx purification rate is maximized)
NOx and HC inside the catalyst at the purification temperature window (center of window)
Diagram showing the concentration distribution of

【図5】図2のC点(NOx浄化温度ウインドの高温
側)での触媒内部のNOxとHCの濃度分布を示す図
FIG. 5 is a diagram showing the concentration distribution of NOx and HC inside the catalyst at point C (the high temperature side of the NOx purification temperature window) in FIG. 2;

【図6】実施形態(1)の触媒活性制御ルーチンの処理
の流れを示すフローチャート
FIG. 6 is a flowchart showing a processing flow of a catalyst activity control routine according to the embodiment (1).

【図7】触媒活性状態とNOx浄化率、HC基準供給量
との関係を示す特性図
FIG. 7 is a characteristic diagram showing a relationship between a catalyst activation state, a NOx purification rate, and an HC reference supply amount.

【図8】本発明の実施形態(2)を示す排気浄化システ
ム全体の構成図
FIG. 8 is an overall configuration diagram of an exhaust gas purification system showing an embodiment (2) of the present invention.

【図9】実施形態(2)の触媒活性制御ルーチンの前半
部の処理の流れを示すフローチャート
FIG. 9 is a flowchart showing the flow of processing in the first half of a catalyst activity control routine according to the embodiment (2).

【図10】図9の続きのフローチャートFIG. 10 is a flowchart continued from FIG. 9;

【図11】実施形態(2)による制御例を説明するため
のタイムチャート
FIG. 11 is a time chart for explaining a control example according to the embodiment (2).

【図12】本発明の実施形態(3)を示す排気浄化シス
テム全体の構成図
FIG. 12 is an overall configuration diagram of an exhaust gas purification system showing an embodiment (3) of the present invention.

【図13】実施形態(3)の触媒活性制御ルーチンの処
理の流れを示すフローチャート
FIG. 13 is a flowchart showing a processing flow of a catalyst activity control routine of the embodiment (3).

【図14】劣化していないNOx触媒のHC供給濃度に
対するNOx浄化特性を示す図
FIG. 14 is a diagram showing NOx purification characteristics with respect to HC supply concentration of an undegraded NOx catalyst.

【図15】劣化したNOx触媒のHC供給濃度に対する
NOx浄化特性を示す図
FIG. 15 is a diagram showing NOx purification characteristics with respect to HC supply concentration of a deteriorated NOx catalyst.

【符号の説明】[Explanation of symbols]

11 ディーゼルエンジン(内燃機関) 12 排気管(排ガス通路) 13 触媒 14,15 NOxセンサ(触媒状態検出手段) 17 HC供給装置(炭化水素供給手段) 18 燃料噴射ポンプ 21 燃料噴射ノズル 23 EGR配管 24 EGRバルブ 25 制御バルブ 26 制御回路(制御手段,浄化状態推定手段,触媒温
度調整手段,触媒劣化判定手段) 27 アクセルセンサ(運転状態検出手段 28 エンジン回転数センサ(運転状態検出手段) 30 HCセンサ(触媒状態検出手段) 31 排気温度センサ(触媒温度判定手段)。
Reference Signs List 11 diesel engine (internal combustion engine) 12 exhaust pipe (exhaust gas passage) 13 catalyst 14, 15 NOx sensor (catalyst state detecting means) 17 HC supply device (hydrocarbon supply means) 18 fuel injection pump 21 fuel injection nozzle 23 EGR pipe 24 EGR Valve 25 Control valve 26 Control circuit (Control means, Purification state estimating means, Catalyst temperature adjusting means, Catalyst deterioration determining means) 27 Accelerator sensor (Operating state detecting means 28 Engine speed sensor (Operating state detecting means) 30 HC sensor (Catalyst) (State detecting means) 31 Exhaust temperature sensor (catalyst temperature determining means).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/04 305 F02D 41/04 305A (72)発明者 勝呂 肇 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 大畑 耕一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/04 305 F02D 41/04 305A (72) Inventor Hajime Satsuro 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. (72) Inventor Koichi Ohata 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside DENSO Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に配設され、排気中
の窒素酸化物を還元浄化する触媒と、 前記触媒に対して窒素酸化物の還元剤として炭化水素を
供給する炭化水素供給手段と、 前記内燃機関の運転状態を検出する運転状態検出手段
と、 前記触媒の内部の反応物質濃度分布を反映した情報を検
出する触媒状態検出手段と、 前記触媒状態検出手段の検出情報に基づいて前記触媒の
窒素酸化物浄化状態を推定する浄化状態推定手段と、 前記浄化状態推定手段により推定した窒素酸化物浄化状
態と前記運転状態検出手段の検出情報とに基づいて前記
触媒への炭化水素供給量を設定して前記炭化水素供給手
段を制御する制御手段とを備えていることを特徴とする
内燃機関の排気浄化装置。
1. A catalyst disposed in an exhaust passage of an internal combustion engine for reducing and purifying nitrogen oxides in exhaust gas, and a hydrocarbon supply means for supplying hydrocarbons as a reducing agent for nitrogen oxides to the catalyst. Operating state detecting means for detecting an operating state of the internal combustion engine; catalyst state detecting means for detecting information reflecting a reactant concentration distribution inside the catalyst; and Purification state estimating means for estimating the nitrogen oxide purification state of the catalyst; and a hydrocarbon supply amount to the catalyst based on the nitrogen oxide purification state estimated by the purification state estimation means and detection information of the operating state detection means. Control means for controlling the hydrocarbon supply means by setting the exhaust gas purifying means.
【請求項2】 前記浄化状態推定手段によって推定した
窒素酸化物浄化状態に基づいて前記触媒の温度を窒素酸
化物浄化率を高める方向に調整する触媒温度調整手段を
備えていることを特徴とする請求項1に記載の内燃機関
の排気浄化装置。
2. A catalyst temperature adjusting means for adjusting the temperature of the catalyst in a direction to increase the nitrogen oxide purification rate based on the nitrogen oxide purification state estimated by the purification state estimating means. The exhaust gas purification device for an internal combustion engine according to claim 1.
JP10040555A 1998-02-23 1998-02-23 Exhaust emission control device for internal combustion engine Withdrawn JPH10259714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10040555A JPH10259714A (en) 1998-02-23 1998-02-23 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10040555A JPH10259714A (en) 1998-02-23 1998-02-23 Exhaust emission control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9064993A Division JPH10259713A (en) 1997-03-18 1997-03-18 Exhaust gas purifying device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH10259714A true JPH10259714A (en) 1998-09-29

Family

ID=12583705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10040555A Withdrawn JPH10259714A (en) 1998-02-23 1998-02-23 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH10259714A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047974A (en) * 2000-08-07 2002-02-15 Mazda Motor Corp Exhaust emission control device for engine
JP2003065116A (en) * 2001-08-24 2003-03-05 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2006090312A (en) * 2004-09-25 2006-04-06 Robert Bosch Gmbh Operation method for internal combustion engine and device for performing its method
WO2007060785A1 (en) 2005-11-22 2007-05-31 Isuzu Motors Limited Method for control of exhaust gas purification system, and exhaust gas purification system
JP2007309116A (en) * 2006-05-16 2007-11-29 Mitsubishi Motors Corp Deterioration diagnostic system of nox catalyst
WO2010034403A1 (en) * 2008-09-26 2010-04-01 Daimler Ag Method for operating an exhaust emission control system having a scr-catalyst and an upstream oxidation catalyst exhaust emission control component
US8146348B2 (en) 2007-11-21 2012-04-03 Denso Corporation Exhaust emission control device
JP2012082804A (en) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd Maritime exhaust gas denitration device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491932B2 (en) * 2000-08-07 2010-06-30 マツダ株式会社 Engine exhaust purification system
JP2002047974A (en) * 2000-08-07 2002-02-15 Mazda Motor Corp Exhaust emission control device for engine
JP2003065116A (en) * 2001-08-24 2003-03-05 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2006090312A (en) * 2004-09-25 2006-04-06 Robert Bosch Gmbh Operation method for internal combustion engine and device for performing its method
JP4707509B2 (en) * 2004-09-25 2011-06-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for operating internal combustion engine and apparatus for carrying out the method
WO2007060785A1 (en) 2005-11-22 2007-05-31 Isuzu Motors Limited Method for control of exhaust gas purification system, and exhaust gas purification system
US7797927B2 (en) 2005-11-22 2010-09-21 Isuzu Motors Limited Method for control of exhaust gas purification system, and exhaust gas purification system
JP2007309116A (en) * 2006-05-16 2007-11-29 Mitsubishi Motors Corp Deterioration diagnostic system of nox catalyst
US8146348B2 (en) 2007-11-21 2012-04-03 Denso Corporation Exhaust emission control device
WO2010034403A1 (en) * 2008-09-26 2010-04-01 Daimler Ag Method for operating an exhaust emission control system having a scr-catalyst and an upstream oxidation catalyst exhaust emission control component
RU2493383C2 (en) * 2008-09-26 2013-09-20 Даймлер Аг Method of operating system of control over offgas toxicity reduction with selective reduction catalyst and device arranged there ahead to catalyse reduction for offgas toxicity decrease
US9038370B2 (en) 2008-09-26 2015-05-26 Daimler Ag Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component
JP2012082804A (en) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd Maritime exhaust gas denitration device

Similar Documents

Publication Publication Date Title
JPH1047048A (en) Emission control device for internal combustion engine
EP1953356B1 (en) Method for control of exhaust gas purification system, and exhaust gas purification system
US6865885B2 (en) Exhaust gas purifying method and apparatus for internal combustion engine
KR100658818B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US7040086B2 (en) Exhaust emission control system of internal combustion engine
US5675968A (en) Secondary air control apparatus for exhaust gas purifier
US20040139738A1 (en) Exhaust gas purification system of internal combustion engine
WO2006109819A1 (en) Device for detecting state of thermal degradation of exhaust purifying catalyst
US20030126857A1 (en) Exhaust gas purification apparatus and process for internal combustion engine
US11125177B2 (en) System for controlling air-fuel ratio for flex fuel vehicle using oxygen storage amount of catalyst and method thereof
KR100683267B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP2004156615A (en) Emission aftertreatment system of internal combustion engine
US7165392B2 (en) Exhaust gas purifying system for engine
JPH10259714A (en) Exhaust emission control device for internal combustion engine
JP2005083352A (en) Exhaust emission control device for internal combustion engine
JP2008144711A (en) ABNORMALITY DIAGNOSIS DEVICE AND ABNORMALITY DIAGNOSIS METHOD OF NOx CATALYST
EP1519021B1 (en) Catalyst deterioration determination apparatus of internal combustion engine
JP2005069218A (en) Exhaust air purifying catalyst degradation judgment method and device of internal combustion engine
JPH09317524A (en) Nitrogen oxide cleaning apparatus for internal combustion engine
JP3787913B2 (en) Exhaust gas purification device for internal combustion engine
JPH10259713A (en) Exhaust gas purifying device for internal combustion engine
JP4352635B2 (en) Exhaust gas purification device for internal combustion engine
JP3838139B2 (en) Exhaust gas purification device for internal combustion engine
JP3858758B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601