JP4352635B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4352635B2
JP4352635B2 JP2001172303A JP2001172303A JP4352635B2 JP 4352635 B2 JP4352635 B2 JP 4352635B2 JP 2001172303 A JP2001172303 A JP 2001172303A JP 2001172303 A JP2001172303 A JP 2001172303A JP 4352635 B2 JP4352635 B2 JP 4352635B2
Authority
JP
Japan
Prior art keywords
exhaust
post
internal combustion
combustion engine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001172303A
Other languages
Japanese (ja)
Other versions
JP2002364398A (en
Inventor
司 窪島
眞澄 衣川
清則 関口
達也 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001172303A priority Critical patent/JP4352635B2/en
Priority to DE10225208A priority patent/DE10225208B4/en
Publication of JP2002364398A publication Critical patent/JP2002364398A/en
Application granted granted Critical
Publication of JP4352635B2 publication Critical patent/JP4352635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関(特にディーゼルエンジン)から排出されるNOxとパティキュレート(特にスモーク)を効果的に低減するための内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
内燃機関から排出されるNOxを低減するために、排気の一部を吸気中に戻すEGRが行われる。このEGR量が過小の場合は、十分なNOx低減効果が得られず、EGR量が過大の場合、特にディーゼルエンジンでは、シリンダ内の酸素が不足してパティキュレート(特にスモーク)が増加する。これを回避するためには、スモーク発生限界ぎりぎりまでEGR量を増やし、スモークの発生なしでNOxを低減することが必要である。
【0003】
このために、特開昭60−122259号公報に記載された発明では、排気中の酸素濃度を指標とし、これが所定値となるように、EGRをフィードバック制御する技術が開示されている。これは、パティキュレート、特にスモーク発生量と相関が強い排気中の酸素濃度を所定値以上とすることでスモーク発生ぎりぎりまでEGRをふやすことを狙ったものである。
【0004】
また、一般的に排気浄化のために触媒などの排気後処理装置が設置されるが、排気温度が低い中でも触媒を働かせるために、特開平5−156993号公報に記載された発明では、メイン噴射の後の膨張行程で少量の燃料を後噴射(ポスト噴射)する技術が開示されている。これにより、排気温度が上昇し、さらに触媒へ供給されるHCの反応熱によって速やかに触媒が活性化し、排気後処理装置を有効に働かせることが可能となる。
【0005】
【発明が解決しようとする課題】
しかし、上記の従来技術を組み合わせた場合、すなわちEGRを排気中の酸素濃度でフィードバック制御し、さらに触媒等の排気後処理装置を有効利用するために後噴射を行う場合には、以下の問題が発生する。
図9に示す様に、TDC(上死点)近傍でのメイン噴射▲1▼を行った後の膨張行程で後噴射を行う場合、ピストンの下降とともにシリンダ内温度は低下する。
【0006】
仮に、シリンダ内温度が図中のA以上であれば後噴射した燃料がシリンダ内で燃焼し、A以下であれば燃焼しないとすると、クランク角B以前で後噴射▲2▼した燃料はシリンダ内で燃焼するが、クランク角B以降で後噴射▲3▼した燃料はシリンダ内で燃焼しないことになる。この境界温度Aは、エンジンの運転条件あるいは後噴射時のシリンダ内条件により刻々と変化する。従って、後噴射燃料は、条件によってシリンダ内で燃焼する場合と未燃のまま触媒へ到達する場合とがある。
【0007】
一方、排気中の酸素濃度検出には、限界電流式の酸素濃度センサが広く使われているが、このセンサで精度良く酸素濃度を検出するためには、センサ温度を所定の範囲内(例えば600〜700℃)の高温に保つ必要があり、通常センサ部に設けた電気ヒータにより温度をコントロールしている。このセンサにシリンダ内で燃焼しなかった後噴射燃料が到達すると、高温のヒータ部で燃料が燃焼し、その際、センサ近傍の酸素を消費するため、図10に示す様に、排気中の実際の酸素濃度とセンサで検出した酸素濃度とがずれてしまう。その結果、EGRを精度良く制御することができず、エミッションが悪化するという問題がある。
【0008】
この問題は、ディーゼルエンジンのNOxとパティキュレートを同時に大幅低減することを狙って、排気還流量を大幅に増加し、あるいは主燃料の噴射時期を遅角することで燃料の燃焼を緩慢にして、燃焼時のシリンダ内温度をスモーク発生温度以下に低下させる低エミッション燃焼において特に顕著となる。それは、この燃焼では通常よりも多量のEGRを行うため、EGR量がずれると、より多量のスモークが発生するからである。
【0009】
本発明は、上記事情に基づいて成されたもので、その目的は、排気浄化手段を活性化させるために内燃機関の膨張行程で後噴射を行う場合でも、排気中の酸素濃度に基づいて正確なEGR制御を可能とすることができる内燃機関の排気浄化装置を提供することにある。
【0013】
【課題を解決するための手段】
(請求項の発明)
本発明は、内燃機関の排気の一部を吸気中に戻す排気還流手段と、内燃機関の排気管に設置された排気浄化手段と、この排気浄化手段より上流の排気管に設置され、排気中の酸素濃度を検出する酸素濃度検出手段と、この酸素濃度検出手段で検出される排気酸素濃度が予め設定される目標値となるように排気還流量を調整する排気還流量調整手段と、排気浄化手段を活性化させるために内燃機関の膨張行程で少量の燃料を後噴射する後噴射手段と、この後噴射手段で噴射された後噴射燃料が内燃機関のシリンダ内で燃焼するか否かを推定または検出する後噴射燃焼判定手段とを備える。
【0014】
上記の構成において、排気還流量調整手段は、後噴射燃焼判定手段にて後噴射燃料が内燃機関のシリンダ内で燃焼しないと判定された場合に、排気酸素濃度の目標値を減少補正し、その補正後の目標値が得られるように排気還流量を調整する。
これにより、後噴射燃料がシリンダ内で燃焼されることなく酸素濃度検出手段に到達する場合でも、排気酸素濃度の目標値を減少補正することで、排気還流量を適量に制御することが可能となる。
【0015】
(請求項の発明)
本発明は、内燃機関の排気の一部を吸気中に戻す排気還流手段と、内燃機関の排気管に設置された排気浄化手段と、この排気浄化手段より上流の排気管に設置され、排気中の酸素濃度を検出する酸素濃度検出手段と、この酸素濃度検出手段で検出される排気酸素濃度が予め設定される目標値となるように排気還流量を調整する排気還流量調整手段と、排気浄化手段を活性化させるために内燃機関の膨張行程で少量の燃料を後噴射する後噴射手段と、この後噴射手段で噴射された後噴射燃料が内燃機関のシリンダ内で燃焼するか否かを推定または検出する後噴射燃焼判定手段とを備える。
【0016】
上記の構成において、排気還流量調整手段は、後噴射燃焼判定手段にて後噴射燃料が内燃機関のシリンダ内で燃焼しないと判定された場合に、酸素濃度検出手段の出力を増加補正し、その補正後の酸素濃度を用いて排気還流量を調整する。
これにより、後噴射燃料がシリンダ内で燃焼されることなく酸素濃度検出手段に到達する場合でも、酸素濃度検出手段の出力を増加補正することで、排気還流量を適量に制御することが可能となる。
【0017】
(請求項の発明)
請求項またはに記載した内燃機関の排気浄化装置において、
後噴射燃焼判定手段は、内燃機関の運転状態を検出する運転状態検出手段を備え、この運転状態検出手段の出力と後噴射の時期および噴射量を基に、後噴射燃料が燃焼するか否かを判定する。
すなわち、内燃機関の運転状態(例えば回転数と負荷)と後噴射時期と噴射量から後噴射時のシリンダ内温度、シリンダ内圧力等を推定し、これを基に後噴射燃料が燃焼するか否かを判定する。これにより、後噴射燃料の燃焼の有無が分かるため、それに基づき適切な排気還流量制御が可能となる。
【0018】
(請求項の発明)
請求項またはに記載した内燃機関の排気浄化装置において、
後噴射燃焼判定手段は、内燃機関の運転状態を検出する運転状態検出手段と、排気浄化手段の上流に設置されて排気温度を検出する排気温度検出手段と、運転状態検出手段の出力から求めた推定排気温度と排気温度検出手段で検出した検出排気温度とを比較する排気温度比較手段とを備え、この排気温度比較手段で求めた推定排気温度と検出排気温度との差が所定値より小さい場合に、後噴射燃料が燃焼していないと判定する。これは、後噴射燃料のシリンダ内での燃焼による排気温度の上昇を直接検出するものであり、後噴射燃料のシリンダ内での燃焼の有無をより正確に判定することが可能となる。
【0019】
(請求項の発明)
請求項1〜に記載した何れかの内燃機関の排気浄化装置において、
内燃機関は、排気還流量を大幅に増加し、あるいは機関出力発生のための主噴射の燃料噴射時期を遅角することで、内燃機関の燃料燃焼を緩慢にし、燃料燃焼時のシリンダ内温度をスモークの発生温度以下に低下する燃料温度低下手段を備える。
【0020】
この様に、内燃機関(特にディーゼルエンジン)の燃焼を低温で進行させる手法は、NOxとパティキュレート(特にスモーク)の大幅な同時低減に非常に有用であるが、これを実現するためには、従来と比較して超多量(例えば70%以上)の排気還流をより精度良く制御することが非常に重要となる。一方、この燃焼においては、HCの排出量が増加するため、触媒による排気浄化が必須となる。従って、このような燃焼に本発明を適用することで、極めてクリーンな燃焼をより正確に実現することが可能となる。
【0021】
(請求項の発明)
請求項1〜に記載した何れかの内燃機関の排気浄化装置において、
排気浄化手段に酸化性能を有する触媒を担持する。
これにより、有害成分を酸化触媒で容易に浄化可能である。これは、フロースルータイプの触媒あるいはパティキュレートフィルタのいずれにも適用できる。
【0022】
【発明の実施の形態】
次に、本発明の実施形態を図面に基づいて説明する。
(第1の実施形態)
図2は4気筒ディーゼルエンジンに適用される排気浄化装置の全体構成図である。
この排気浄化装置が適用されるディーゼルエンジン1は、図2に示す様に、コモンレール式の燃料噴射装置を搭載し、図示しない高圧ポンプから圧送された高圧燃料が常時コモンレール2に蓄えられ、所望の圧力、噴射量、噴射時期でインジェクタ3から噴射される。
【0023】
排気浄化装置は、エンジン1の排気管4と吸気管5とを接続する排気還流管6、この排気還流管6内に設けられるEGR量制御弁7、排気還流管6の途中に設けられるEGR冷却装置8、吸気管5内に設けられる吸気絞り弁9、ターボ10の下流に設置されるトラップフィルタ11、エンジン1の運転状態を検出する各種センサ(後述する)、この各種センサで検出された情報に基づき、本システムの作動を制御する電子制御装置12(以下ECU12と呼ぶ)等より構成される。
【0024】
EGR量制御弁7と吸気絞り弁9は、例えば空気圧(負圧)あるいは電気モータ等で直接駆動され、両者を所定の開度に設定することで所定量の排気が吸気側へ還流される。
EGR冷却装置8は、図示しない冷却水が導入され、その冷却水との熱交換によってEGRガス(排気還流管6を通って吸気中に還流する排気ガス)を冷却するもので、例えば冷却効率の高い積層フィンタイプが用いられる。これにより、EGRガスは、高温で膨張した状態ではなく、冷却されて高密度に収縮した状態でシリンダ内へ導入される。その結果、シリンダ内へ吸入する酸素量をさほど低減することなく、シリンダ内の不活性ガス量を増加することが可能となるため、スモークを増加させることなく、より多量のEGRを実施できる。
【0025】
トラップフィルタ11は、例えばコージェライトや炭化珪素等の多孔質セラミックから成るハニカム状の流路を交互に目封じして形成され、フィルタ表面にはPtやPd等の貴金属を主成分とする酸化触媒が担持されている。
このトラップフィルタ11では、エンジン1から排出されたパティキュレートを含む排気が多孔質セラミックの壁面内を通過する際に、フィルタ細孔径より大きなパティキュレート粒子が主にフィルタ表面で捕集される。また、酸化触媒の作用により、燃焼時に排出されるHC、CO等の有害成分も浄化することができる。
【0026】
トラップフィルタ11で捕集されたパティキュレートの量(堆積量)は、フィルタ11の前後差圧に基づいて検出され、堆積量が所定値を超えた場合にフィルタ11が再生される。そのフィルタ11の再生は、エンジン1の膨張行程で少量の燃料を後噴射することで行われる。この時、フィルタ表面に担持した酸化触媒の作用によりパティキュレートは通常より低い温度(触媒がない場合はパティキュレート燃焼のために600℃以上の温度が必要であるが、触媒がある場合は450℃以下で燃焼する)で容易に燃焼するため、フィルタ11の温度上昇はわずかで済む。
【0027】
ECU12は、エンジン回転数センサ13、アクセル開度センサ14、噴射圧力センサ15、差圧センサ16、酸素濃度センサ17等の各種センサで検出された情報を入力し、これらの情報に基づいて各気筒のインジェクタ3を駆動する電磁弁3a、及び吸気絞り弁9、EGR量制御弁7等の各種アクチュエータを電気的に制御すると共に、差圧センサ16の出力を基にトラップフィルタ11の再生の必要性を判断し、再生が必要と判断された場合には膨張行程で少量の燃料を後噴射する。
【0028】
エンジン回転数センサ13は、エンジン1のクランクシャフト(図示しない)に配置されて、エンジン回転速度を検出する。
アクセル開度センサ14は、図示しないアクセルペダルの踏み込み量からアクセル開度を検出する。
噴射圧力センサ15は、コモンレール2に取り付けられ、コモンレール2内の燃料圧力を検出する。
差圧センサ16は、トラップフィルタ11の前後から排気圧力を検出可能な位置に設置され、トラップフィルタ11の前後差圧を検出する。
【0029】
酸素濃度センサ17は、トラップフィルタ11より上流の排気管4に取り付けられ、排気管4内の酸素濃度を検出する。
この酸素濃度センサ17は、一般的に広く用いられる公知の限界電流方式のもので、例えば図3に示すように、通気孔17aを有するカバー17Aの内部にセンサ素子17Bを配置し、そのセンサ素子17Bの外側に通気孔17aから排気ガスが導入され、センサ素子17Bの内側に大気が導入される。
【0030】
センサ素子17Bに電圧を印加すると、排気中の酸素濃度に応じた限界電流が発生する。但し、このセンサ素子17Bで精度良く酸素濃度を検出するためには、センサ素子17Bの温度を所定の範囲内(例えば600〜700℃)の高温に保つ必要がある。そこで、センサ素子17Bの内側に近接して電気ヒータ17Cを配置し、その電気ヒータ17Cによりセンサ素子17Bの温度をコントロールしている。
【0031】
次に、本発明に係わる排気浄化装置の作動(ECU12の処理手順)を図1に示すフローチャートに基づいて説明する。
Step100 …エンジン回転数センサ13、アクセル開度センサ14、及び差圧センサ16の各出力から、エンジン回転数NE、アクセル開度、及びトラップフィルタ11の前後差圧を読み込む。
【0032】
Step101 (本発明の後噴射要否判定手段)…Step100 で読み込んだセンサ出力から後噴射を実施するか否かを判定する。この判定は、公知の方法により、トラップフィルタ11の再生の要否を判定することで行われる。例えば、差圧センサ16の出力を図示しない吸気量センサの出力により補正してトラップフィルタ11へのパティキュレート堆積量を算出し、その算出された堆積量が所定値を超えた場合に再生が必要であると判定する。ここで、「後噴射必要無し」と判定された時はStep102 へ進み、「後噴射必要」と判定された時はStep106 へ進む。
【0033】
Step102 …Step100 で読み込んだエンジン回転数NEとアクセル開度を基に、予めECU12に記憶されているマップ等から目標排気酸素濃度を算出する。
Step103 …酸素濃度センサ17の出力から排気中の酸素濃度を読み込む。
Step104 …排気酸素濃度の目標値(Step102 で算出した目標排気酸素濃度)と実際に検出した値(Step103 で読み込んだ酸素濃度)とを比較し、両者のずれが所定値(例えば0.2%)より小さいか否かを判定する。ここで、両者のずれが所定値以上の時はStep105 へ進み、両者のずれが所定値より小さい時は、本ルーチンを終了する。
【0034】
Step105 …EGR量を調整して再びStep103 へ戻る。ここでは、酸素濃度センサ17で検出される排気酸素濃度をフィードバックし、EGR量制御弁7の開度を制御して行われる。あるいは、EGR量制御弁7の代わりに、吸気絞り弁9をフィードバック制御しても良い。
【0035】
Step106 …吸気絞り弁9とEGR量制御弁7を、Step100 で読み込んだエンジン条件から決定される開度に設定する。すなわち、排気酸素濃度によるフィードバック制御をすることなく、オープンループ制御にて両者の開度を設定する。
Step107 (本発明の後噴射手段)…後噴射を実行して、本ルーチンを終了する。後噴射の時期及び噴射量は、エンジン1の運転条件に基づいて決定され、予めECU12に記憶されている。
【0036】
(第1の実施形態の効果)
排気中の酸素濃度が目標値となる様に、排気酸素濃度(センサ出力)をフィードバックしてEGR量を制御する場合、図4に示す様に、排気酸素濃度の目標値(図中の黒点a)が得られる様にEGR量(図中のd)が調整される。その結果、パティキュレートやNOxといったエミッション及び燃費は、図中の黒点でそれぞれ最適な値に維持される。
【0037】
しかし、後噴射燃料がシリンダ内で燃焼することなく、未燃のまま酸素濃度センサ17に到達し、センサ部で燃焼すると、センサ近傍の酸素が消費されるため、センサ出力は図中の破線で示すように低下する。この場合、図中dのEGR量では、センサ出力(図中の黒点b)が目標値からずれてしまう。その結果、目標値に対してEGR量が過大と判断され、センサ出力が目標値(図中の白点c)となるようにEGR量を図中eまで減量してしまう。
【0038】
上記の結果、エミッション及び燃費は、それぞれ図中の白点へと移動してしまい、黒点で示す最適値から大きくずれてしまう。
これに対し、本発明では、後噴射を実行する時には、酸素濃度センサ17の出力をフィードバックしてEGR量を制御するのではなく、EGR量をオープンループ制御することにより、上記の不具合を回避できる。従って、後噴射の有無によらず良好な運転状態を維持することができる。
【0039】
なお、上記の実施形態では、排気浄化手段としてトラップフィルタ11を用い、その再生のために後噴射を実施する場合を例にとって説明したが、排気浄化手段としてはフロースルータイプの酸化触媒あるいはNOx触媒などの他の酸化性能を有する触媒を担持したものでも良い。また、トラップフィルタ11の再生に限らず、エンジン始動時など触媒不活性時に触媒活性化温度まで排気温度あるいは触媒温度を昇温させるために後噴射を実施する際にも適用される。
【0040】
また、ディーゼルエンジン1から排出されるNOxとパティキュレート(特にスモーク)を同時に大幅低減するために超多量のEGRと噴射時期の遅角を組み合わせる技術が有効であるが、この種の燃焼においては、多量のEGRを精度良くコントロールする必要があり、排気酸素濃度によるフィードバックが特に有用である。
【0041】
また、スモークが低減する一方で、HCの排出量が増加するため、酸化性能を有する触媒を用いて排気を浄化する必要がある。従って、触媒活性が低い低速走行時にも排気を浄化可能とするためには、触媒を活性化温度以上に昇温させる必要があり、そのための手段として後噴射は非常に有望である。この場合には、後噴射と組み合わせた上で、より高精度なEGR制御が要求されるため、本実施形態と組み合わせることで大きな効果を得ることができる。
【0042】
(第2の実施形態)
図5は第2の実施形態におけるECU12の処理手順を示すフローチャートである。
本実施形態は、第1の実施形態とシステムの全体構成は同じであり、その説明は省略する。
本発明に係わる排気浄化装置の作動を図5に示すフローチャートに基づいて説明する。
【0043】
Step200 …エンジン回転数センサ13、アクセル開度センサ14、及び差圧センサ16の各出力から、エンジン回転数NE、アクセル開度、及びトラップフィルタ11の前後差圧を読み込む。
Step201 (本発明の後噴射要否判定手段)…Step200 で読み込んだセンサ出力から後噴射を実施するか否かを判定する(具体的な判定方法は第1の実施形態Step101 を参照)。ここで、「後噴射必要無し」と判定された時はStep206 へ進み、「後噴射必要」と判定された時はStep202 へ進む。
【0044】
Step202 (本発明の後噴射手段)…後噴射を実行する。後噴射の時期及び噴射量は、エンジン1の運転条件に基づいて決定され、予めECU12に記憶されている。
Step203 …後噴射時のシリンダ内温度Tcを算出する。エンジン1のクランク角に対するシリンダ内温度Tcは、図9に示すように変化するが、エンジン1の運転条件(例えば回転数と負荷等)によって決まる。従って、Step202 で実施される後噴射の時期(後噴射するクランク角)におけるシリンダ内温度Tcが運転条件から算出される。
【0045】
Step204 (本発明の後噴射燃焼判定手段)…Step203 で算出したシリンダ内温度Tcが基準温度T0より高いか否かを判定する。この基準温度T0は、そのエンジン条件において後噴射した燃料がシリンダ内で燃焼する最低温度である。この基準温度T0は、予めECU12に記憶されており、一定値(例えば1000K)あるいはエンジン条件により異なる値とする。ここで、Tc<T0と判定された時はStep205 へ進み、Tc≧T0と判定された時はStep206 へ進む。
【0046】
Step205 …排気酸素濃度を減少補正するための補正量を算出する。すなわち、後噴射時のシリンダ内温度Tcが基準温度T0より小さい場合は、後噴射した燃料がシリンダ内で燃焼することなく酸素濃度センサ17まで到達し、センサ部で燃焼する。その際に酸素が消費されるため、本来検出すべき(シリンダ内の燃焼の結果残った)酸素濃度が酸素濃度センサ17で検出できなくなる。
【0047】
これを回避するために、未燃燃料が酸素濃度センサ17へ到達する場合には、センサ部で消費される酸素量の分だけ、EGR量制御の目標となる排気酸素濃度を減少補正する。ここでは、その補正量を算出する。なお、補正量を算出する際に、例えばTcとT0との差に応じて変更し、差が小さいほど補正量を小さくすることで、より正確な補正が可能となる。
【0048】
Step206 …補正前の目標酸素濃度にStep205 で算出した補正量を加算して補正後の目標酸素濃度を算出する。但し、Step201 の判定結果がNOの場合、及びStep204 の判定結果がNOの場合は、補正前の目標酸素濃度が設定される。補正前の目標酸素濃度はStep200 で読み込んだエンジン回転数NEとアクセル開度を基に算出される。これは、エンジン1の運転条件に基づき、予めECU12に記憶されている。
Step207 …酸素濃度センサ17の出力から排気中の酸素濃度を読み込む。
【0049】
Step208 …排気酸素濃度の目標値(Step206 で算出した補正後の目標排気酸素濃度)と実際に検出した値(Step207 で読み込んだ酸素濃度)とを比較し、両者のずれが所定値(例えば0.2%)より小さいか否かを判定する。ここで、両者のずれが所定値以上の時はStep209 へ進み、両者のずれが所定値より小さい時は、本ルーチンを終了する。
Step209 …EGR量を調整して再びStep207 へ戻る。
【0050】
本実施形態では、後噴射燃料がシリンダ内で燃焼しないと判定された場合(Step204 の判定結果がNOの場合)に、排気中の実際の酸素濃度に比べて酸素濃度センサ17の出力が低下しても、排気酸素濃度の目標値を減少補正するので、EGR量が大幅に減量されることはなく、適量に制御することが可能である。従って、後噴射の有無によらず良好な運転状態を維持することができる。
【0051】
(第3の実施形態)
図6は第3の実施形態におけるECU12の処理手順を示すフローチャートである。
本実施形態は、第1の実施形態とシステムの全体構成は同じであり、その説明は省略する。
本発明に係わる排気浄化装置の作動を図6に示すフローチャートに基づいて説明する。但し、本実施形態は、第2の実施形態に記載した作動の一部を変更したものであり、ここでは第2の実施形態と異なる部分(Step305 〜Step307 )についてのみ説明する。
【0052】
Step305 …酸素濃度センサ17の出力を増量補正するための補正量を算出する。すなわち、後噴射時のシリンダ内温度Tcが基準温度T0より小さい場合は、後噴射した燃料がシリンダ内で燃焼することなく酸素濃度センサ17まで到達し、センサ部で燃焼する。その際に酸素が消費されるため、本来検出すべき(シリンダ内の燃焼の結果残った)酸素濃度が酸素濃度センサ17で検出できなくなる。
【0053】
これを回避するために、未燃燃料が酸素濃度センサ17へ到達する場合には、センサ部で消費される酸素量の分だけ、酸素濃度センサ17で検出される排気中の酸素濃度を増量補正する。ここでは、その補正量を算出する。なお、補正量を算出する際に、例えばTcとT0との差に応じて変更し、差が小さいほど補正量を小さくすることで、より正確な補正が可能となる。
【0054】
Step306 …Step300 で読み込んだエンジン回転数NEとアクセル開度を基に目標排気酸素濃度を算出する。これは、エンジン1の運転条件に基づき、予めECU12に記憶されている。
Step307 …酸素濃度センサ17の出力から排気中の酸素濃度を読み込み、Step305 で算出した補正量に従い、補正後の酸素濃度を算出する。
【0055】
本実施形態では、後噴射燃料がシリンダ内で燃焼しないと判定された場合(Step304 の判定結果がNOの場合)に、センサ部で未燃燃料が燃焼して酸素が消費されることにより、実際の酸素濃度センサ17の出力が低下しても、その酸素濃度センサ17の出力を増量補正するので、EGR量が大幅に減量されることはなく、適量に制御することが可能である。従って、後噴射の有無によらず良好な運転状態を維持することができる。
【0056】
(第4の実施形態)
図7は4気筒ディーゼルエンジン1に適用される排気浄化装置の全体構成図であり、図8は第4の実施形態におけるECU12の処理手順を示すフローチャートである。
本実施形態は、第1の実施形態で説明したシステムに加えて、トラップフィルタ11より上流の排気管4に温度センサ18を設置した点が異なるのみで、その他のシステム上の構成は同じであり、その説明は省略する。
【0057】
本発明に係わる排気浄化装置の作動を図8に示すフローチャートに基づいて説明する。
Step400 …エンジン回転数センサ13、アクセル開度センサ14、差圧センサ16、及び温度センサ18の各出力から、エンジン回転数NE、アクセル開度、トラップフィルタ11の前後差圧、及びトラップフィルタ11に流入する排気の温度Taを読み込む。
【0058】
Step401 (本発明の後噴射要否判定手段)…Step400 で読み込んだセンサ出力から後噴射を実施するか否かを判定する(具体的な判定方法は第1の実施形態Step101 を参照)。ここで、「後噴射必要」と判定された時はStep402 へ進み、「後噴射必要無し」と判定された時はStep406 へ進む。
Step402 (本発明の後噴射手段)…後噴射を実行する。後噴射の時期及び噴射量は、エンジン1の運転条件に基づいて決定され、予めECU12に記憶されている。
【0059】
Step403 …Step400 で読み込んだエンジン1の運転条件を基に、排気温度Ttを算出する。エンジン1の運転条件と排気温度との相関は、予めECU12に記憶されている。
Step404 (本発明の排気温度比較手段)…Step400 で読み込んだ実際の排気温度TaがStep403 で算出した排気温度Ttより高いか否かを判定する。ここで、Ta≦Ttと判定された時はStep405 へ進み、Ta>Ttと判定された時はStep406 へ進む。
【0060】
Step405 …排気酸素濃度を減少補正するための補正量を算出する。すなわち、後噴射実施中にも係わらず、Ta≦Ttであれば、後噴射燃料がシリンダ内で燃焼していないため、後噴射燃料が酸素濃度センサ17まで到達し、センサ部で燃焼する。その際に酸素が消費されるため、本来検出すべき(シリンダ内の燃焼の結果残った)酸素濃度が酸素濃度センサ17で検出できなくなる。
【0061】
これを回避するために、未燃燃料が酸素濃度センサ17へ到達する場合には、センサ部で消費される酸素量の分だけ、EGR量制御の目標となる排気酸素濃度を減少補正する。ここでは、その補正量を算出する。なお、補正量を算出する際に、例えばTaとTtとの差に応じて変更し、差が小さいほど補正量を小さくすることで、より正確な補正が可能となる。
【0062】
Step406 …補正前の目標酸素濃度にStep405 で算出した補正量を加算して補正後の目標酸素濃度を算出する。但し、Step401 の判定結果がNOの場合、及びStep404 の判定結果がNOの場合は、補正前の目標酸素濃度が設定される。補正前の目標酸素濃度はStep400 で読み込んだエンジン回転数NEとアクセル開度を基に算出される。これは、エンジン1の運転条件に基づき、予めECU12に記憶されている。
Step407 …酸素濃度センサ17の出力から排気中の酸素濃度を読み込む。
【0063】
Step408 …排気酸素濃度の目標値(Step406 で算出した補正後の目標排気酸素濃度)と実際に検出した値(Step407 で読み込んだ酸素濃度)とを比較し、両者のずれが所定値(例えば0.2%)より小さいか否かを判定する。ここで、両者のずれが所定値以上の時はStep409 へ進み、両者のずれが所定値より小さい時は、本ルーチンを終了する。
Step409 …EGR量を調整して再びStep407 へ戻る。
【0064】
本実施形態では、実際の排気温度Taとエンジン1の運転条件を基に算出した排気温度Ttとを比較して、後噴射燃料がシリンダ内で燃焼するか否かを判定しているので、後噴射燃料がシリンダ内で燃焼したか否かをより正確に判定することが可能である。
なお、本実施形態では、第2の実施形態と同様に、目標酸素濃度を補正する場合を例にとって説明したが、第3の実施形態と同様に酸素濃度センサ17の出力を補正しても良い。
【図面の簡単な説明】
【図1】第1の実施形態に係わるECUの処理手順を示すフローチャートである。
【図2】排気浄化装置の全体構成図である(第1の実施形態)。
【図3】酸素濃度センサの構造を示す模式図である。
【図4】排気酸素濃度の目標値に対しEGR量をフィードバック制御した場合のEGR量とエミッション及び燃費との関係を示すグラフである。
【図5】第2の実施形態に係わるECUの処理手順を示すフローチャートである。
【図6】第3の実施形態に係わるECUの処理手順を示すフローチャートである。
【図7】排気浄化装置の全体構成図である(第4の実施形態)。
【図8】第4の実施形態に係わるECUの処理手順を示すフローチャートである。
【図9】燃料噴射とシリンダ内の平均温度との相関を示すグラフである。
【図10】排気中の実際の酸素濃度とセンサ出力とを比較したグラフである。
【符号の説明】
1 ディーゼルエンジン(内燃機関)
6 排気還流管(排気還流手段)
7 EGR量制御弁(排気還流手段)
9 吸気絞り弁(排気還流手段)
11 トラップフィルタ(排気浄化手段)
12 ECU(排気還流量調整手段)
13 エンジン回転数センサ(運転状態検出手段)
14 アクセル開度センサ(運転状態検出手段)
17 酸素濃度センサ(酸素濃度検出手段)
18 温度センサ(排気温度検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine for effectively reducing NOx and particulates (particularly smoke) discharged from the internal combustion engine (particularly a diesel engine).
[0002]
[Prior art]
In order to reduce NOx discharged from the internal combustion engine, EGR is performed to return part of the exhaust gas into the intake air. If this EGR amount is too small, a sufficient NOx reduction effect cannot be obtained. If the EGR amount is too large, especially in a diesel engine, oxygen in the cylinder is insufficient and particulates (especially smoke) increase. In order to avoid this, it is necessary to increase the EGR amount to the limit of the smoke generation limit and reduce NOx without the generation of smoke.
[0003]
For this reason, the invention described in Japanese Patent Application Laid-Open No. 60-122259 discloses a technique for feedback control of EGR so that the oxygen concentration in the exhaust gas is used as an index and this becomes a predetermined value. This is intended to increase the EGR to the limit of smoke generation by setting the oxygen concentration in the exhaust gas, which has a strong correlation with particulates, particularly the amount of smoke generation, to a predetermined value or more.
[0004]
Further, an exhaust aftertreatment device such as a catalyst is generally installed for exhaust purification, but in order to make the catalyst work even when the exhaust temperature is low, in the invention described in Japanese Patent Application Laid-Open No. 5-156993, the main injection A technique for post-injecting a small amount of fuel in a later expansion stroke is disclosed. As a result, the exhaust temperature rises, and the catalyst is quickly activated by the reaction heat of HC supplied to the catalyst, and the exhaust aftertreatment device can be operated effectively.
[0005]
[Problems to be solved by the invention]
However, when the above-described conventional techniques are combined, that is, when EGR is feedback-controlled by the oxygen concentration in the exhaust gas and further post-injection is performed in order to effectively use the exhaust aftertreatment device such as a catalyst, the following problems occur. appear.
As shown in FIG. 9, when the post-injection is performed in the expansion stroke after the main injection (1) in the vicinity of TDC (top dead center), the temperature in the cylinder decreases as the piston descends.
[0006]
If the in-cylinder temperature is A or higher in the figure, the post-injected fuel burns in the cylinder, and if the in-cylinder temperature is not higher than A, the post-injected fuel before the crank angle B {2} However, the fuel that has been post-injected after the crank angle B does not burn in the cylinder. This boundary temperature A changes from moment to moment depending on engine operating conditions or in-cylinder conditions during post-injection. Accordingly, the post-injected fuel may burn in the cylinder depending on conditions or may reach the catalyst without being burned.
[0007]
On the other hand, a limit current type oxygen concentration sensor is widely used to detect the oxygen concentration in exhaust gas. In order to detect the oxygen concentration with high accuracy using this sensor, the sensor temperature is within a predetermined range (for example, 600). It is necessary to keep at a high temperature (˜700 ° C.), and the temperature is usually controlled by an electric heater provided in the sensor section. When the injected fuel reaches the sensor after not combusting in the cylinder, the fuel is combusted in the high-temperature heater, and oxygen in the vicinity of the sensor is consumed at this time. As shown in FIG. The oxygen concentration detected by the sensor deviates from the oxygen concentration detected by the sensor. As a result, there is a problem that the EGR cannot be accurately controlled and the emission is deteriorated.
[0008]
This problem is aimed at significantly reducing NOx and particulates of the diesel engine at the same time, greatly increasing the exhaust gas recirculation amount, or slowing the fuel combustion by retarding the injection timing of the main fuel, This is particularly noticeable in low emission combustion in which the temperature in the cylinder at the time of combustion is lowered below the smoke generation temperature. This is because, in this combustion, a larger amount of EGR is performed than usual, so that a larger amount of smoke is generated when the EGR amount is deviated.
[0009]
The present invention has been made on the basis of the above circumstances, and its object is to accurately calculate the oxygen concentration in the exhaust gas even when the post-injection is performed in the expansion stroke of the internal combustion engine in order to activate the exhaust gas purification means. It is an object of the present invention to provide an exhaust emission control device for an internal combustion engine that can perform an EGR control.
[0013]
[Means for Solving the Problems]
  (Claims1Invention)
  The present invention relates to an exhaust gas recirculation means for returning part of the exhaust gas of the internal combustion engine into the intake air, an exhaust gas purification means installed in the exhaust pipe of the internal combustion engine, and an exhaust pipe upstream of the exhaust gas purification means. An oxygen concentration detecting means for detecting the oxygen concentration of the exhaust gas, an exhaust gas recirculation amount adjusting means for adjusting the exhaust gas recirculation amount so that the exhaust oxygen concentration detected by the oxygen concentration detecting means becomes a preset target value, and exhaust purification Post-injection means for post-injecting a small amount of fuel in the expansion stroke of the internal combustion engine to activate the means, and estimating whether the post-injected fuel injected by the post-injection means burns in the cylinder of the internal combustion engine Or a post-injection combustion determination means for detecting.
[0014]
In the above configuration, the exhaust gas recirculation amount adjusting means corrects the exhaust oxygen concentration to be decreased when the post-injection combustion determining means determines that the post-injected fuel is not combusted in the cylinder of the internal combustion engine. The exhaust gas recirculation amount is adjusted so that the corrected target value is obtained.
As a result, even when the post-injected fuel reaches the oxygen concentration detecting means without being burned in the cylinder, it is possible to control the exhaust gas recirculation amount to an appropriate amount by correcting the decrease in the target value of the exhaust oxygen concentration. Become.
[0015]
  (Claims2Invention)
  The present invention relates to an exhaust gas recirculation means for returning part of the exhaust gas of the internal combustion engine into the intake air, an exhaust gas purification means installed in the exhaust pipe of the internal combustion engine, and an exhaust pipe upstream of the exhaust gas purification means. An oxygen concentration detecting means for detecting the oxygen concentration of the exhaust gas, an exhaust gas recirculation amount adjusting means for adjusting the exhaust gas recirculation amount so that the exhaust oxygen concentration detected by the oxygen concentration detecting means becomes a preset target value, and exhaust purification Post-injection means for post-injecting a small amount of fuel in the expansion stroke of the internal combustion engine to activate the means, and estimating whether the post-injected fuel injected by the post-injection means burns in the cylinder of the internal combustion engine Or a post-injection combustion determination means for detecting.
[0016]
In the above configuration, the exhaust gas recirculation amount adjusting means increases the output of the oxygen concentration detecting means when the post-injection combustion determining means determines that the post-injected fuel is not combusted in the cylinder of the internal combustion engine. The exhaust gas recirculation amount is adjusted using the corrected oxygen concentration.
As a result, even when the post-injected fuel reaches the oxygen concentration detection means without being burned in the cylinder, it is possible to control the exhaust gas recirculation amount to an appropriate amount by increasing the output of the oxygen concentration detection means. Become.
[0017]
  (Claims3Invention)
  Claim1Or2In the exhaust gas purification apparatus for an internal combustion engine described in 1.
  The post-injection combustion determining means includes an operating state detecting means for detecting the operating state of the internal combustion engine, and whether or not the post-injected fuel is combusted based on the output of the operating state detecting means, the timing of the post-injection, and the injection amount. Determine.
  That is, the in-cylinder temperature, the in-cylinder pressure, and the like at the time of post-injection are estimated from the operating state of the internal combustion engine (for example, the rotational speed and load), the post-injection timing, and the injection amount, and whether or not the post-injected fuel burns based on this. Determine whether. Thereby, since the presence or absence of the combustion of the post-injected fuel can be known, it is possible to appropriately control the exhaust gas recirculation amount based thereon.
[0018]
  (Claims4Invention)
  Claim1Or2In the exhaust gas purification apparatus for an internal combustion engine described in 1.
  The post-injection combustion determining means is obtained from the output of the operating state detecting means for detecting the operating state of the internal combustion engine, the exhaust temperature detecting means installed upstream of the exhaust purifying means and detecting the exhaust temperature, and the output of the operating state detecting means. Exhaust temperature comparison means for comparing the estimated exhaust temperature and the detected exhaust temperature detected by the exhaust temperature detection means, and the difference between the estimated exhaust temperature obtained by the exhaust temperature comparison means and the detected exhaust temperature is smaller than a predetermined value In addition, it is determined that the post-injected fuel is not combusted. This directly detects an increase in the exhaust gas temperature due to the combustion of the post-injected fuel in the cylinder, and it is possible to more accurately determine the presence or absence of the combustion of the post-injected fuel in the cylinder.
[0019]
  (Claims5Invention)
  Claims 1 to4In any one of the internal combustion engine exhaust gas purification apparatuses described in
  The internal combustion engine significantly increases the exhaust gas recirculation amount, or delays the fuel injection timing of the main injection for generating engine output, thereby slowing down the fuel combustion of the internal combustion engine and reducing the temperature in the cylinder during fuel combustion. Fuel temperature lowering means for lowering the smoke generation temperature or lower is provided.
[0020]
As described above, the technique of proceeding combustion of an internal combustion engine (particularly a diesel engine) at a low temperature is very useful for significant simultaneous reduction of NOx and particulates (particularly smoke). To achieve this, It is very important to control the exhaust gas recirculation of an extremely large amount (for example, 70% or more) more accurately than in the past. On the other hand, in this combustion, since the amount of HC emission increases, exhaust purification by a catalyst is essential. Therefore, by applying the present invention to such combustion, extremely clean combustion can be realized more accurately.
[0021]
  (Claims6Invention)
  Claims 1 to5In any one of the internal combustion engine exhaust gas purification apparatuses described in
  A catalyst having oxidation performance is carried on the exhaust purification means.
  Thereby, harmful components can be easily purified with an oxidation catalyst. This can be applied to either a flow-through type catalyst or a particulate filter.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 2 is an overall configuration diagram of an exhaust purification device applied to a four-cylinder diesel engine.
As shown in FIG. 2, a diesel engine 1 to which this exhaust purification device is applied is equipped with a common rail type fuel injection device, and high pressure fuel pumped from a high pressure pump (not shown) is always stored in the common rail 2 to obtain a desired Injected from the injector 3 at pressure, injection amount, and injection timing.
[0023]
The exhaust gas purification apparatus includes an exhaust gas recirculation pipe 6 connecting the exhaust pipe 4 and the intake pipe 5 of the engine 1, an EGR amount control valve 7 provided in the exhaust gas recirculation pipe 6, and EGR cooling provided in the middle of the exhaust gas recirculation pipe 6. Device 8, intake throttle valve 9 provided in intake pipe 5, trap filter 11 installed downstream of turbo 10, various sensors (described later) for detecting the operating state of engine 1, and information detected by these various sensors The electronic control unit 12 (hereinafter referred to as ECU 12) for controlling the operation of the system is configured based on the above.
[0024]
The EGR amount control valve 7 and the intake throttle valve 9 are directly driven by, for example, air pressure (negative pressure) or an electric motor, and by setting both to a predetermined opening, a predetermined amount of exhaust gas is recirculated to the intake side.
The EGR cooling device 8 cools EGR gas (exhaust gas recirculated into the intake air through the exhaust gas recirculation pipe 6) through heat exchange with the cooling water (not shown). A high laminated fin type is used. Thereby, the EGR gas is introduced into the cylinder in a state where it is cooled and contracted to a high density, not in a state where it is expanded at a high temperature. As a result, the amount of inert gas in the cylinder can be increased without significantly reducing the amount of oxygen sucked into the cylinder, so that a larger amount of EGR can be performed without increasing the smoke.
[0025]
The trap filter 11 is formed by alternately sealing a honeycomb-shaped flow path made of a porous ceramic such as cordierite or silicon carbide, and an oxidation catalyst mainly containing a noble metal such as Pt or Pd on the filter surface. Is carried.
In the trap filter 11, when exhaust gas containing particulates discharged from the engine 1 passes through the wall surface of the porous ceramic, particulate particles larger than the filter pore diameter are mainly collected on the filter surface. In addition, harmful components such as HC and CO discharged during combustion can be purified by the action of the oxidation catalyst.
[0026]
The amount (deposition amount) of the particulates collected by the trap filter 11 is detected based on the differential pressure across the filter 11, and the filter 11 is regenerated when the accumulation amount exceeds a predetermined value. The regeneration of the filter 11 is performed by post-injecting a small amount of fuel during the expansion stroke of the engine 1. At this time, the temperature of the particulates is lower than usual due to the action of the oxidation catalyst supported on the filter surface (in the absence of a catalyst, a temperature of 600 ° C. or higher is required for particulate combustion, but in the presence of a catalyst, 450 ° C. The temperature rise of the filter 11 is small.
[0027]
The ECU 12 inputs information detected by various sensors such as an engine speed sensor 13, an accelerator opening sensor 14, an injection pressure sensor 15, a differential pressure sensor 16, and an oxygen concentration sensor 17, and based on these information, each cylinder The electromagnetic valve 3a for driving the injector 3 and various actuators such as the intake throttle valve 9 and the EGR amount control valve 7 are electrically controlled, and the trap filter 11 needs to be regenerated based on the output of the differential pressure sensor 16 If it is determined that regeneration is necessary, a small amount of fuel is post-injected during the expansion stroke.
[0028]
The engine speed sensor 13 is disposed on the crankshaft (not shown) of the engine 1 and detects the engine speed.
The accelerator opening sensor 14 detects the accelerator opening from the depression amount of an accelerator pedal (not shown).
The injection pressure sensor 15 is attached to the common rail 2 and detects the fuel pressure in the common rail 2.
The differential pressure sensor 16 is installed at a position where the exhaust pressure can be detected before and after the trap filter 11 and detects the differential pressure across the trap filter 11.
[0029]
The oxygen concentration sensor 17 is attached to the exhaust pipe 4 upstream of the trap filter 11 and detects the oxygen concentration in the exhaust pipe 4.
This oxygen concentration sensor 17 is of a known limit current type that is generally widely used. For example, as shown in FIG. 3, a sensor element 17B is arranged inside a cover 17A having a vent hole 17a, and the sensor element Exhaust gas is introduced from the vent hole 17a to the outside of 17B, and the atmosphere is introduced to the inside of the sensor element 17B.
[0030]
When a voltage is applied to the sensor element 17B, a limit current corresponding to the oxygen concentration in the exhaust gas is generated. However, in order to accurately detect the oxygen concentration with the sensor element 17B, it is necessary to keep the temperature of the sensor element 17B within a predetermined range (for example, 600 to 700 ° C.). Therefore, an electric heater 17C is disposed close to the inside of the sensor element 17B, and the temperature of the sensor element 17B is controlled by the electric heater 17C.
[0031]
Next, the operation of the exhaust emission control device according to the present invention (the processing procedure of the ECU 12) will be described based on the flowchart shown in FIG.
Step 100 ... The engine speed NE, the accelerator opening, and the differential pressure across the trap filter 11 are read from the outputs of the engine speed sensor 13, the accelerator opening sensor 14, and the differential pressure sensor 16.
[0032]
Step 101 (Post-injection Necessity Determining Means of the Present Invention): It is determined whether or not to perform post-injection from the sensor output read in Step 100. This determination is performed by determining whether or not the trap filter 11 needs to be regenerated by a known method. For example, the output of the differential pressure sensor 16 is corrected by the output of an intake air amount sensor (not shown) to calculate the particulate accumulation amount on the trap filter 11, and regeneration is necessary when the calculated accumulation amount exceeds a predetermined value. It is determined that Here, when it is determined that “no post injection is necessary”, the process proceeds to Step 102, and when it is determined that “post injection is necessary”, the process proceeds to Step 106.
[0033]
Step 102 ... The target exhaust oxygen concentration is calculated from a map or the like stored in advance in the ECU 12 based on the engine speed NE and the accelerator opening read in Step 100.
Step 103... The oxygen concentration in the exhaust gas is read from the output of the oxygen concentration sensor 17.
Step104… Compare the target value of exhaust oxygen concentration (target exhaust oxygen concentration calculated in Step102) with the actually detected value (oxygen concentration read in Step103), and the difference between them is a predetermined value (for example, 0.2%) It is determined whether it is smaller. Here, when the difference between the two is equal to or greater than the predetermined value, the process proceeds to Step 105, and when the difference between the two is smaller than the predetermined value, this routine is terminated.
[0034]
Step 105 ... Adjust the EGR amount and return to Step 103 again. Here, the exhaust oxygen concentration detected by the oxygen concentration sensor 17 is fed back, and the opening degree of the EGR amount control valve 7 is controlled. Alternatively, instead of the EGR amount control valve 7, the intake throttle valve 9 may be feedback controlled.
[0035]
Step 106 ... The intake throttle valve 9 and the EGR amount control valve 7 are set to the opening determined from the engine conditions read in Step 100. That is, the opening degree of both is set by open loop control without performing feedback control based on the exhaust oxygen concentration.
Step 107 (Post-injection means of the present invention)... Post-injection is executed, and this routine is terminated. The timing and amount of post-injection are determined based on the operating conditions of the engine 1 and stored in the ECU 12 in advance.
[0036]
(Effects of the first embodiment)
When the EGR amount is controlled by feeding back the exhaust oxygen concentration (sensor output) so that the oxygen concentration in the exhaust gas becomes the target value, as shown in FIG. 4, the target value of the exhaust oxygen concentration (black point a in the figure). ) Is adjusted so that EGR is obtained. As a result, emissions such as particulates and NOx and fuel consumption are maintained at optimum values at the black dots in the figure.
[0037]
However, when the post-injected fuel does not burn in the cylinder and reaches the oxygen concentration sensor 17 without being burned, and burns in the sensor unit, oxygen in the vicinity of the sensor is consumed, so the sensor output is indicated by a broken line in the figure. Decreases as shown. In this case, the sensor output (black point b in the figure) deviates from the target value with the EGR amount of d in the figure. As a result, it is determined that the EGR amount is excessive with respect to the target value, and the EGR amount is reduced to e in the figure so that the sensor output becomes the target value (white point c in the figure).
[0038]
As a result of the above, the emission and the fuel consumption shift to the white points in the figure, respectively, and deviate greatly from the optimum values indicated by the black points.
On the other hand, in the present invention, when performing post-injection, the output of the oxygen concentration sensor 17 is not fed back to control the EGR amount, but the above-mentioned problems can be avoided by controlling the EGR amount by open loop control. . Therefore, a favorable operating state can be maintained regardless of the presence or absence of post-injection.
[0039]
In the above-described embodiment, the trap filter 11 is used as the exhaust purification unit and the post-injection is performed for the regeneration. However, the exhaust purification unit is a flow-through type oxidation catalyst or NOx catalyst. It may be supported on a catalyst having other oxidation performance. Further, the present invention is not limited to the regeneration of the trap filter 11, and is also applied when post-injection is performed to raise the exhaust gas temperature or the catalyst temperature to the catalyst activation temperature when the catalyst is inactive, such as when the engine is started.
[0040]
In addition, in order to significantly reduce NOx and particulates (especially smoke) discharged from the diesel engine 1 at the same time, a technology that combines an extremely large amount of EGR and the retardation of the injection timing is effective. In this type of combustion, A large amount of EGR needs to be accurately controlled, and feedback based on exhaust oxygen concentration is particularly useful.
[0041]
In addition, while reducing smoke, the amount of HC emissions increases, so it is necessary to purify the exhaust gas using a catalyst having oxidation performance. Therefore, in order to make it possible to purify the exhaust gas even during low-speed running with low catalyst activity, it is necessary to raise the temperature of the catalyst above the activation temperature, and post-injection is very promising as a means for that purpose. In this case, since the EGR control with higher accuracy is required in combination with the post injection, a great effect can be obtained by combining with the present embodiment.
[0042]
(Second Embodiment)
FIG. 5 is a flowchart showing a processing procedure of the ECU 12 in the second embodiment.
In the present embodiment, the overall configuration of the system is the same as that of the first embodiment, and the description thereof is omitted.
The operation of the exhaust emission control apparatus according to the present invention will be described based on the flowchart shown in FIG.
[0043]
Step 200 ... The engine speed NE, the accelerator opening, and the differential pressure across the trap filter 11 are read from the outputs of the engine speed sensor 13, the accelerator opening sensor 14, and the differential pressure sensor 16.
Step 201 (Post-injection Necessity Determining Means of the Present Invention): It is determined whether or not to perform post-injection from the sensor output read in Step 200 (refer to Step 101 of the first embodiment for a specific determination method). Here, when it is determined that “no post-injection is necessary”, the process proceeds to Step 206, and when it is determined that “post-injection is necessary”, the process proceeds to Step 202.
[0044]
Step 202 (Post-injection means of the present invention) ... Post injection is executed. The timing and amount of post-injection are determined based on the operating conditions of the engine 1 and stored in the ECU 12 in advance.
Step 203 ... Calculate the in-cylinder temperature Tc at the time of post injection. Although the in-cylinder temperature Tc with respect to the crank angle of the engine 1 changes as shown in FIG. 9, it is determined by the operating conditions of the engine 1 (for example, the rotational speed and the load). Accordingly, the in-cylinder temperature Tc at the time of post-injection (crank angle for post-injection) performed in Step 202 is calculated from the operating conditions.
[0045]
Step 204 (Post-Injection Combustion Determination Means of the Present Invention) It is determined whether or not the in-cylinder temperature Tc calculated in Step 203 is higher than the reference temperature T0. This reference temperature T0 is the lowest temperature at which the post-injected fuel burns in the cylinder under the engine conditions. The reference temperature T0 is stored in advance in the ECU 12, and is set to a constant value (for example, 1000K) or a value that varies depending on engine conditions. Here, when it is determined that Tc <T0, the process proceeds to Step 205, and when it is determined that Tc ≧ T0, the process proceeds to Step 206.
[0046]
Step 205... A correction amount for correcting the exhaust oxygen concentration to decrease is calculated. That is, when the in-cylinder temperature Tc at the time of post-injection is lower than the reference temperature T0, the post-injected fuel reaches the oxygen concentration sensor 17 without burning in the cylinder and burns at the sensor unit. Since oxygen is consumed at that time, the oxygen concentration sensor 17 cannot detect the oxygen concentration that should originally be detected (remaining as a result of combustion in the cylinder).
[0047]
In order to avoid this, when the unburned fuel reaches the oxygen concentration sensor 17, the exhaust oxygen concentration that is the target of EGR amount control is corrected to decrease by the amount of oxygen consumed by the sensor unit. Here, the correction amount is calculated. When calculating the correction amount, for example, the correction amount is changed in accordance with the difference between Tc and T0, and the smaller the difference is, the smaller the correction amount is.
[0048]
Step 206 ... The corrected target oxygen concentration is calculated by adding the correction amount calculated in Step 205 to the target oxygen concentration before correction. However, when the determination result of Step 201 is NO and when the determination result of Step 204 is NO, the target oxygen concentration before correction is set. The target oxygen concentration before correction is calculated based on the engine speed NE and the accelerator opening read in Step 200. This is stored in advance in the ECU 12 based on the operating conditions of the engine 1.
Step 207: The oxygen concentration in the exhaust gas is read from the output of the oxygen concentration sensor 17.
[0049]
Step 208 ... The target value of the exhaust oxygen concentration (the corrected target exhaust oxygen concentration calculated in Step 206) is compared with the actually detected value (the oxygen concentration read in Step 207), and the difference between the two is a predetermined value (for example, 0. 0). 2%) or less. If the difference between the two is equal to or greater than the predetermined value, the process proceeds to Step 209. If the difference between the two is smaller than the predetermined value, the present routine is terminated.
Step 209: Adjust the EGR amount and return to Step 207 again.
[0050]
In this embodiment, when it is determined that the post-injected fuel does not burn in the cylinder (when the determination result in Step 204 is NO), the output of the oxygen concentration sensor 17 is lower than the actual oxygen concentration in the exhaust gas. However, since the target value of the exhaust oxygen concentration is corrected to decrease, the EGR amount is not significantly reduced and can be controlled to an appropriate amount. Therefore, a favorable operating state can be maintained regardless of the presence or absence of post-injection.
[0051]
(Third embodiment)
FIG. 6 is a flowchart showing a processing procedure of the ECU 12 in the third embodiment.
In the present embodiment, the overall configuration of the system is the same as that of the first embodiment, and the description thereof is omitted.
The operation of the exhaust emission control apparatus according to the present invention will be described based on the flowchart shown in FIG. However, in this embodiment, a part of the operation described in the second embodiment is changed, and only the parts (Step 305 to Step 307) different from the second embodiment will be described here.
[0052]
Step 305... A correction amount for increasing the output of the oxygen concentration sensor 17 is calculated. That is, when the in-cylinder temperature Tc at the time of post-injection is lower than the reference temperature T0, the post-injected fuel reaches the oxygen concentration sensor 17 without burning in the cylinder and burns at the sensor unit. Since oxygen is consumed at that time, the oxygen concentration sensor 17 cannot detect the oxygen concentration that should originally be detected (remaining as a result of combustion in the cylinder).
[0053]
In order to avoid this, when the unburned fuel reaches the oxygen concentration sensor 17, the oxygen concentration in the exhaust gas detected by the oxygen concentration sensor 17 is increased by an amount corresponding to the amount of oxygen consumed by the sensor unit. To do. Here, the correction amount is calculated. When calculating the correction amount, for example, the correction amount is changed in accordance with the difference between Tc and T0, and the smaller the difference is, the smaller the correction amount is.
[0054]
Step 306 ... The target exhaust oxygen concentration is calculated based on the engine speed NE and the accelerator opening that are read in Step 300. This is stored in advance in the ECU 12 based on the operating conditions of the engine 1.
Step 307: The oxygen concentration in the exhaust gas is read from the output of the oxygen concentration sensor 17, and the corrected oxygen concentration is calculated according to the correction amount calculated in Step 305.
[0055]
In this embodiment, when it is determined that the post-injected fuel does not burn in the cylinder (when the determination result in Step 304 is NO), the unburned fuel is burned and oxygen is consumed in the sensor unit. Even if the output of the oxygen concentration sensor 17 decreases, the output of the oxygen concentration sensor 17 is corrected to increase, so that the EGR amount is not significantly reduced and can be controlled to an appropriate amount. Therefore, a favorable operating state can be maintained regardless of the presence or absence of post-injection.
[0056]
(Fourth embodiment)
FIG. 7 is an overall configuration diagram of an exhaust purification device applied to the four-cylinder diesel engine 1, and FIG. 8 is a flowchart showing a processing procedure of the ECU 12 in the fourth embodiment.
This embodiment differs from the system described in the first embodiment only in that a temperature sensor 18 is installed in the exhaust pipe 4 upstream of the trap filter 11, and the other system configurations are the same. The description is omitted.
[0057]
The operation of the exhaust emission control apparatus according to the present invention will be described based on the flowchart shown in FIG.
Step 400 ... From the outputs of the engine speed sensor 13, the accelerator opening sensor 14, the differential pressure sensor 16, and the temperature sensor 18, the engine speed NE, the accelerator opening, the differential pressure across the trap filter 11, and the trap filter 11 Read the temperature Ta of the inflowing exhaust gas.
[0058]
Step 401 (Post-injection Necessity Determining Means of the Present Invention): It is determined from the sensor output read in Step 400 whether or not post-injection is to be performed (see Step 101 in the first embodiment for a specific determination method). Here, when it is determined that “post injection is necessary”, the process proceeds to Step 402, and when it is determined that “no post injection is necessary”, the process proceeds to Step 406.
Step 402 (Post-injection means of the present invention)... Post injection is executed. The timing and amount of post-injection are determined based on the operating conditions of the engine 1 and stored in the ECU 12 in advance.
[0059]
Step 403 ... The exhaust gas temperature Tt is calculated based on the operating conditions of the engine 1 read in Step 400. The correlation between the operating condition of the engine 1 and the exhaust temperature is stored in the ECU 12 in advance.
Step 404 (Exhaust temperature comparison means of the present invention): It is determined whether or not the actual exhaust temperature Ta read in Step 400 is higher than the exhaust temperature Tt calculated in Step 403. If Ta ≦ Tt is determined, the process proceeds to Step 405. If Ta> Tt is determined, the process proceeds to Step 406.
[0060]
Step 405... A correction amount for correcting the exhaust oxygen concentration to decrease is calculated. That is, even if the post-injection is being performed, if Ta ≦ Tt, the post-injected fuel does not burn in the cylinder, so the post-injected fuel reaches the oxygen concentration sensor 17 and burns at the sensor unit. Since oxygen is consumed at that time, the oxygen concentration sensor 17 cannot detect the oxygen concentration that should originally be detected (remaining as a result of combustion in the cylinder).
[0061]
In order to avoid this, when the unburned fuel reaches the oxygen concentration sensor 17, the exhaust oxygen concentration that is the target of EGR amount control is corrected to decrease by the amount of oxygen consumed by the sensor unit. Here, the correction amount is calculated. When calculating the correction amount, for example, the correction amount is changed according to the difference between Ta and Tt, and the smaller the difference is, the smaller the correction amount is, so that more accurate correction is possible.
[0062]
Step 406... The corrected target oxygen concentration is calculated by adding the correction amount calculated in Step 405 to the target oxygen concentration before correction. However, when the determination result of Step 401 is NO and when the determination result of Step 404 is NO, the target oxygen concentration before correction is set. The target oxygen concentration before correction is calculated based on the engine speed NE and the accelerator opening read in Step 400. This is stored in advance in the ECU 12 based on the operating conditions of the engine 1.
Step 407 ... The oxygen concentration in the exhaust gas is read from the output of the oxygen concentration sensor 17.
[0063]
Step 408 ... The target value of the exhaust oxygen concentration (the corrected target exhaust oxygen concentration calculated in Step 406) is compared with the actually detected value (the oxygen concentration read in Step 407). 2%) or less. If the difference between the two is equal to or greater than the predetermined value, the process proceeds to Step 409. If the difference between the two is smaller than the predetermined value, the present routine is terminated.
Step 409: Adjust the EGR amount and return to Step 407 again.
[0064]
In the present embodiment, the actual exhaust temperature Ta is compared with the exhaust temperature Tt calculated based on the operating conditions of the engine 1 to determine whether or not the post-injected fuel burns in the cylinder. It is possible to more accurately determine whether the injected fuel has burned in the cylinder.
In the present embodiment, as in the second embodiment, the case where the target oxygen concentration is corrected has been described as an example. However, the output of the oxygen concentration sensor 17 may be corrected as in the third embodiment. .
[Brief description of the drawings]
FIG. 1 is a flowchart showing a processing procedure of an ECU according to a first embodiment.
FIG. 2 is an overall configuration diagram of an exhaust emission control device (first embodiment).
FIG. 3 is a schematic diagram showing the structure of an oxygen concentration sensor.
FIG. 4 is a graph showing the relationship between the EGR amount, the emission, and the fuel consumption when the EGR amount is feedback controlled with respect to the target value of the exhaust oxygen concentration.
FIG. 5 is a flowchart showing a processing procedure of an ECU according to the second embodiment.
FIG. 6 is a flowchart showing a processing procedure of an ECU according to a third embodiment.
FIG. 7 is an overall configuration diagram of an exhaust emission control device (fourth embodiment).
FIG. 8 is a flowchart showing a processing procedure of an ECU according to a fourth embodiment.
FIG. 9 is a graph showing a correlation between fuel injection and an average temperature in a cylinder.
FIG. 10 is a graph comparing actual oxygen concentration in exhaust gas and sensor output.
[Explanation of symbols]
1 Diesel engine (internal combustion engine)
6 Exhaust gas recirculation pipe (exhaust gas recirculation means)
7 EGR amount control valve (exhaust gas recirculation means)
9 Intake throttle valve (exhaust gas recirculation means)
11 Trap filter (exhaust gas purification means)
12 ECU (exhaust gas recirculation amount adjusting means)
13 Engine speed sensor (operating state detection means)
14 Accelerator opening sensor (operating state detection means)
17 Oxygen concentration sensor (oxygen concentration detection means)
18 Temperature sensor (exhaust temperature detection means)

Claims (6)

内燃機関の排気の一部を吸気中に戻す排気還流手段と、
前記内燃機関の排気管に設置された排気浄化手段と、
この排気浄化手段より上流の排気管に設置され、排気中の酸素濃度を検出する酸素濃度検出手段と、
この酸素濃度検出手段で検出される排気酸素濃度が予め設定される目標値となるように排気還流量を調整する排気還流量調整手段と、
前記排気浄化手段を活性化させるために前記内燃機関の膨張行程で少量の燃料を後噴射する後噴射手段と、
この後噴射手段で噴射された後噴射燃料が前記内燃機関のシリンダ内で燃焼するか否かを推定または検出する後噴射燃焼判定手段と
を備えた内燃機関の排気浄化装置であって、
前記排気還流量調整手段は、前記後噴射燃焼判定手段にて後噴射燃料が前記内燃機関のシリンダ内で燃焼しないと判定された場合に、前記排気酸素濃度の目標値を減少補正し、その補正後の目標値が得られるように排気還流量を調整することを特徴とする内燃機関の排気浄化装置。
Exhaust gas recirculation means for returning a part of the exhaust gas of the internal combustion engine into the intake air;
Exhaust purification means installed in the exhaust pipe of the internal combustion engine;
An oxygen concentration detection means installed in the exhaust pipe upstream of the exhaust purification means for detecting the oxygen concentration in the exhaust;
Exhaust gas recirculation amount adjusting means for adjusting the exhaust gas recirculation amount so that the exhaust oxygen concentration detected by the oxygen concentration detection means becomes a preset target value;
Post-injection means for post-injecting a small amount of fuel in the expansion stroke of the internal combustion engine to activate the exhaust purification means;
An exhaust purification device for an internal combustion engine comprising post-injection combustion determination means for estimating or detecting whether post-injected fuel injected by the post-injection means is combusted in a cylinder of the internal combustion engine,
The exhaust gas recirculation amount adjusting means reduces and corrects the target value of the exhaust oxygen concentration when the post-injection combustion determining means determines that the post-injected fuel does not burn in the cylinder of the internal combustion engine. An exhaust gas purification apparatus for an internal combustion engine, wherein an exhaust gas recirculation amount is adjusted so that a later target value is obtained.
内燃機関の排気の一部を吸気中に戻す排気還流手段と、
前記内燃機関の排気管に設置された排気浄化手段と、
この排気浄化手段より上流の排気管に設置され、排気中の酸素濃度を検出する酸素濃度検出手段と、
この酸素濃度検出手段で検出される排気酸素濃度が予め設定される目標値となるように排気還流量を調整する排気還流量調整手段と、
前記排気浄化手段を活性化させるために前記内燃機関の膨張行程で少量の燃料を後噴射する後噴射手段と、
この後噴射手段で噴射された後噴射燃料が前記内燃機関のシリンダ内で燃焼するか否かを推定または検出する後噴射燃焼判定手段と
を備えた内燃機関の排気浄化装置であって、
前記排気還流量調整手段は、前記後噴射燃焼判定手段にて後噴射燃料が前記内燃機関のシリンダ内で燃焼しないと判定された場合に、前記酸素濃度検出手段の出力を増加補正し、その補正後の酸素濃度を用いて排気還流量を調整することを特徴とする内燃機関の排気浄化装置。
Exhaust gas recirculation means for returning a part of the exhaust gas of the internal combustion engine into the intake air;
Exhaust purification means installed in the exhaust pipe of the internal combustion engine;
An oxygen concentration detection means installed in the exhaust pipe upstream of the exhaust purification means for detecting the oxygen concentration in the exhaust;
Exhaust gas recirculation amount adjusting means for adjusting the exhaust gas recirculation amount so that the exhaust oxygen concentration detected by the oxygen concentration detection means becomes a preset target value;
Post-injection means for post-injecting a small amount of fuel in the expansion stroke of the internal combustion engine to activate the exhaust purification means;
An exhaust purification device for an internal combustion engine comprising post-injection combustion determination means for estimating or detecting whether post-injected fuel injected by the post-injection means is combusted in a cylinder of the internal combustion engine,
The exhaust gas recirculation amount adjusting means increases the output of the oxygen concentration detecting means when the post-injection combustion determining means determines that the post-injected fuel is not combusted in the cylinder of the internal combustion engine, and corrects the correction. An exhaust gas purification apparatus for an internal combustion engine, characterized in that an exhaust gas recirculation amount is adjusted using a subsequent oxygen concentration.
請求項またはに記載した内燃機関の排気浄化装置において、
前記後噴射燃焼判定手段は、前記内燃機関の運転状態を検出する運転状態検出手段を備え、この運転状態検出手段の出力と後噴射の時期および噴射量を基に、後噴射燃料が燃焼するか否かを判定することを特徴とする内燃機関の排気浄化装置。
The exhaust emission control device for an internal combustion engine according to claim 1 or 2 ,
The post-injection combustion determination unit includes an operation state detection unit that detects an operation state of the internal combustion engine. Whether the post-injection fuel burns based on the output of the operation state detection unit, the timing of the post-injection, and the injection amount. An exhaust purification device for an internal combustion engine, characterized by determining whether or not.
請求項またはに記載した内燃機関の排気浄化装置において、
前記後噴射燃焼判定手段は、前記内燃機関の運転状態を検出する運転状態検出手段と、前記排気浄化手段の上流に設置されて排気温度を検出する排気温度検出手段と、前記運転状態検出手段の出力から求めた推定排気温度と前記排気温度検出手段で検出した検出排気温度とを比較する排気温度比較手段とを備え、この排気温度比較手段で求めた推定排気温度と検出排気温度との差が所定値より小さい場合に、後噴射燃料が燃焼していないと判定することを特徴とする内燃機関の排気浄化装置。
The exhaust emission control device for an internal combustion engine according to claim 1 or 2 ,
The post-injection combustion determining means includes an operating state detecting means for detecting an operating state of the internal combustion engine, an exhaust temperature detecting means installed upstream of the exhaust purification means for detecting an exhaust temperature, and an operating state detecting means. Exhaust temperature comparison means for comparing the estimated exhaust temperature obtained from the output with the detected exhaust temperature detected by the exhaust temperature detection means, and the difference between the estimated exhaust temperature obtained by the exhaust temperature comparison means and the detected exhaust temperature is An exhaust emission control device for an internal combustion engine, wherein when it is smaller than a predetermined value, it is determined that the post-injected fuel is not combusted.
請求項1〜に記載した何れかの内燃機関の排気浄化装置において、
前記内燃機関は、排気還流量を大幅に増加し、あるいは機関出力発生のための主噴射の燃料噴射時期を遅角することで、前記内燃機関の燃料燃焼を緩慢にし、燃料燃焼時のシリンダ内温度をスモークの発生温度以下に低下する燃料温度低下手段を備えることを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4 ,
The internal combustion engine significantly increases the exhaust gas recirculation amount or retards the fuel injection timing of the main injection for generating engine output, thereby slowing down the fuel combustion of the internal combustion engine and An exhaust emission control device for an internal combustion engine, comprising fuel temperature lowering means for lowering the temperature to a smoke generation temperature or lower.
請求項1〜に記載した何れかの内燃機関の排気浄化装置において、
前記排気浄化手段に酸化性能を有する触媒を担持したことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 5 ,
An exhaust gas purification apparatus for an internal combustion engine, wherein the exhaust gas purification means carries a catalyst having oxidation performance.
JP2001172303A 2001-06-07 2001-06-07 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4352635B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001172303A JP4352635B2 (en) 2001-06-07 2001-06-07 Exhaust gas purification device for internal combustion engine
DE10225208A DE10225208B4 (en) 2001-06-07 2002-06-06 Emission control system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172303A JP4352635B2 (en) 2001-06-07 2001-06-07 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002364398A JP2002364398A (en) 2002-12-18
JP4352635B2 true JP4352635B2 (en) 2009-10-28

Family

ID=19013944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172303A Expired - Fee Related JP4352635B2 (en) 2001-06-07 2001-06-07 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4352635B2 (en)
DE (1) DE10225208B4 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196872B2 (en) * 2004-04-09 2008-12-17 いすゞ自動車株式会社 Engine exhaust purification system
US7447587B2 (en) * 2005-12-21 2008-11-04 Honeywell International Inc. Cylinder to cylinder variation control
FR2931887B1 (en) * 2008-05-27 2010-05-07 Renault Sas METHOD FOR CONTROLLING THE TEMPERATURE OF EXHAUST GASES INJECTED IN A COMBUSTION CHAMBER
DE102008032741B3 (en) * 2008-07-11 2010-02-18 Continental Automotive Gmbh Method and diagnostic device for detecting a malfunction in an injection system
JP5487723B2 (en) * 2009-05-25 2014-05-07 日野自動車株式会社 Particulate filter regeneration method
GB2504359B (en) 2012-07-27 2016-01-06 Perkins Engines Co Ltd Method of controlling operation of an engine having both an exhaust fluid recirculation apparatus and an exhaust fluid treatment apparatus
JP7103047B2 (en) * 2018-08-07 2022-07-20 トヨタ自動車株式会社 Internal combustion engine control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122259A (en) * 1983-12-05 1985-06-29 Mitsubishi Motors Corp Exhaust recycling quantity controlling device for diesel engine
JPH05156993A (en) * 1991-12-05 1993-06-22 Hino Motors Ltd Diesel engine
EP0844380B1 (en) * 1996-11-22 2003-03-05 Denso Corporation Exhaust emission control system and method of internal combustion engine

Also Published As

Publication number Publication date
DE10225208B4 (en) 2013-03-21
DE10225208A1 (en) 2003-02-06
JP2002364398A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
KR100504422B1 (en) Exhaust emission control device for engine
US7677029B2 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
US7021051B2 (en) Method for regenerating particulate filter
US7849677B2 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
US7841169B2 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP4371045B2 (en) Exhaust gas purification device for internal combustion engine
US7334398B2 (en) Combustion control apparatus and method for internal combustion engine
JP2006316735A (en) Exhaust emission control device for internal combustion engine
JP4140397B2 (en) Activity determination device for engine oxidation catalyst
JP2008138619A (en) Exhaust emission control device of internal combustion engine
JP2017141791A (en) Control device of vehicle
JP4061995B2 (en) Exhaust gas purification device for internal combustion engine
JP4352635B2 (en) Exhaust gas purification device for internal combustion engine
US7594390B2 (en) Combustion control apparatus and method for internal combustion engine
JP4736930B2 (en) Catalyst control device for internal combustion engine
JP4447510B2 (en) Exhaust gas purification device for internal combustion engine
JP2006152841A (en) Exhaust emission control device of internal combustion engine
JP3975680B2 (en) Control device for internal combustion engine
JP2005048692A (en) Combustion control device for internal combustion engine
JPH11280449A (en) Exhaust emission control device for internal combustion engine
JP4406255B2 (en) Method for maintaining catalyst temperature of internal combustion engine
JP3906726B2 (en) Exhaust gas purification device for internal combustion engine
JP4560979B2 (en) Fuel injection system for diesel engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JPH1054287A (en) Fuel injection controller for in-cylinder direct injection type internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees