JPH10255844A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10255844A
JPH10255844A JP9054814A JP5481497A JPH10255844A JP H10255844 A JPH10255844 A JP H10255844A JP 9054814 A JP9054814 A JP 9054814A JP 5481497 A JP5481497 A JP 5481497A JP H10255844 A JPH10255844 A JP H10255844A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
secondary battery
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9054814A
Other languages
Japanese (ja)
Inventor
Shigeo Kimura
重男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9054814A priority Critical patent/JPH10255844A/en
Publication of JPH10255844A publication Critical patent/JPH10255844A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a charging and discharging cycle life and low temperature load characteristics of a battery by reducing the amount of a conductive material added to a positive electrode. SOLUTION: This secondary battery is provided with a negative electrode 1 having sheet-shaped negative electrode collectors 3 and a negative electrode lead 4, and sheet-shaped positive electrode collectors 5 and a positive lead 6, and is formed with a spiral battery element constituted by winding a positive electrode 2 whose positive electrode mixture is produced by means of a carbon master batch method through a separator 7. The battery element is inserted in the bottom part of a battery can 8 through an insulating plate 9. The negative electrode lead 4 is welded to the can bottom of the battery can 8, the positive electrode lead 6 is welded to a safety valve 10, and a battery cover 12 is welded to the battery can 8 through an insulating sealing gasket 11 for constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばリチウムイ
オン二次電池などの非水電解液二次電池に関し、更に詳
しくは、正極電極に添加される導電材の形成方法を改善
して充放電サイクル寿命特性等の電池特性を向上した非
水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and more particularly, to a method of forming a conductive material added to a positive electrode by improving a charge / discharge cycle. The present invention relates to a non-aqueous electrolyte secondary battery having improved battery characteristics such as life characteristics.

【0002】近年の電子技術の進歩により電子機器の高
性能化が進み、それに伴い電子機器に使用される電池の
高エネルギー密度化の要求が高まっている。このような
要望に沿う二次電池として非水電解液二次電池と呼称さ
れる小型・軽量・高エネルギー特性を有する二次電池が
開発されるに至り、この二次電池を用いたビデオカメラ
や携帯電話機などの大幅な小型・軽量化が図られるよう
になった。
[0002] In recent years, the advancement of electronic technology has led to higher performance of electronic equipment, and accordingly, there has been an increasing demand for higher energy density of batteries used in electronic equipment. As a secondary battery that meets such demands, a secondary battery called a non-aqueous electrolyte secondary battery having small, light, and high energy characteristics has been developed, and a video camera and a secondary battery using this secondary battery have been developed. The size and weight of mobile phones and other devices have been greatly reduced.

【0003】このような非水電解液二次電池に用いられ
る正極には、従来より電極の導電性を確保するためカー
ボンブラック等の導電材を電極合剤ペースト中に添加し
ており、電極の導電性を上げるためには導電材量を多く
混入する必要がある。
[0003] A conductive material such as carbon black is conventionally added to the positive electrode used for such a non-aqueous electrolyte secondary battery in an electrode mixture paste in order to secure the conductivity of the electrode. In order to increase conductivity, it is necessary to mix a large amount of conductive material.

【0004】しかしながら、このような状況は電池容量
の観点から見れば容量を減少させることになり好ましく
ない。すなわち、導電材は電池反応に直接関わらないた
め、エネルギー密度向上の為には添加量は少ない方が望
ましいが、単純に導電材量を減少すると電池の充放電サ
イクル寿命特性や低温負荷特性が劣化するという問題が
ある。
[0004] However, such a situation is not preferable because the capacity is reduced from the viewpoint of battery capacity. That is, since the conductive material is not directly involved in the battery reaction, it is desirable to add a small amount of the conductive material to improve the energy density.However, simply reducing the amount of the conductive material deteriorates the charge / discharge cycle life characteristics and low-temperature load characteristics of the battery. There is a problem of doing.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる問題点
に鑑みてなされたもので、その課題は、電池のエネルギ
ー密度を向上する為には正極電極に添加される導電材量
は少ない方が望ましいが、導電材量を減少すると電池の
充放電サイクル寿命特性や低温負荷特性が劣化するとい
う相反する問題点を改善した非水電解液二次電池を提供
することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to reduce the amount of conductive material added to a positive electrode in order to improve the energy density of a battery. It is desirable to provide a non-aqueous electrolyte secondary battery in which the contradictory problems that the charge / discharge cycle life characteristics and the low-temperature load characteristics of the battery deteriorate when the amount of the conductive material is reduced are improved.

【0006】[0006]

【課題を解決するための手段】かかる課題を解決するた
めに本発明の非水電解液二次電池は、正極集電体の少な
くとも一面に正極活物質、導電材および結着材を含んで
成る正極合剤ペーストを塗布した正極と、負極集電体の
少なくとも一面に負極合剤ペーストを塗布した負極と
を、セパレータを介して積層して積層電極体を形成する
非水電解液二次電池において、非水電解液二次電池にお
ける正極合剤ペーストは、導電材を予め結着材に均一に
分散しておくカーボンマスターバッチ法により形成され
ることを特徴とする。これにより、導電材の正極合剤ペ
ーストに対する分散度(電子導電性)を向上することが
でき、電池のエネルギー密度、充放電サイクル寿命特
性、および低温負荷特性を共に改善する非水電解液二次
電池を実現できる。
In order to solve the above problems, a nonaqueous electrolyte secondary battery of the present invention comprises a positive electrode active material, a conductive material and a binder on at least one surface of a positive electrode current collector. In a nonaqueous electrolyte secondary battery in which a positive electrode coated with a positive electrode mixture paste and a negative electrode coated with a negative electrode mixture paste on at least one surface of a negative electrode current collector are laminated via a separator to form a laminated electrode body. The positive electrode mixture paste in the nonaqueous electrolyte secondary battery is formed by a carbon master batch method in which a conductive material is uniformly dispersed in a binder in advance. As a result, the degree of dispersion (electron conductivity) of the conductive material with respect to the positive electrode mixture paste can be improved, and the non-aqueous electrolyte secondary solution which improves both the energy density, charge / discharge cycle life characteristics, and low-temperature load characteristics of the battery A battery can be realized.

【0007】この導電材は、ファーネスブラック、アセ
チレンブラック、およびグラファイト類のうち、少なく
とも1材料(これらの単独または混合物)により形成さ
れることが望ましい。
The conductive material is desirably made of at least one of furnace black, acetylene black and graphites (single or mixture thereof).

【0008】[0008]

【発明の実施の形態】以下、本発明の好適な実施の形態
について図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0009】先ず、図1を参照して本発明の非水電解液
二次電池の構成を説明する。図1は本発明の非水電解液
二次電池のセル内部を示す概略断面図である。
First, the configuration of the non-aqueous electrolyte secondary battery of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view showing the inside of a cell of a nonaqueous electrolyte secondary battery of the present invention.

【0010】図における本発明の非水電解液二次電池
は、シート状を成した負極集電体3および負極リード4
を備えた負極1と、同じくシート状を成した正極集電体
5および正極リード6を備えた正極2とを、微多孔性ポ
リプロピレンフィルムのセパレータ7を介して巻き込ん
で渦巻き状の巻回体で電池素子を形成する。その電池素
子をニッケルメッキを施した鉄製の電池缶8の底部に絶
縁板9を介して内挿する。そして、負極リード4を電池
缶8の缶底に溶着する。正極リード6を電池の内圧に応
じて電流を遮断する安全弁10に溶着し、電池蓋12を
絶縁封口ガスケット11を介して電池缶8に溶着して構
成する。
A non-aqueous electrolyte secondary battery according to the present invention shown in FIG. 1 has a sheet-shaped negative electrode current collector 3 and a negative electrode lead 4.
And a positive electrode 2 having a sheet-like positive electrode current collector 5 and a positive electrode lead 6 are wound through a microporous polypropylene film separator 7 to form a spiral wound body. A battery element is formed. The battery element is inserted into the bottom of a nickel-plated iron battery can 8 via an insulating plate 9. Then, the negative electrode lead 4 is welded to the bottom of the battery can 8. The positive electrode lead 6 is welded to a safety valve 10 for interrupting a current according to the internal pressure of the battery, and the battery lid 12 is welded to a battery can 8 via an insulating sealing gasket 11.

【0011】本発明の非水電解液二次電池の正極2に
は、Lix MO2 (但し、Mは一種以上の遷移金属、好
ましくはCo、NiまたはMnの少なくとも一種を示
し、0.05≦x≦1.10である)を含んだ活性物が
使用される。かかる正極活性物としては、LiCo
2 、LiNiO2 、Lix Niy Co(1−y)O2 (但
し、0.05≦x≦1.10、0≦y≦1.0)、およ
びLix MnO2 等で表される複合酸化物を挙げること
ができる。
The positive electrode 2 of the non-aqueous electrolyte secondary battery of the present invention includes Li x MO 2 (where M represents at least one transition metal, preferably at least one of Co, Ni or Mn, ≤ x ≤ 1.10). Examples of such a positive electrode active material include LiCo.
O 2 , LiNiO 2 , Li x Ni y Co (1-y) O 2 (provided that 0.05 ≦ x ≦ 1.10, 0 ≦ y ≦ 1.0), and Li x MnO 2 A composite oxide can be used.

【0012】上記複合酸化物は、例えばLi、Co、N
iの炭酸塩を出発原料とし、これら炭酸塩を組成に応じ
て混合し、酸素存在雰囲気下600〜1000℃の温度
範囲で焼成することにより得られる。また、複合酸化物
の出発原料は炭酸塩に限定されず、水酸化物および酸化
物からも同様に合成可能である。
The composite oxide is, for example, Li, Co, N
The carbonate of i is used as a starting material, these carbonates are mixed according to the composition, and the mixture is fired in an oxygen-containing atmosphere at a temperature of 600 to 1000 ° C. In addition, the starting material of the composite oxide is not limited to carbonate, but can be similarly synthesized from hydroxide and oxide.

【0013】一方、本発明の非水電解液二次電池の負極
1には、本発明では炭素材料を用いているが、リチウム
をドープ・脱ドープ可能なものであれば良く、熱分解炭
素類、コークス類(ピッチコークス、ニードルコーク
ス、石油コークス等)、グラファイト類、ガラス状炭素
類、有機高分子化合物焼成体(フェノール樹脂、フラン
樹脂等を適当な温度で焼成し炭素化した材料、炭素繊
維、活性炭素等、または金属リチウム、リチウム合金
(例えばリチウムアルミ合金))の他、ポリアセチレ
ン、ポリピロールも使用可能である。
On the other hand, the negative electrode 1 of the nonaqueous electrolyte secondary battery of the present invention uses a carbon material in the present invention, but any material capable of doping and undoping lithium can be used. , Cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired materials (phenol resin, furan resin, etc., fired and carbonized at an appropriate temperature, carbon fiber) , Activated carbon or the like, metal lithium, lithium alloy (for example, lithium aluminum alloy), polyacetylene, and polypyrrole can also be used.

【0014】本発明の電解液としては、例えばリチウム
塩を電解質として、これを有機溶媒に溶解させた電解液
が用いられる。ここで、有機溶媒は特に限定されるもの
ではないが、プロピレンカーボネート、エチレンカーボ
ネート、1−2ジメトキシエタン、γ−ブチルラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1、3−ジオキソラン、スルホラン、アセトニトリ
ル、ジェチルカーボネート、ジプロビルカーボネート等
の単独、または2種類以上の混合溶媒が使用可能であ
る。電解質としては、LiClO4 、LiAsF6 、L
iBF4 、LiB(C6 5 4 、LiCl、LiB
r、CH3 SO3 Li等が使用可能である。
As the electrolytic solution of the present invention, for example, an electrolytic solution obtained by dissolving a lithium salt as an electrolyte in an organic solvent is used. Here, the organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1-2 dimethoxyethane, γ-butyl lactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, sulfolane, acetonitrile, A single solvent such as chill carbonate and diprovyl carbonate or a mixture of two or more solvents can be used. As the electrolyte, LiClO 4 , LiAsF 6 , L
iBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiB
r, CH 3 SO 3 Li and the like can be used.

【0015】以下、図1を参照しながら本発明の非水電
解液二次電池の実施例および比較例の詳細につき、順次
説明する。
Hereinafter, examples and comparative examples of the non-aqueous electrolyte secondary battery of the present invention will be sequentially described with reference to FIG.

【0016】実施例1 本発明の非水電解液二次電池における正極2を作成する
にあたり、先ず、導電材として比表面積が21.3m2
/gであるロンザ社製のグラファイトKS−6を100
重量%、結着材(以下、単に「バインダー」と記す)と
してポリフッ化ビニリデン(PVDF)を50重量%用
意する。
Example 1 In preparing the positive electrode 2 in the nonaqueous electrolyte secondary battery of the present invention, first, a specific surface area of a conductive material was 21.3 m 2.
/ G of graphite KS-6 manufactured by Lonza Co., Ltd.
% By weight, and 50% by weight of polyvinylidene fluoride (PVDF) as a binder (hereinafter simply referred to as "binder").

【0017】次に、溶媒としてN−2メチル−ピロリド
ン(以下、「NMP」と略記する)を500重量%を用
意し、ボールミルにて混練する。48時間混練後、分散
済の導電材塗料を取り出し、正極活性物であるLiCo
2 と共に混合する。混合比はLiCoO2 91重量
%、バインダーPVDF3重量%、導電材KS−6が6
重量%となるようにマスターバッチ量を調整する。規定
時間分の混合を終了したスラリーを正極集電体5である
帯状のアルミニウム箔の両面に塗布・乾燥後、ローラプ
レス機で圧縮成形して正極2を作成する。なお、本発明
のカーボンマスターバッチ法に用いられる混練機として
は、ボールミルの他、ニーダー、エクストルーダー、プ
ラネタリーミキサー、ロールミル、サンドミル、および
ピンミル(アサダ社製:商品名)などを用いることがで
きる。
Next, 500 wt% of N-2 methyl-pyrrolidone (hereinafter abbreviated as "NMP") is prepared as a solvent and kneaded in a ball mill. After kneading for 48 hours, the dispersed conductive material paint was taken out, and the positive electrode active material LiCo was removed.
Mixing with O 2. The mixing ratio was 91% by weight of LiCoO 2, 3% by weight of binder PVDF, and 6% of conductive material KS-6.
The master batch amount is adjusted so as to be% by weight. The slurry after mixing for a specified time is applied to both sides of a belt-shaped aluminum foil as the positive electrode current collector 5, dried, and then compression-molded with a roller press to form the positive electrode 2. In addition, as a kneader used for the carbon masterbatch method of the present invention, besides a ball mill, a kneader, an extruder, a planetary mixer, a roll mill, a sand mill, a pin mill (trade name, manufactured by Asada Co., Ltd.) and the like can be used. .

【0018】本発明の非水電解液二次電池における負極
活性物は、出発原料として石油ピッチを用い、これを酸
素を含む官能基を10〜20%導入した後、不活性ガス
中100℃で焼成して得たガラス状炭素に近い性質の難
黒鉛炭素材料を用いた。このようにして得た炭素材料を
90重量%、PVDF10重量%の割合で混合して負極
合剤を作成し、これをNMPに分散させてスラリー状と
する。このスラリーを負極集電体3である帯状の銅箔の
両面に塗布・乾燥後、ローラプレス機で圧縮成型して負
極1を作成した。
The negative electrode active material in the non-aqueous electrolyte secondary battery of the present invention uses a petroleum pitch as a starting material, introduces 10 to 20% of a functional group containing oxygen, and then in an inert gas at 100 ° C. A non-graphite carbon material having properties similar to glassy carbon obtained by firing was used. The carbon material thus obtained is mixed at a ratio of 90% by weight and PVDF at 10% by weight to prepare a negative electrode mixture, which is dispersed in NMP to form a slurry. This slurry was applied to both sides of a strip-shaped copper foil as the negative electrode current collector 3, dried, and then compression-molded with a roller press to form the negative electrode 1.

【0019】この帯状の負極1、正極2および25μm
の微孔性ポリプロピレンフィルムからなるセパレータ7
を介して負極1−セパレータ7−正極2−セパレータ7
の順に積層して多数巻回することにより巻回体による電
池素子を作成する。こうして作成した電池素子を前述の
電池缶8に挿入し、正極リード6はアルミニウム製の安
全弁10に溶着し、負極リード4は電池缶8の缶底に溶
着する。
This strip-shaped negative electrode 1, positive electrode 2 and 25 μm
7 made of microporous polypropylene film
Through the negative electrode 1-separator 7-positive electrode 2-separator 7
And a large number of the layers are wound in order to form a battery element of a wound body. The battery element thus prepared is inserted into the battery can 8 described above, the positive electrode lead 6 is welded to the aluminum safety valve 10, and the negative electrode lead 4 is welded to the bottom of the battery can 8.

【0020】この電池缶8の中に、プロピレンカーボネ
ート50vol%とジエチルカーボネート50vol%
混合溶媒中にLiPF6 1モル溶解させた電解液を注入
する。そして、アスファルトを塗布した絶縁封口ガスケ
ット11を介して電池缶8の縁をかしめて、図1に示す
直径18mm、高さ65mmの円筒型非水電解液二次電
池を作成した。
The battery can 8 contains 50 vol% of propylene carbonate and 50 vol% of diethyl carbonate.
An electrolyte solution in which 1 mol of LiPF 6 is dissolved in a mixed solvent is injected. Then, the edge of the battery can 8 was swaged via the insulating sealing gasket 11 coated with asphalt to produce a cylindrical nonaqueous electrolyte secondary battery having a diameter of 18 mm and a height of 65 mm shown in FIG.

【0021】実施例2 本発明の非水電解液二次電池の実施例2として、導電材
としてロンザ社製グラファイトKS−6が4重量%とな
るようにマスターバッチ量を調整するとともに、それ以
外は実施例1と同様にして、直径18mm、高さ65m
mの円筒型非水電解液二次電池を作成した。
Example 2 In Example 2 of the non-aqueous electrolyte secondary battery of the present invention, the masterbatch amount was adjusted so that graphite KS-6 manufactured by Lonza was 4% by weight as a conductive material. Is 18 mm in diameter and 65 m in height in the same manner as in Example 1.
m, a cylindrical non-aqueous electrolyte secondary battery was prepared.

【0022】実施例3 本発明の非水電解液二次電池の実施例3として、導電材
としてファーネスブラックであるコロンビアカーボン社
製SCカーボン(粒径20μm、比表面積220m2
g)を100重量%、バインダーであるPVDFを50
重量%、NMPを500重量%を用意し、ピンミルにて
24時間分散させたものをマスターバッチとした。導電
材ファーネスブラックの配合比は6重量%と実施例1と
同じであり、その他の構成材料の配合比も実施例1と同
様である。以下同様にして、直径18mm、高さ65m
mの円筒型非水電解液二次電池を作成した。
Example 3 As Example 3 of the nonaqueous electrolyte secondary battery of the present invention, SC carbon manufactured by Columbia Carbon Co., Ltd. (particle size: 20 μm, specific surface area: 220 m 2 /
g) of 100% by weight, and binder PVDF of 50%
A master batch was prepared by preparing a weight% and NMP of 500 weight% and dispersing them in a pin mill for 24 hours. The compounding ratio of the conductive material furnace black is 6% by weight, which is the same as in Example 1, and the compounding ratios of the other constituent materials are the same as in Example 1. Similarly, the diameter is 18 mm and the height is 65 m.
m, a cylindrical non-aqueous electrolyte secondary battery was prepared.

【0023】実施例4 本発明の非水電解液二次電池の実施例4として、アセチ
レンブラックであるデンカ社製デンカブラックHS−1
00(粒径42μm、比表面積32m2 /g)を用いて
混合機にサンドミルを用いてマスターバッチを作成した
以外は、実施例1と同様にして、直径18mm、高さ6
5mmの円筒型非水電解液二次電池を作成した。
Example 4 As Example 4 of the non-aqueous electrolyte secondary battery of the present invention, acetylene black, Denka Black HS-1 manufactured by Denka Corporation was used.
A diameter of 18 mm and a height of 6 were performed in the same manner as in Example 1 except that a master batch was prepared using a sand mill as a mixer with a particle size of 00 (particle size: 42 μm, specific surface area: 32 m 2 / g).
A 5 mm cylindrical non-aqueous electrolyte secondary battery was prepared.

【0024】比較例1 実施例1で作成した電池との性能比較のため、上述の各
実施例で導電材としてロンザ社製のグラファイトKS−
6をカーボンマスターバッチの方法によらないで、直接
LiCoO2 、バインダーであるPVDF、グラファイ
トを混合してスラリーとした以外は、実施例1と同様に
して、直径18mm、高さ65mmの円筒型非水電解液
二次電池を試作作成した。
Comparative Example 1 In order to compare the performance with the battery prepared in Example 1, in each of the above Examples, graphite KS- manufactured by Lonza was used as a conductive material.
In the same manner as in Example 1 except that LiCoO 2 , PVDF as a binder, and graphite were directly mixed to form a slurry without depending on the method of carbon masterbatch, a cylindrical non-aqueous material having a diameter of 18 mm and a height of 65 mm was used. A trial production of a water electrolyte secondary battery was made.

【0025】比較例2 同様に、実施例3で行った導電材としてファーネスブラ
ックであるコロンビアカーボン社製SCカーボンをマス
ターバッチの方法によらず、直接LiCoO2、バイン
ダーPVDF、SCカーボンを混合してスラリーとした
以外は、実施例3と同様にして、直径18mm、高さ6
5mmの円筒型非水電解液二次電池を試作作成した。
Comparative Example 2 Similarly, SC carbon manufactured by Columbia Carbon Co., Ltd., which is furnace black, was directly mixed with LiCoO 2 , binder PVDF, and SC carbon as a conductive material in Example 3 without using a masterbatch method. Except that the slurry was used, the same procedure as in Example 3 was carried out.
A prototype of a 5 mm cylindrical non-aqueous electrolyte secondary battery was produced.

【0026】比較例3 実施例4で行ったアセチレンブラックであるデンカ社製
デンカブラックHS−100(商品名)をマスターバッ
チの方法によらず、直接LiCoO2 、バインダーPV
DF、アセチレンブラックを混合してスラリーとした以
外は、実施例4と同様にして、直径18mm、高さ65
mmの円筒型非水電解液二次電池を試作作成した。
Comparative Example 3 Denka black HS-100 (trade name) manufactured by Denka Co., Ltd., which is the acetylene black used in Example 4, was directly subjected to LiCoO 2 and binder PV regardless of the masterbatch method.
Except that DF and acetylene black were mixed to form a slurry, the same procedure as in Example 4 was carried out to obtain a diameter of 18 mm and a height of 65 mm.
A prototype non-aqueous electrolyte secondary battery having a diameter of 1 mm was produced.

【0027】このようにして各100個づつ電池を作成
し、このうち40個をそれぞれ任意に抽出して、以下の
条件にて充放電特性を測定して図表化した。すなわち、
上限電圧4.2V、電流1Aの条件で定電流充電を行っ
た後、終止電圧2.75V、抵抗6Ωの条件にて放電を
行うといった充放電サイクルを繰り返し行い、10サイ
クル目の放電容量および100サイクル目の放電容量を
測定し、容量保持率〔(100サイクル目の放電容量/
10サイクル目の放電容量)×100〕を算出して求め
た。
In this way, 100 batteries were prepared, and 40 batteries were arbitrarily extracted, and the charge / discharge characteristics were measured and charted under the following conditions. That is,
After performing constant-current charging under the conditions of an upper limit voltage of 4.2 V and a current of 1 A, a charge-discharge cycle was repeated in which discharge was performed under the conditions of a final voltage of 2.75 V and a resistance of 6 Ω. The discharge capacity at the cycle was measured, and the capacity retention rate [(discharge capacity at the 100th cycle /
10th cycle discharge capacity) × 100].

【0028】また、電流抵抗の簡易測定として三菱油化
製のハイレスター(商品名)を用いて電極表面の抵抗値
を求めた。続いて、負荷特性には前述の条件にて充電
後、−10℃雰囲気に10時間放置後、700mAの負
荷にて終止電圧2.75Vまで放電を行うものとした。
Further, as a simple measurement of the current resistance, the resistance value of the electrode surface was obtained using a high-rester (trade name) manufactured by Mitsubishi Yuka. Subsequently, the load characteristics were such that after charging under the above-described conditions, the battery was left in an atmosphere of -10 ° C. for 10 hours, and then discharged under a load of 700 mA to a final voltage of 2.75 V.

【0029】上記試験結果について図2を参照して説明
する。図2は本発明の非水電解液二次電池における充放
電特性試験の結果を示す図表である。
The test results will be described with reference to FIG. FIG. 2 is a table showing the results of a charge / discharge characteristic test on the nonaqueous electrolyte secondary battery of the present invention.

【0030】図2から明らかなように、比較例1〜比較
例3のマスターバッチ処理によらない導電材の形成方法
では、実施例1〜実施例4に比して容量保持率が4〜5
%減少し、−10℃放電負荷特性が0.5wh程度低下
することが判る。これに対してカーボンマスターバッチ
にてカーボンまたはグラファイトを分散させた実施例1
〜実施例4の導電材の形成方法では、容量保持率が94
〜95%と良好であり、−10℃放電負荷特性も4.1
〜4.4whと良好であることが知見される。電極の電
気抵抗値においても、マスターバッチを用いて作成した
実施例1〜実施例4のものが20〜50Ω/cm2 と良
好であり、低温負荷特性の良いことを裏付けている。
As is apparent from FIG. 2, in the conductive material forming method according to Comparative Examples 1 to 3 which is not performed by the master batch process, the capacity retention ratio is 4 to 5 compared to Examples 1 to 4.
%, The discharge load characteristic at -10 ° C is reduced by about 0.5 wh. Example 1 in which carbon or graphite was dispersed in a carbon master batch
In the method for forming the conductive material according to the fourth to fourth embodiments, the capacity holding ratio is 94
~ 95%, and the discharge load characteristic at -10 ° C is 4.1.
It is found to be as good as ~ 4.4 wh. Regarding the electric resistance value of the electrodes, those of Examples 1 to 4 prepared using a masterbatch are as good as 20 to 50 Ω / cm 2 , which confirms that the low-temperature load characteristics are good.

【0031】また、実施例1と実施例2の比較である
が、グラファイトKS−6の添加量を4%に減少させた
実施例2では容量が高くなって良好なことが判る。な
お、ここでは各々単一のグラファイト、カーボンにてマ
スターバッチを作成したが、グラファイトとカーボンや
異種のカーボン同士の組み合わせについても可能であ
り、単一系のマスターバッチに限定されるものではな
い。
Further, as a comparison between Example 1 and Example 2, it can be seen that in Example 2 in which the amount of graphite KS-6 added was reduced to 4%, the capacity was high and good. Here, the masterbatch is made of a single graphite and carbon, respectively, but a combination of graphite and carbon or different kinds of carbon is also possible, and the invention is not limited to a single masterbatch.

【0032】本発明方法を適用することにより、次のよ
うな具体的な効果を上げることができる。第1には、カ
ーボンマスター法を用いて導電材を正極に混入するよう
にしたため、添加される導電材量が同じ場合において、
電池の負荷特性を改善できる。第2には、正極に添加さ
れる導電材量を理論的に少なくすることができるため、
高容量の二次電池を実現できる。
The following specific effects can be obtained by applying the method of the present invention. First, since the conductive material is mixed into the positive electrode using the carbon master method, when the amount of the conductive material to be added is the same,
The load characteristics of the battery can be improved. Second, since the amount of conductive material added to the positive electrode can be theoretically reduced,
A high capacity secondary battery can be realized.

【0033】以上本発明の好適な実施の形態例につき詳
細な説明を加えたが、本発明はこの実施の形態例以外に
も各種実施態様が可能である。例えば、本実施の形態例
では帯状の正極、負極およびセパレータを順々に積層し
て渦巻型に多数巻回することにより作成される円筒型非
水電解液二次電池を用いて説明したが、本発明は正極中
に導電材を用いる全ての電池に適用されるものであり、
角型、偏平型電池にも適用可能であり、電池形状に何ら
限定されない。また、非水電解液二次電池に限らずこれ
に属するリチウムイオン二次電池に適用しても同様の効
果が得られることは論を待たない。
Although the preferred embodiment of the present invention has been described in detail, various other embodiments of the present invention are possible in addition to this embodiment. For example, the present embodiment has been described using a cylindrical non-aqueous electrolyte secondary battery that is formed by sequentially laminating a strip-shaped positive electrode, a negative electrode, and a separator and winding them in a spiral shape. The present invention is applied to all batteries using a conductive material in the positive electrode,
The present invention is also applicable to prismatic and flat batteries, and is not limited in any way to the shape of the battery. It goes without saying that the same effect can be obtained even when the present invention is applied not only to the non-aqueous electrolyte secondary battery but also to a lithium ion secondary battery belonging thereto.

【0034】[0034]

【発明の効果】本発明の非水電解液二次電池によれば、
予め導電材をバインダーに混入するカーボンマスターバ
ッチ法により形成するようにしたため、正極に添加され
る導電材量を減少することが可能となり、電池の充放電
サイクル寿命特性を向上できる。それと共に、正極の導
電性を向上することができるため、電池の低温負荷特性
を改善できる効果がある。
According to the non-aqueous electrolyte secondary battery of the present invention,
Since the carbon material is formed in advance by a carbon masterbatch method in which a conductive material is mixed into a binder, the amount of the conductive material added to the positive electrode can be reduced, and the charge / discharge cycle life characteristics of the battery can be improved. At the same time, since the conductivity of the positive electrode can be improved, the low temperature load characteristics of the battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の非水電解液二次電池のセル内部を示
す概略断面図である。
FIG. 1 is a schematic sectional view showing the inside of a cell of a nonaqueous electrolyte secondary battery of the present invention.

【図2】 本発明の非水電解液二次電池における充放電
特性試験の結果を示す図表である。
FIG. 2 is a table showing the results of a charge / discharge characteristic test on a nonaqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…負極集電体、4…負極リー
ド、5…正極集電体、6…正極リード、7…セパレー
タ、8…電池缶、9…絶縁板、10…安全弁、11…絶
縁封口ガスケット、12…電池蓋
DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Negative electrode current collector, 4 ... Negative electrode lead, 5 ... Positive electrode current collector, 6 ... Positive electrode lead, 7 ... Separator, 8 ... Battery can, 9 ... Insulating plate, 10 ... Safety valve, 11: insulating sealing gasket, 12: battery lid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の少なくとも一面に活物質、
導電材および結着材を含んで成る正極合剤ペーストを塗
布した正極と、負極集電体の少なくとも一面に負極合剤
ペーストを塗布した負極とを、セパレータを介して積層
して積層電極体を形成する非水電解液二次電池におい
て、 前記正極合剤ペーストは、前記導電材を予め前記結着材
に均一に分散するカーボンマスターバッチ法により形成
されることを特徴とする非水電解液二次電池。
An active material is provided on at least one surface of a positive electrode current collector.
A positive electrode coated with a positive electrode mixture paste containing a conductive material and a binder, and a negative electrode coated with a negative electrode mixture paste on at least one surface of a negative electrode current collector are laminated via a separator to form a laminated electrode body. In the non-aqueous electrolyte secondary battery to be formed, the positive electrode mixture paste is formed by a carbon masterbatch method in which the conductive material is uniformly dispersed in the binder in advance. Next battery.
【請求項2】 前記導電材は、ファーネスブラック、ア
セチレンブラック、およびグラファイト類のうち、少な
くとも1材料により形成されることを特徴とする請求項
1に記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive material is formed of at least one of furnace black, acetylene black, and graphite.
【請求項3】 前記正極、前記セパレータおよび前記負
極とを、渦巻状に積層して円筒型としたことを特徴とす
る請求項1に記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode, the separator, and the negative electrode are spirally stacked to form a cylindrical shape.
【請求項4】 前記正極、前記セパレータおよび前記負
極とを、N段積層して角型としたことを特徴とする請求
項1に記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode, the separator, and the negative electrode are stacked in an N-stage shape to form a square shape.
JP9054814A 1997-03-10 1997-03-10 Nonaqueous electrolyte secondary battery Withdrawn JPH10255844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9054814A JPH10255844A (en) 1997-03-10 1997-03-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9054814A JPH10255844A (en) 1997-03-10 1997-03-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10255844A true JPH10255844A (en) 1998-09-25

Family

ID=12981180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9054814A Withdrawn JPH10255844A (en) 1997-03-10 1997-03-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10255844A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045424A (en) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp Electrode active material containing composition, electrode using it, and lithium secondary battery
JP2004273433A (en) * 2003-02-19 2004-09-30 Matsushita Electric Ind Co Ltd Electrode for battery and manufacturing method of the same
JP2006100222A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2009206079A (en) * 2008-01-30 2009-09-10 Panasonic Corp Nonaqueous secondary battery and method for producing the same
WO2011117530A1 (en) 2010-03-23 2011-09-29 Arkema France Masterbatch of carbon-based conductive fillers for liquid formulations, especially in li-ion batteries
JP2011192620A (en) * 2010-03-17 2011-09-29 Toyo Ink Sc Holdings Co Ltd Method of manufacturing carbon black dispersion for lithium ion secondary battery electrode
KR101103198B1 (en) * 2008-07-09 2012-01-04 주식회사 엘지화학 A forming method of electrode active material layer of a secondary battery developing dispersibility of electroconductive particles
JP2013004403A (en) * 2011-06-20 2013-01-07 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2013072646A1 (en) * 2011-11-18 2013-05-23 Arkema France Method for preparing a paste-like composition comprising carbon-based conductive fillers
KR20140116108A (en) * 2011-12-19 2014-10-01 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Electrode-forming composition
CN104269558A (en) * 2014-09-30 2015-01-07 中国东方电气集团有限公司 Carbon material-filled binding agent for lithium battery and preparation method of carbon material-filled binding agent
JP2018521450A (en) * 2015-05-27 2018-08-02 エルジー・ケム・リミテッド Electrode mixture, method for producing the same, and secondary battery including the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045424A (en) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp Electrode active material containing composition, electrode using it, and lithium secondary battery
JP2004273433A (en) * 2003-02-19 2004-09-30 Matsushita Electric Ind Co Ltd Electrode for battery and manufacturing method of the same
JP4659367B2 (en) * 2003-02-19 2011-03-30 パナソニック株式会社 Battery electrode and manufacturing method thereof
JP2006100222A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2009206079A (en) * 2008-01-30 2009-09-10 Panasonic Corp Nonaqueous secondary battery and method for producing the same
KR101103198B1 (en) * 2008-07-09 2012-01-04 주식회사 엘지화학 A forming method of electrode active material layer of a secondary battery developing dispersibility of electroconductive particles
JP2011192620A (en) * 2010-03-17 2011-09-29 Toyo Ink Sc Holdings Co Ltd Method of manufacturing carbon black dispersion for lithium ion secondary battery electrode
FR2958084A1 (en) * 2010-03-23 2011-09-30 Arkema France MASTER MIXTURE OF CARBON CONDUCTIVE LOADS FOR LIQUID FORMULATIONS, PARTICULARLY IN LI-ION BATTERIES
WO2011117530A1 (en) 2010-03-23 2011-09-29 Arkema France Masterbatch of carbon-based conductive fillers for liquid formulations, especially in li-ion batteries
JP2013522439A (en) * 2010-03-23 2013-06-13 アルケマ フランス Liquid batch composition, especially a masterbatch of carbon-based conductive fillers for lithium ion batteries
JP2013004403A (en) * 2011-06-20 2013-01-07 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2013072646A1 (en) * 2011-11-18 2013-05-23 Arkema France Method for preparing a paste-like composition comprising carbon-based conductive fillers
FR2982866A1 (en) * 2011-11-18 2013-05-24 Arkema France PROCESS FOR THE PREPARATION OF A PELLET COMPOSITION BASED ON CARBON CONDUCTIVE LOADS
KR20140116108A (en) * 2011-12-19 2014-10-01 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Electrode-forming composition
CN104269558A (en) * 2014-09-30 2015-01-07 中国东方电气集团有限公司 Carbon material-filled binding agent for lithium battery and preparation method of carbon material-filled binding agent
JP2018521450A (en) * 2015-05-27 2018-08-02 エルジー・ケム・リミテッド Electrode mixture, method for producing the same, and secondary battery including the same
US10680276B2 (en) 2015-05-27 2020-06-09 Lg Chem, Ltd. Electrode mixture, preparation method thereof, and secondary battery including the same
US11258093B2 (en) 2015-05-27 2022-02-22 Lg Energy Solution, Ltd. Electrode mixture, preparation method thereof, and secondary battery including the same

Similar Documents

Publication Publication Date Title
KR101378235B1 (en) Lithium secondary battery
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
US20090155694A1 (en) Cathode and lithium battery using the same
US20130130122A1 (en) Anode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the anode active material
KR20070100957A (en) Lithium-ion secondary battery
JP3173225B2 (en) Non-aqueous electrolyte secondary battery
JP3692547B2 (en) Charging method
US20220013784A1 (en) Negative electrode and secondary battery including same
JP4848577B2 (en) Non-aqueous electrolyte battery
KR20080029479A (en) Cathode active material, lithium secondary battery comprising same, and hybrid capacitor comprising same
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP3079382B2 (en) Non-aqueous secondary battery
JPH10255844A (en) Nonaqueous electrolyte secondary battery
JP3046055B2 (en) Non-aqueous secondary battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2005294028A (en) Lithium secondary battery
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
JP3079613B2 (en) Non-aqueous electrolyte secondary battery
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP2009252431A (en) Nonaqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060911