JPH10259660A - Concrete form - Google Patents

Concrete form

Info

Publication number
JPH10259660A
JPH10259660A JP9064503A JP6450397A JPH10259660A JP H10259660 A JPH10259660 A JP H10259660A JP 9064503 A JP9064503 A JP 9064503A JP 6450397 A JP6450397 A JP 6450397A JP H10259660 A JPH10259660 A JP H10259660A
Authority
JP
Japan
Prior art keywords
fiber
ribs
thermoplastic resin
concrete
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9064503A
Other languages
Japanese (ja)
Inventor
Tomoshige Ono
友重 尾野
Seiji Hanatani
誠二 花谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9064503A priority Critical patent/JPH10259660A/en
Publication of JPH10259660A publication Critical patent/JPH10259660A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G9/00Forming or shuttering elements for general use
    • E04G9/02Forming boards or similar elements
    • E04G2009/028Forming boards or similar elements with reinforcing ribs on the underside

Landscapes

  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve rigidity and shock resistance by integrally arranging horizontal and vertical ribs and slant reinforcing ribs in the diagonal directions of corner sections on a concrete form made of a fiber-reinforced thermoplastic resin sheet material. SOLUTION: A fiber-reinforced thermoplastic resin sheet material is thermally press-molded to form shuttering 2, vertical ribs 3, horizontal ribs 4, and reinforcing ribs 5 for a concrete form 1. The slant reinforcing ribs 5 in the diagonal directions of corner sections serve to reinforce the corner sections. The second moment of sectional area is increased by the vertical ribs 3 and horizontal ribs 4. Three to seven separation holes can be provided in a line in the longitudinal direction at the center of the flat plate section of each shuttering 2, and glass fibers of 30-40 wt.% with the fiber length of 6-60 mm can be used for the reinforcing fibers of the fiber-reinforced thermoplastic resin sheet material. The secondary moment of sectional area is increased, rigidity can be increased, and deflection or cracks caused by drop shocks at the form corner sections can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化熱可塑性
樹脂シートを用いたコンクリート型枠の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a concrete form using a fiber-reinforced thermoplastic resin sheet.

【0002】[0002]

【従来の技術】コンクリート型枠は、建物の構造体とな
るコンクリートをつくるための仮の容器、すなわち鋳型
である。型枠は使用するせき板の種類により、木製型
枠,合板製型枠,金属製型枠等があるが、現在使用され
ているものは主に合板製型枠及び金属製型枠(メタルフ
ォーム)である。また、最近では、合成樹脂製もしくは
繊維強化熱可塑性樹脂よりなるものも使用され始めてい
る。
2. Description of the Related Art A concrete formwork is a temporary container, ie, a mold, for making concrete to be a building structure. There are wooden forms, plywood forms, metal forms, etc., depending on the type of weir to be used. Currently used forms are mainly plywood forms and metal forms (metal forms). ). Recently, a synthetic resin or a fiber-reinforced thermoplastic resin has begun to be used.

【0003】合板製型枠は、安価で切断,接合が容易で
且つ軽量等の理由から、比較的複雑な形状の多い建築関
係に多く用いられている。一方、金属製型枠は、木製型
枠に比べて寸法,形状が正確であり、また型枠自体の強
度が大きいので支保工が少なくて済み、かつ吸水による
狂いもなくてコンクリート表面が平滑に仕上がる利点が
ある。
[0003] Plywood formwork is widely used in architectural relations having many relatively complex shapes because of its low cost, easy cutting and joining, and light weight. On the other hand, metal formwork is more accurate in dimensions and shape than wooden formwork, and the strength of the formwork itself is small, so less supporting work is required, and the concrete surface is smooth without water absorption. There are advantages to finishing.

【0004】[0004]

【発明が解決しようとする課題】従来の既成コンクリー
ト型枠には、上記のような利点がある反面、次のような
未解決の問題点がある。
The conventional precast concrete formwork has the above advantages, but has the following unsolved problems.

【0005】即ち、合板製型枠の場合は、板自体の剛
性が低いために必要に応じて桟木などで補強しなければ
ならずコンクリート打設施工時の手間がかかる。また、
コンクリートからの剥離性が悪くて、一度使用した型枠
は付着したコンクリートを剥がす等の養生を施さないと
転用できない。また、昨今の環境問題から木材の大量消
費には歯止めがかかっており、今後大量に使用すること
は好ましくない。
[0005] That is, in the case of a plywood form, the rigidity of the plate itself is low, and it must be reinforced with a pier or the like as necessary, which requires time and labor during concrete casting. Also,
Poor removability from concrete means that once used formwork cannot be diverted without curing such as peeling off the adhering concrete. In addition, recent environmental problems have hindered the mass consumption of wood, and it is not preferable to use it in large quantities in the future.

【0006】一方、金属製型枠の場合は、熱伝導がよ
すぎてコンクリート硬化時の保温効果がない。また、錆
が生じてコンクリート表面を汚すなどの弊害がある。更
に、型枠自体が重くて取り扱いが不便である。
On the other hand, in the case of a metal mold, heat conduction is so good that there is no heat retention effect when concrete is hardened. In addition, there is an adverse effect such as rust being generated and soiling the concrete surface. Furthermore, the mold itself is heavy and inconvenient to handle.

【0007】合成樹脂製型枠は上記合板製及び金属製
型枠の問題点を解決し得るもので、原料樹脂としては、
脱型時の剥離性を考慮して、コンクリートとのなじみの
小さい、すなわちコンクリート中にある水酸基等との相
互作用の小さい、官能基をなるべく含まない樹脂が用い
られている。このような樹脂として、ポリプロピレン,
ポリエチレン等のポリオレフィン系のものが選ばれる
が、しかし、合成樹脂単体では剛性が小さすぎることか
ら、ガラス繊維のような比較的安価な強化繊維を添加し
た繊維強化樹脂が用いられるようになっている。この繊
維強化熱可塑性樹脂から形成したコンクリート型枠は軽
量でかつ耐久性に富むことから、最近、特に注目される
ようになっている。
The synthetic resin mold can solve the problems of the plywood and metal molds described above.
In consideration of the releasability at the time of demolding, a resin which has a low affinity with concrete, that is, a resin which has a small interaction with a hydroxyl group or the like in the concrete and which does not contain a functional group as much as possible is used. Such resins include polypropylene,
Polyolefin-based materials such as polyethylene are selected, however, since the rigidity of the synthetic resin alone is too small, fiber-reinforced resins to which relatively inexpensive reinforcing fibers such as glass fibers are added have been used. . The concrete formwork formed from the fiber-reinforced thermoplastic resin has recently been particularly noted because of its light weight and high durability.

【0008】しかし、既存の合成樹脂製型枠は型枠自体
の剛性が大きくないため、セパレータとの締結を増やす
ことで型枠のたわみを防いでおり、したがって金属製型
枠等に比べて施工時の工数が増え作業性が低い。型枠自
体の剛性を大きくするには、合成樹脂の弾性率が金属に
比し桁違いに小さいことから、型枠の形状を検討するこ
とが必要である。合成樹脂製型枠が射出成形品の場合
は、含有させる補強繊維が短繊維であるから成形品の隅
々まで繊維が行き渡り易く、比較的複雑な形状をとるこ
とが可能で、例えば多くのリブを設けて剛性をもたせる
ことができる。しかし、反面、短繊維を用いた繊維強化
樹脂は一般に衝撃に弱く、型枠を落としたときの衝撃力
で型枠端部やリブ先端が割れてしまう可能性がある。
However, the existing synthetic resin form has a low rigidity of the form itself, and therefore the bending of the form is prevented by increasing the number of fastenings with the separator. Man-hours increase and workability is low. In order to increase the rigidity of the mold itself, it is necessary to study the shape of the mold because the elastic modulus of the synthetic resin is significantly smaller than that of metal. When the synthetic resin mold is an injection-molded product, since the reinforcing fibers to be contained are short fibers, the fibers can easily spread to every corner of the molded product, and can have a relatively complicated shape, for example, many ribs. Is provided to increase rigidity. However, on the other hand, fiber-reinforced resins using short fibers are generally vulnerable to impact, and there is a possibility that the end of the form or the tip of the rib may be broken by the impact force when the form is dropped.

【0009】これに対して、比較的長い繊維を含む合成
樹脂材料を圧縮成形して型枠の剛性を向上することが考
えられる。例えば、特開平6−129094号公報に
は、長さ0.1〜50mmのガラス繊維を15〜35重
量%含有する熱可塑性樹脂を熱プレス成形し、縦に平行
な多数のリブとこれに直交する横リブとを天板と一体成
形して立てることで剛性を増し、大幅な軽量化を図ると
共に桟木を不用にした熱可塑性樹脂製コンクリート型枠
が開示されている。この場合、天板の厚さtおよびリブ
の高さhがt=2.5〜5mm,t+h=25〜70m
mである。なかでもt+h=61〜65mmとすると現
在広く用いられているパネルと桟木とを組み合わせた合
板製コンクリート型枠との併用が可能となり、実用的と
されている。また、リブの数については、特に限定はし
ないが通常は幅方向において20〜300mm間隔で設
けるものとしている。
On the other hand, it is conceivable to improve the rigidity of the mold by compression molding a synthetic resin material containing relatively long fibers. For example, Japanese Unexamined Patent Publication (Kokai) No. 6-129094 discloses that a thermoplastic resin containing glass fibers having a length of 0.1 to 50 mm and containing 15 to 35% by weight is hot-pressed, and a number of vertically parallel ribs and orthogonal ribs are formed. A concrete form made of a thermoplastic resin is disclosed in which rigidity is increased by forming and forming a horizontal rib integrally with a top plate, thereby significantly reducing weight and eliminating the need for a crosspiece. In this case, the thickness t of the top plate and the height h of the rib are t = 2.5 to 5 mm, t + h = 25 to 70 m.
m. Above all, if t + h = 61 to 65 mm, it can be used in combination with a plywood concrete form combining a panel and a pier, which is currently widely used, and is considered practical. The number of ribs is not particularly limited, but is usually provided at intervals of 20 to 300 mm in the width direction.

【0010】しかしながら、強度をあげるためにリブ本
数を増やすと必然的にリブ間隔が狭くなる結果、型枠内
空間を利用する既存の締結用具(UクリップやLピン
等)の使用が困難になり作業性が悪くなる。かといっ
て、リブ間隔をある程度広くとると強度が低下する結
果、特に型枠端部であるコーナ部で、反り等の撓みが生
じたりあるいは落下したときに割れが生じたりし易くな
るという未解決の課題がある。
However, if the number of ribs is increased in order to increase the strength, the rib spacing is inevitably narrowed. As a result, it becomes difficult to use existing fasteners (such as U clips and L pins) that utilize the space in the formwork. Workability deteriorates. However, if the rib spacing is widened to some extent, the strength is reduced, and as a result, bending, such as warpage, or cracking is likely to occur when dropped, especially at the corners at the end of the formwork. Issues.

【0011】そこで本発明は、このような従来のコンク
リート型枠における未解決の課題に着目してなされたも
のであり、比較的剛性が高く、落下等の耐衝撃性にも優
れ、なおかつ施工が容易であり、既存の金属製型枠や合
板製型枠とも併用できる合成樹脂製のコンクリート型枠
を提供するものである。
Accordingly, the present invention has been made in view of such unresolved problems in the conventional concrete formwork, and has relatively high rigidity, excellent impact resistance against dropping and the like, and is easy to construct. An object of the present invention is to provide a synthetic resin concrete form which is easy and can be used together with existing metal forms and plywood forms.

【0012】[0012]

【課題を解決するための手段】本発明に係るコンクリー
ト型枠は、繊維強化熱可塑性樹脂シート材料からなり、
平箱型のせき板と、その内部を複数区画に仕切る縦横の
リブと、コーナ部に対角線方向の斜めの補強リブとを一
体的に備えていることを特徴とするものである。
A concrete form according to the present invention comprises a fiber reinforced thermoplastic resin sheet material,
It is characterized by being provided integrally with a flat box-shaped weir plate, vertical and horizontal ribs dividing the inside thereof into a plurality of sections, and diagonal diagonal reinforcing ribs at corners.

【0013】ここで、前記せき板の平板部中央長手方向
に、3〜7個のセパ孔を一列に設けたものとすることが
できる。また、前記繊維強化熱可塑性樹脂シート材料の
補強用の繊維として繊維長6〜60mmのガラス繊維3
0〜40重量%用いたものとすることができる。
Here, it is possible to provide three to seven separate holes in a line in the longitudinal direction of the center of the flat plate portion of the weir plate. Further, glass fibers 3 to 6 mm in length having a fiber length of 6 to 60 mm are used as reinforcing fibers for the fiber reinforced thermoplastic resin sheet material.
0 to 40% by weight can be used.

【0014】本願発明者は、コンクリート型枠における
リブ配置を有限要素法に基づいて検討し、従来よりリブ
数を減らしても十分な剛性を確保できるコンクリート型
枠の形状を見出して本発明をなすに至った。
The inventors of the present invention have studied the arrangement of ribs in a concrete form based on the finite element method, and have found a shape of a concrete form capable of securing sufficient rigidity even if the number of ribs is reduced as compared with the prior art. Reached.

【0015】本発明に係るコンクリート型枠は、縦横の
リブと、コーナ部の対角線方向の斜めの補強リブとを配
設したことにより断面2次モーメントを増し、剛性を増
している。
The concrete formwork according to the present invention increases the secondary moment of area and the rigidity by arranging the vertical and horizontal ribs and the diagonal reinforcing ribs in the diagonal direction at the corners.

【0016】特に、コーナ部の区画を対角線方向に仕切
る斜めの補強リブにより、型枠コーナ部で発生し易い反
り等の撓みや割れを効果的に防止する。また、こうして
従来弱点であったコーナ部を補強したことにより、型枠
内部を仕切る縦横の補強リブの数を少なくしてリブ間隔
を広くとることも可能になり、その結果、既存の締結用
具が使い易くなって他に特別な締結部品を用意する必要
がない。かくして、作業性が良好になると共に、金属製
型枠や合板製型枠との併用性も向上する。
In particular, the diagonal reinforcing ribs that partition the corner sections in a diagonal direction effectively prevent bending or cracking such as warpage that is likely to occur in the form corners. In addition, by reinforcing the corners, which was a weak point in the past, it was possible to reduce the number of vertical and horizontal reinforcing ribs that partition the inside of the formwork and widen the rib interval, as a result, the existing fastening tools It is easy to use and there is no need to prepare other special fastening parts. Thus, workability is improved, and the compatibility with a metal mold or a plywood mold is improved.

【0017】本発明に係るコンクリート型枠は、セパ孔
の数および配置を任意に設定してよいのであるが、特
に、せき板の中央長手方向に、3〜7個のセパ孔を一列
に設けた構成にすると、セパ孔一個当たりの剛性負担が
0.3〜0.4ton/mmとなり、既成の金属製型枠
や合板製型枠の場合と同等にできる。因みに、既存の繊
維強化合成樹脂製型枠では、3〜7個のセパ孔を一列に
設けてあり、セパ孔一個当たりの剛性負担は0.2to
n/mmと半分にすぎないため、セパ孔の数を倍にして
対応しなけらばならず、対向する型枠を所定間隔に保持
するセパレータの取付け作業が煩雑になる。
In the concrete formwork according to the present invention, the number and arrangement of the separation holes may be arbitrarily set. In particular, three to seven separation holes are provided in a row in the central longitudinal direction of the weir. With this configuration, the rigidity load per separator hole is 0.3 to 0.4 ton / mm, which can be equivalent to the case of an existing metal formwork or plywood formwork. By the way, in the existing fiber-reinforced synthetic resin form, 3 to 7 separator holes are provided in a line, and the rigidity load per separator hole is 0.2 to.
Since it is only n / mm, which is only a half, the number of separator holes must be doubled to cope with it, and the work of attaching the separator that holds the opposing molds at a predetermined interval becomes complicated.

【0018】本発明に係るコンクリート型枠に使用する
繊維強化熱可塑性樹脂シート材料の補強用繊維として
は、ガラス繊維をはじめ金属繊維,炭素繊維等の無機繊
維または合成繊維等の有機繊維をあげることができる。
これらはそれぞれ単独で用いても、あるいは組み合わせ
て用いてもよい。なかでも、ガラス繊維は安価であり好
ましい。その場合、繊維長6〜60mmのガラス繊維を
30〜40重量%用いるのが良い。繊維長が6mm未満
では短か過ぎて、衝撃力に弱く、コンクリート型枠のコ
ーナ部やリブ先端部が容易に割れてしまう。一方、繊維
長が60mmを越えると長過ぎて、繊維間の絡みが大き
くなり、繊維自体の流動性が悪いために成形時に繊維が
成形品端部(特に、リブ部)に入らず、その結果端部の
強度低下をもたらす。
The reinforcing fibers of the fiber-reinforced thermoplastic resin sheet material used in the concrete formwork according to the present invention include glass fibers, inorganic fibers such as metal fibers and carbon fibers, and organic fibers such as synthetic fibers. Can be.
These may be used alone or in combination. Among them, glass fiber is inexpensive and preferable. In that case, it is preferable to use 30 to 40% by weight of glass fiber having a fiber length of 6 to 60 mm. If the fiber length is less than 6 mm, the fiber length is too short, and the fiber is weak against impact force, and the corners and the rib end of the concrete form are easily broken. On the other hand, if the fiber length exceeds 60 mm, the fiber is too long, the entanglement between the fibers increases, and the flowability of the fiber itself is poor, so that the fiber does not enter the end of the molded product (particularly, the rib portion) at the time of molding. This results in reduced strength at the ends.

【0019】ガラス繊維の含有率は、高いほど弾性率が
向上し、結果として型枠の剛性も向上する。しかし40
重量%を越えると流動性が低下してプレス成形による賦
形が困難になる。また、ガラス繊維とマトリックス樹脂
との濡れをよくすることが難しくなって、原料となるシ
ート材の製造が困難になってくる。一方、ガラス繊維の
含有率が30重量%未満では必要な弾性率が得られず、
そのためコンクリート型枠にさらに多くのリブを追加す
る必要が生じる。リブが多くなると、コンクリート型枠
内の空間が狭くなってコンクリート打設施工時に締結用
具の使用が困難になり、作業性が悪くなる。
The higher the glass fiber content, the higher the elastic modulus and, as a result, the rigidity of the mold. But 40
If the content is more than 10% by weight, the fluidity is reduced, and it is difficult to form the composition by press molding. Further, it becomes difficult to improve the wettability between the glass fiber and the matrix resin, and it becomes difficult to manufacture a sheet material as a raw material. On the other hand, if the glass fiber content is less than 30% by weight, the required elastic modulus cannot be obtained,
Therefore, it is necessary to add more ribs to the concrete formwork. When the number of ribs increases, the space in the concrete form becomes narrow, and it becomes difficult to use fasteners at the time of concrete placing work, resulting in poor workability.

【0020】本発明のコンクリート型枠に用いる繊維強
化熱可塑性樹脂シート材料の樹脂成分としては、ポリエ
チレン,ポリプロピレン,ポリアミド,ポリエステル,
ポリスチレン,塩化ビニル樹脂等の熱可塑性樹脂が単独
または二種類以上を組み合わせて使用される。
The resin component of the fiber reinforced thermoplastic resin sheet material used for the concrete formwork of the present invention includes polyethylene, polypropylene, polyamide, polyester,
Thermoplastic resins such as polystyrene and vinyl chloride resins are used alone or in combination of two or more.

【0021】これらの強化繊維材料及び粉末,繊維,フ
レーク等の形態の熱可塑性樹脂材料は、界面活性剤を含
む水に分散させてウエブ抄造部に送り、湿式法でウエブ
が抄造される。このウエブは加熱加圧後、冷却され、繊
維強化熱可塑性樹脂シート材料が得られる。
These reinforcing fiber materials and thermoplastic resin materials in the form of powders, fibers, flakes and the like are dispersed in water containing a surfactant and sent to a web forming section, where the web is formed by a wet method. This web is heated and pressurized and then cooled to obtain a fiber reinforced thermoplastic resin sheet material.

【0022】本発明のコンクリート型枠は、例えば上記
繊維強化熱可塑性樹脂シート材料を熱プレス成形して得
られる。
The concrete formwork of the present invention can be obtained, for example, by hot press molding the above fiber reinforced thermoplastic resin sheet material.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1(a)は本発明の一実施形態
例の平面図、(b)はそのb−b線断面図である。この
ものは、繊維長13mmのガラス繊維40重量%を含有
するガラス繊維強化ポリプロピレン樹脂シート(ケープ
ラシート株式会社製、商品名KPシート)を用い、この
シートを予めポリプロピレン樹脂の溶融温度以上の温度
(210℃)に加熱し、その加熱したものを雌雄の両金
型間に置いてプレス成形したものである。図2にその製
造工程の概要を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view of an embodiment of the present invention, and FIG. 1B is a sectional view taken along line bb. This uses a glass fiber reinforced polypropylene resin sheet (KP sheet manufactured by Cape La Sheet Co., Ltd.) containing 40% by weight of glass fiber having a fiber length of 13 mm. (210 ° C.), and the heated product was placed between both male and female molds and press-molded. FIG. 2 shows an outline of the manufacturing process.

【0024】すなわち、先ず、KPシート10を遠赤外
線ヒータ11により、200〜250℃に予熱する。次
に、予熱したKPシート10を雌雄の金型12の間に投
入する。
That is, first, the KP sheet 10 is preheated to 200 to 250 ° C. by the far infrared heater 11. Next, the preheated KP sheet 10 is put between the male and female molds 12.

【0025】その後、金型12を型締めして、約100
0tonの型締め力によりコンクリート型枠1を成形し
た。このコンクリート型枠1は、コンクリート当板とな
る長方形の板1aの四辺を立ち上げた平箱型のせき板2
の内部を、複数(図では5本)の縦リブ3とこれに直交
する複数(図では5本)の横リブ4とで複数区画に仕切
ると共に、コーナ部に対角線方向の斜めの補強リブ5を
備えた形状である。そして、必要に応じて、せき板2の
中央長手方向に、3〜7個のセパ孔6が一列に形成され
る。3個の場合のセパ孔一個当たりの剛性負担は0.3
5ton/mmである。また、せき板2の立ち上げ面に
は、型枠同士を締結具で連結するための連結用貫通孔7
が形成してある。
Thereafter, the mold 12 is clamped, and about 100
The concrete form 1 was formed with a mold clamping force of 0 ton. The concrete formwork 1 is a flat box-shaped weir board 2 in which four sides of a rectangular board 1a serving as a concrete abutment board are raised.
Is partitioned into a plurality of sections by a plurality of (five in the figure) vertical ribs 3 and a plurality of (five in the figure) horizontal ribs 4 orthogonal thereto, and the diagonal diagonal reinforcing ribs 5 are provided at the corners. It is a shape provided with. Then, if necessary, 3 to 7 separate holes 6 are formed in a row in the central longitudinal direction of the weir plate 2. The rigidity load per separator hole in the case of 3 pieces is 0.3
5 ton / mm. Further, a connecting through hole 7 for connecting the molds with fasteners is provided on the rising surface of the weir plate 2.
Is formed.

【0026】型枠の寸法は、例えば幅W=600mm,
長さL=1800mmを標準サイズとし、その他、任意
の寸法に形成される。補強リブ5による比較的弱いコー
ナ部の補強効果で横リブ4のリブ間隔Hは80mm以上
とすることができる。また、リブ厚みは3〜10mm、
リブ高さは20〜60mmの範囲で使用条件に応じて適
宜に選定する。
The dimensions of the mold are, for example, width W = 600 mm,
The length L is set to 1800 mm as a standard size, and other dimensions are formed. The rib spacing H between the horizontal ribs 4 can be 80 mm or more due to the relatively weak reinforcing effect of the corner portions by the reinforcing ribs 5. The rib thickness is 3 to 10 mm,
The rib height is appropriately selected in the range of 20 to 60 mm according to the use conditions.

【0027】このような形状とされたコンクリート型枠
1は、せき板2と縦リブ3,横リブ4,補強リブ5とが
一体成形されている。そして、コーナ部の対角線方向の
斜めの補強リブ5は、特にたわみが発生し易く、又衝撃
力で割れが発生し易いコンクリート型枠のコーナ部の補
強を果たすもので、これにより例えばコンクリート型枠
1が落下した場合にも、コーナ部で割れることがなくな
る。
In the concrete form 1 having such a shape, the weir plate 2, the vertical ribs 3, the horizontal ribs 4, and the reinforcing ribs 5 are integrally formed. The diagonal reinforcing ribs 5 in the diagonal direction at the corners serve to reinforce the corners of the concrete form, which are particularly prone to bending and cracking due to impact force. Even when 1 falls, it does not break at the corner.

【0028】また、5本の縦リブ3と、5本の横リブ4
との配置により、断面2次モーメントを増大させて、型
枠剛性を増加せしめている。しかも、横リブ4のリブ間
隔Hを80mm以上とすれば、既成の締結具がそのまま
使用できて施工作業も容易になる。
Also, five vertical ribs 3 and five horizontal ribs 4
With this arrangement, the second moment of area is increased to increase the form rigidity. Moreover, if the rib interval H of the horizontal ribs 4 is 80 mm or more, the existing fasteners can be used as they are, and the construction work becomes easy.

【0029】また、セパ孔6を、従来の既存の型枠に揃
えて、せき板2の中央長手方向に一列に形成したことに
より、既存型枠との併用が簡単で施工時の工数が軽減さ
れる。
Further, since the separator holes 6 are aligned with the existing existing formwork and are formed in a line in the central longitudinal direction of the weir plate 2, it can be easily used with the existing formwork and the number of man-hours during construction is reduced. Is done.

【0030】図3は、本発明の他の実施形態例の平面図
である。この場合は、コーナ部の対角線方向の補強リブ
5を、端部の縦リブ3と中央部の横リブ4とが交叉する
点まで内側に延長して形成した点が前記第1の実施形態
例とは異なっている。これにより、コーナ部の一層強い
補強効果が得られる利点がある。
FIG. 3 is a plan view of another embodiment of the present invention. In this case, the first embodiment is characterized in that the diagonal reinforcing ribs 5 at the corners extend inward to the point where the vertical ribs 3 at the ends and the horizontal ribs 4 at the center intersect. Is different from Thereby, there is an advantage that a stronger reinforcing effect of the corner portion can be obtained.

【0031】その他の構成及び作用効果は第1の実施形
態例と同じである。 (実施例)以下に、本発明の実施例と比較例との比較に
より、本発明品の効果を説明する。
The other constructions, functions and effects are the same as those of the first embodiment. (Examples) The effects of the product of the present invention will be described below by comparing the examples of the present invention with comparative examples.

【0032】(実施例1)ガラス繊維含有量40重量%
のガラス繊維強化ポリプロピレン(ケープラシート
(株)製、商品名KPシート)を210度に加熱し、図
1に示したコンクリート型枠を型締め力1000ton
で成形した。型枠の寸法は以下のとおりである。
Example 1 Glass fiber content: 40% by weight
Of glass fiber reinforced polypropylene (KP sheet manufactured by Cape La Sheet Co., Ltd.) was heated to 210 ° C., and the concrete form shown in FIG.
Molded. The dimensions of the formwork are as follows.

【0033】長さ:1800mm、幅:600mm、せ
き板立ち上げ部の高さ:60mm 縦リブ3の厚み:6mm、縦リブ3の間隔:300mm 横リブ4の厚み:図1(b)に図示、横リブ4の問隔:
100mm 補強リブ5の厚み:6mm セパ孔6の直径:10mm 締め付け用具用孔7の直径=8mm(孔の中心が平板部
から30mmの位置) この型枠をJIS A8652に準じ、4点曲げ試験を
行なった。荷重点と支点の位置を図5に示す。600k
gf負荷時のたわみ量を測定した。結果を表1に示す。
Length: 1800 mm, width: 600 mm, height of the riser of the weir plate: 60 mm Thickness of the vertical ribs 3: 6 mm, interval between the vertical ribs 3: 300 mm Thickness of the horizontal ribs 4: illustrated in FIG. , Lateral rib 4 gap:
100 mm Thickness of the reinforcing rib 5: 6 mm Diameter of the separating hole 6: 10 mm Diameter of the hole 7 for the fastening tool = 8 mm (the center of the hole is 30 mm from the flat plate portion) A four-point bending test is performed on this form according to JIS A8652. Done. FIG. 5 shows the positions of the load point and the fulcrum. 600k
The amount of deflection under gf load was measured. Table 1 shows the results.

【0034】また同型状の型枠の施工時のたわみ量を、
有限要素法によるシュミレーション計算した。荷重は施
工面(リブのない面)全体に面圧6ton/m2 かかる
とし、セパ孔3点を完全拘束した(セパ孔6を通る3本
の縦リブ3を端太で補強したことを想定し、リブ先端が
荷重方向に動かないとした)。解析結果を同じく表1に
示す。
The amount of deflection at the time of construction of the same form is
The simulation was calculated by the finite element method. The load is assumed to apply a surface pressure of 6 ton / m 2 on the entire construction surface (surface without ribs), and the three separation holes are completely restrained (assuming that the three vertical ribs 3 passing through the separation holes 6 were reinforced with thick ends) And the rib tip did not move in the load direction). The analysis results are also shown in Table 1.

【0035】さらに、この型枠の落下試験を行なった。
2mの高さから、落下させコーナー部の破損を調べた。
結果を同じく表1に示す。
Further, a drop test of this mold was conducted.
It was dropped from a height of 2 m and the damage of the corner was examined.
The results are also shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】(実施例2)実施例1と同じ材料を用い、
図3に示したコンクリート型枠を実施例1と同じ条件で
成形した。
Example 2 Using the same material as in Example 1,
The concrete form shown in FIG. 3 was molded under the same conditions as in Example 1.

【0038】型枠の寸法は以下のとおりである。 長さ:1800mm、幅:600mm、せき板立ち上げ
部の高さ:60mm 縦リブ3の厚み:6mm、縦リブ3の間隔:300mm 横リブ4の厚み:図3(b)に図示、横リブ4の間隅:
100mm 補強リブ5の厚み:6mm セパ孔6の直径:10mm 締め付け用具用孔7の直径:8mm(孔の中心が平板部
から30mmの位置)4点曲げ試験と有限要素法による
シュミレーション計算、落下試験を実施例1と同じ条件
で行った。結果を表1に示す。
The dimensions of the mold are as follows. Length: 1800 mm, width: 600 mm, height of the riser of the weir board: 60 mm Thickness of the vertical ribs 3: 6 mm, interval between the vertical ribs 3: 300 mm Thickness of the horizontal ribs 4: illustrated in FIG. Four corners:
100 mm Thickness of reinforcing rib 5: 6 mm Diameter of separating hole 6: 10 mm Diameter of fastening tool hole 7: 8 mm (center of hole is 30 mm from flat plate) 4 point bending test, simulation calculation by finite element method, drop test Was performed under the same conditions as in Example 1. Table 1 shows the results.

【0039】(比較例1)実施例1と同じ材料を用い、
図4に示したコンクリート型枠を実施例1と同じ条件で
成形した。
Comparative Example 1 Using the same material as in Example 1,
The concrete form shown in FIG. 4 was molded under the same conditions as in Example 1.

【0040】型枠の寸法は以下のとおりである。 長さ:1800mm、幅:600mm、せき板立ち上げ
部の高さ:60mm 縦リブ3の厚み:6mm、縦リブ3の問隔:300m 横リブ4の厚み:図4(b)に図示、横リブ4の間隅:
100mm セパ孔6の直径:10mm 締め付け用具用孔7の直径:8mm(孔の中心が平板部
から30mmの位置) 4点曲げ試験と有限要素法によるシュミレーション計
算、落下試験を実施例1と同じ条件で行った。結果を表
1に示す。
The dimensions of the mold are as follows. Length: 1800 mm, width: 600 mm, height of the riser of the weir board: 60 mm Thickness of the vertical rib 3: 6 mm, interval between the vertical ribs 3: 300 m Thickness of the horizontal rib 4: illustrated in FIG. Between the corners of rib 4:
100 mm Diameter of separation hole 6: 10 mm Diameter of fastening tool hole 7: 8 mm (center of hole is 30 mm from flat plate) Four-point bending test, simulation calculation by finite element method, and drop test are the same conditions as in Example 1. I went in. Table 1 shows the results.

【0041】[0041]

【発明の効果】以上、説明したように、本発明の請求項
1に係る発明によれば、繊維強化熱可塑性樹脂シート材
料からなるコンクリート型枠に、縦横のリブと、コーナ
部の対角線方向の斜めの補強リブとを一体に配設したた
め、断面2次モーメントを増して剛性が増大でき、且
つ、型枠コーナ部の撓みや落下衝撃による割れを効果的
に防止でき、更には縦横の補強リブのリブ間隔を広くと
ることで既存の締結用具が使い易くて作業性が良好でし
かも既存の金属製型枠や合板製型枠との併用ができると
いう効果を奏する。
As described above, according to the first aspect of the present invention, a concrete formwork made of a fiber reinforced thermoplastic resin sheet material is provided with vertical and horizontal ribs and diagonal corner portions. Since the diagonal reinforcing ribs are arranged integrally, the rigidity can be increased by increasing the second moment of area, and the corners of the form can be effectively prevented from being bent or cracked due to a drop impact. By increasing the rib spacing, the existing fastening tool is easy to use, the workability is good, and there is an effect that it can be used in combination with the existing metal formwork or plywood formwork.

【0042】また、本発明の請求項2に係る発明によれ
ば、上記効果に加えて更に、せき板の平板部中央長手方
向に、3〜7個のセパ孔を一列に設けたため、セパ孔一
個当たりの剛性負担及び配列を既成の金属製型枠や合板
製型枠の場合と同等にでき、その結果、既成型枠との併
用に際しての型枠連結作業が容易で施工工数が軽減され
るという効果が得られる。
According to the second aspect of the present invention, in addition to the above-described effects, 3 to 7 separate holes are provided in a line in the central longitudinal direction of the flat plate portion of the weir plate. The rigidity load and arrangement per piece can be made equal to those of the existing metal formwork or plywood formwork, and as a result, the formwork connection work when used together with the preformed formwork is easy and the number of construction steps is reduced The effect is obtained.

【0043】また、本発明の請求項3に係る発明によれ
ば、繊維強化熱可塑性樹脂シート材料の補強用の繊維と
して繊維長6〜60mmのガラス繊維30〜40重量%
を用いるものとしたため、繊維長が短か過ぎたり含有量
が少な過ぎて製品の耐衝撃性や耐割れ性が低下したり、
反対に繊維長が長過ぎたり含有量が多過ぎて成形時の材
料の流動性が損なわれて賦形が困難になることもなく、
既成のコンクリート型枠と同等の剛性を有する繊維強化
合成樹脂製のコンクリート型枠を低コストで提供できる
という効果を奏する。
According to the third aspect of the present invention, 30 to 40% by weight of glass fiber having a fiber length of 6 to 60 mm is used as a reinforcing fiber of the fiber reinforced thermoplastic resin sheet material.
Because the fiber length is too short or the content is too small, the impact resistance and crack resistance of the product decrease,
Conversely, the fiber length is too long or the content is too large, so that the fluidity of the material at the time of molding is not impaired and shaping becomes difficult,
There is an effect that a concrete form made of fiber-reinforced synthetic resin having the same rigidity as the existing concrete form can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の一実施形態例の平面図、
(b)はそのb−b線断面図である。
FIG. 1A is a plan view of an embodiment of the present invention,
(B) is the bb line sectional view.

【図2】本発明のコンクリート型枠の成形方法の概要を
示す模式図である。
FIG. 2 is a schematic view showing an outline of a method of forming a concrete form according to the present invention.

【図3】(a)は本発明の他の実施形態例の平面図であ
る。(b)はそのb−b線断面図である。
FIG. 3A is a plan view of another embodiment of the present invention. (B) is the bb line sectional view.

【図4】(a)は従来技術の一例の平面図である。
(b)はそのb−b線断面図である。
FIG. 4A is a plan view of an example of the related art.
(B) is the bb line sectional view.

【図5】4点曲げ試験の荷重点,支点を示す断面図であ
る。
FIG. 5 is a sectional view showing a load point and a fulcrum in a four-point bending test.

【図6】有限要素法によるシュミレーションをし、たわ
み量を計算した部分を示す断面図である。
FIG. 6 is a cross-sectional view showing a portion obtained by performing a simulation by the finite element method and calculating a deflection amount.

【符号の説明】[Explanation of symbols]

1 コンクリート型枠 2a せき板平板部 2b せき板たて壁部 3 縦リブ 4 横リブ 5 補強リブ 6 セパ孔 7 締め付け用具用孔 DESCRIPTION OF SYMBOLS 1 Concrete formwork 2a Flat plate part of birth board 2b Vertical wall part of birth board 3 Vertical rib 4 Horizontal rib 5 Reinforcement rib 6 Sepa hole 7 Hole for fastening tool

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化熱可塑性樹脂シート材料からな
り、平箱型のせき板と、その内部を複数区画に仕切る縦
横のリブと、コーナ部に対角線方向の斜めの補強リブと
を一体的に備えていることを特徴とするコンクリート型
枠。
1. A flat box-shaped weir plate made of a fiber-reinforced thermoplastic resin sheet material, longitudinal and lateral ribs for partitioning the inside of the flat plate into a plurality of sections, and diagonal diagonal reinforcing ribs at corners are integrally formed. A concrete formwork comprising:
【請求項2】 前記せき板の平板部中央長手方向に、3
〜7個のセパ孔を一列に設けたことを特徴とする請求項
1記載のコンクリート型枠。
2. In the longitudinal direction of the center of the flat portion of the weir, 3
The concrete formwork according to claim 1, wherein up to seven separator holes are provided in a row.
【請求項3】 前記繊維強化熱可塑性樹脂シート材料の
補強用の繊維が繊維長6〜60mmのガラス繊維30〜
40重量%である請求項1または2に記載のコンクリー
ト型枠。
3. A fiber for reinforcing the fiber reinforced thermoplastic resin sheet material, wherein the reinforcing fiber is glass fiber 30 to fiber length 6 to 60 mm.
The concrete formwork according to claim 1, which is 40% by weight.
JP9064503A 1997-03-18 1997-03-18 Concrete form Pending JPH10259660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9064503A JPH10259660A (en) 1997-03-18 1997-03-18 Concrete form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9064503A JPH10259660A (en) 1997-03-18 1997-03-18 Concrete form

Publications (1)

Publication Number Publication Date
JPH10259660A true JPH10259660A (en) 1998-09-29

Family

ID=13260081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9064503A Pending JPH10259660A (en) 1997-03-18 1997-03-18 Concrete form

Country Status (1)

Country Link
JP (1) JPH10259660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747665B1 (en) 2006-01-03 2007-08-08 (주)엠씨에스공법 Concrete mold for slab and construction method of slab using the same
KR20170091424A (en) * 2016-02-01 2017-08-09 (주)엘지하우시스 plastic form
CN107461028A (en) * 2017-09-21 2017-12-12 付志红 A kind of metal form for wall interior angle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747665B1 (en) 2006-01-03 2007-08-08 (주)엠씨에스공법 Concrete mold for slab and construction method of slab using the same
KR20170091424A (en) * 2016-02-01 2017-08-09 (주)엘지하우시스 plastic form
CN107461028A (en) * 2017-09-21 2017-12-12 付志红 A kind of metal form for wall interior angle

Similar Documents

Publication Publication Date Title
CN105452580B (en) Formwork panel for concrete construction back plate
CN102105644B (en) Improvements to formwork panel and accessory
CN106223606A (en) Wall column formwork system and join mould method
CN108005338A (en) Substrate, substrate floor tile composite module and its assemble method
US20030024443A1 (en) Loading and unloading pallet, forming material and method of producing it
WO2006074538A1 (en) A molding equipment and method to manufacture stackable inter-engaging bricks, blocks, stones and the like with a smooth or embossed face.
JPH10259660A (en) Concrete form
KR20070084171A (en) Heat insulating panel concurrently served in form and form for construction using the same
KR100469849B1 (en) Euro-Form Type Concrete Form Having Structure Reinforced and Method for Manufacturing of the Same
KR200442723Y1 (en) A concrete mold connecting structure using key
CN209868964U (en) Support structure
JP3230107B2 (en) Synthetic resin unit frame for building formwork
CN110735531A (en) quick assembly disassembly's ground beam template mounting structure
JP7451843B2 (en) Formwork, formwork sets and formwork structures
CN213837726U (en) Reinforced concrete post preparation auxiliary device for building
JP3020217U (en) Partial formwork made of resin with ribs for concrete pouring
CN210857865U (en) Suspension splicing floor
JPH069242Y2 (en) Formwork for slabs with reinforcing ribs
CN210713677U (en) Double-color injection molding elastic suspension splicing floor
KR20110074637A (en) Square bar fixing clamp for mold
EP0646684A1 (en) Water-permeable concrete formwork
CN218083299U (en) Building prefab mould goes out muscle hole fixing device
JP2619223B2 (en) Concrete formwork and method of manufacturing the concrete formwork
CN210713658U (en) Horizontal splicing installation structure of suspension splicing floor
KR101691624B1 (en) the hollow material and the construction method of light slab structure using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108