JPH10255797A - Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor

Info

Publication number
JPH10255797A
JPH10255797A JP9057794A JP5779497A JPH10255797A JP H10255797 A JPH10255797 A JP H10255797A JP 9057794 A JP9057794 A JP 9057794A JP 5779497 A JP5779497 A JP 5779497A JP H10255797 A JPH10255797 A JP H10255797A
Authority
JP
Japan
Prior art keywords
manganese
lithium
plate
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9057794A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanai
宏行 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP9057794A priority Critical patent/JPH10255797A/en
Publication of JPH10255797A publication Critical patent/JPH10255797A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode active material for use in a nonaqueous electrolyte secondary battery and, in particular, in a lithium ion secondary battery, wherein cycle durability is excellent, deterioration of a rapid charging/ discharging characteristic is little, and application to a battery system is easy, and a manufacturing method therefor. SOLUTION: A positive electrode active material for use in a nonaqueous electrolyte secondary battery is formed of a lithium-manganese double oxide which is shaped into plate-like particles having an average plate diameter of 1 to 50μm, an average plate thickness of 0.2 to 2μm, and a ratio of plate diameter/plate thickness of 3 or more. Such a lithium-manganese double oxide is obtained by blending manganese oxide, manganese oxyhydroxide, or manganese hydroxide, with lithium hydroxide, lithium carbonate, or another lithium salt, and by heating them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な電極活物
質、その製造方法及びそれを用いた非水電解液二次電池
に関する。特に、リチウムイオン二次電池の正極活物質
およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a novel electrode active material, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same. In particular, it relates to a positive electrode active material for a lithium ion secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、従来の主流
であるニッケルカドミウム二次電池や、ニッケル水素二
次電池などに比較して、高いエネルギー密度を有してい
る。こうしたリチウムイオン二次電池の特長は、現今の
携帯用電子機器に対して小型化、軽量化という要請があ
ることから、注目を集めている。
2. Description of the Related Art A lithium ion secondary battery has a higher energy density than a conventional nickel cadmium secondary battery or nickel hydrogen secondary battery. These features of lithium ion secondary batteries have attracted attention due to the demand for miniaturization and weight reduction of today's portable electronic devices.

【0003】現在市販されているリチウムイオン二次電
池では、正極活物質にLiCoO2で表されるリチウムコバ
ルト複合酸化物が用いられている。しかし、LiCoO2
原材料となるコバルト鉱物の資源量が少なく、その結
果、従来の二次電池よりもかなり高価となる。このた
め、LiCoO2を代替する正極活物質として、LiNiO2で表
されるリチウムニッケル複合酸化物、およびLiMn24
表されるリチウムマンガン複合酸化物が検討されてい
る。これらのうち、特にリチウムマンガン複合酸化物
は、材料が安価であり、かつ環境に対する負荷も少な
く、さらに充放電電位、充放電容量においても現行のLi
CoO2に匹敵するものであるため、LiCoO2を代替する上
で最も適した正極活物質であると考えられている。
[0003] In a commercially available lithium ion secondary battery, a lithium cobalt composite oxide represented by LiCoO 2 is used as a positive electrode active material. However, LiCoO 2 uses a small amount of cobalt mineral as a raw material, and as a result, is considerably more expensive than conventional secondary batteries. For this reason, lithium nickel composite oxides represented by LiNiO 2 and lithium manganese composite oxides represented by LiMn 2 O 4 have been studied as positive electrode active materials replacing LiCoO 2 . Of these, in particular, lithium manganese composite oxides are inexpensive materials, have a low environmental load, and have a high charge-discharge potential and charge-discharge capacity.
Since it is comparable to CoO 2 , it is considered to be the most suitable cathode active material in replacing LiCoO 2 .

【0004】しかしながら、リチウムマンガン複合酸化
物を正極活物質として用いた二次電池は、充放電サイク
ル耐久特性が充分でない。すなわち、繰り返し充放電を
行うと、電池の充放電電気容量が劣化するという難点が
ある。この現象は、例えばGummowらによる論文(R.J.Gu
mmow,A.de Kock,M.M.Thackeray,Solid State Ionic
s,Vo1.69,pp.59-67(1994))に記述されているよう
に、リチウムマンガン複合酸化物に関する以下の性質に
由来するものと考えられる。
However, a secondary battery using a lithium manganese composite oxide as a positive electrode active material has insufficient charge / discharge cycle durability. That is, there is a disadvantage that the charge and discharge electric capacity of the battery is deteriorated when the charge and discharge are repeatedly performed. This phenomenon is described, for example, in a paper by Gummow et al. (RJGu
mmow, A.de Kock, MMThackeray, Solid State Ionic
s, Vo1.69, pp.59-67 (1994)), it is considered to be derived from the following properties of the lithium manganese composite oxide.

【0005】その第一は、特に電池の放電時に、電極表
面において、下式の不均化反応 2Mn3+→Mn4++Mn2+ が生じ、その結果生成するMn2+イオンが電解液中へ溶出
するという性質である。これは不可逆反応であり、従っ
て、Mn2+イオンが電解液中へ溶出すると、リチウムマン
ガン複合酸化物結晶は劣化することになる。
[0005] First, the disproportionation reaction 2 Mn 3+ → Mn 4+ + Mn 2+ of the following formula occurs on the electrode surface, particularly at the time of discharge of the battery, and the resulting Mn 2+ ions are contained in the electrolyte. It is the property of eluting to This is an irreversible reaction, and therefore, when the Mn 2+ ions elute into the electrolytic solution, the lithium manganese composite oxide crystals deteriorate.

【0006】第二のものは、同じ放電状態において、Ja
hn-Teller効果に起因する正方ひずみが結晶中に生じる
という性質である。これも、一般に結晶の劣化をもたら
し、充放電サイクルの進行に伴う充放電容量の低下を生
じさせる。
[0006] The second is that, in the same discharge state, Ja
It is a property that a square strain due to the hn-Teller effect is generated in the crystal. This also generally causes deterioration of the crystal, and causes a decrease in the charge / discharge capacity as the charge / discharge cycle progresses.

【0007】リチウムマンガン複合酸化物のこのような
欠点を改善し、それを用いた二次電池の充放電サイクル
耐久特性を向上させるために、マンガンの一部を他元素
で置き換えて得られる、式LixyMn(2-y)4(式中、M
は、Ti、Ge、Fe、Co、Cr、Zn、Ni、Al等の金属元素を示
し、xは0<x<=1を示し、yは0<y<=1を示
す)で示されるスピネル化合物の使用が提案されている
(例えば、J.M.Tarascon,D.Guyomard,Electrochem.So
c.,Vo1.139,p.937(1991))。これらの金属元素の中
でも、とりわけコバルトでマンガンの一部を置換するこ
とが、リチウムマンガン複合酸化物結晶の劣化抑制に有
効であることが明らかになっている。実際にも、コバル
トを含め、これらの金属元素で置換されてなるリチウム
マンガン複合酸化物を用いた二次電池は、何れも元のリ
チウムマンガン複合酸化物二次電池に比較して、その充
放電サイクル耐久特性が向上する。しかしながら、その
ような電池では、初期充放電容量の大きな低下が観察さ
れる(例えば、李ら、第36回電池討論会(1995年9月12
-14日、電気化学協会主催、京都)予稿集p.181)。ま
た、高価なコバルトを添加することは、リチウムマンガ
ン複合酸化物の製造コスト面のメリットを低下させるこ
とにもなる。
In order to improve such disadvantages of the lithium-manganese composite oxide and to improve the charge / discharge cycle durability of a secondary battery using the same, a formula obtained by partially replacing manganese with another element is used. li x M y Mn (2- y) O 4 ( wherein, M
Represents a metal element such as Ti, Ge, Fe, Co, Cr, Zn, Ni, or Al, x represents 0 <x <= 1, and y represents 0 <y <= 1) The use of compounds has been proposed (eg JMTarascon, D. Guyomard, Electrochem. So
c., Vo1.139, p.937 (1991)). Among these metal elements, it has been found that substituting part of manganese with cobalt is particularly effective in suppressing the deterioration of lithium manganese composite oxide crystals. In fact, any secondary battery using lithium manganese composite oxides substituted with these metal elements, including cobalt, has a higher charge / discharge rate than the original lithium manganese composite oxide secondary battery. The cycle durability characteristics are improved. However, in such batteries, a large decrease in the initial charge / discharge capacity is observed (for example, Lee et al., The 36th Battery Symposium (September 12, 1995)
14th, hosted by the Electrochemical Society, Kyoto) Proceedings p.181). Further, the addition of expensive cobalt also reduces the production cost advantage of the lithium manganese composite oxide.

【0008】[0008]

【発明が解決しようとする課題】リチウムマンガン複合
酸化物のサイクル耐久特性を改善する別の手段として
は、この活物質粒子の粒径範囲を規制する方法が考えら
れる。すなわち、活物質の粒径に微細なものを含む場合
には、電解液との界面において充放電に曝される部分の
割合が大きくなり、上記第一の理由により活物質の劣化
を速めることになるからである。
As another means for improving the cycle durability characteristics of the lithium manganese composite oxide, a method of regulating the particle size range of the active material particles can be considered. That is, when the active material contains fine particles, the proportion of the portion exposed to charge / discharge at the interface with the electrolyte increases, and the deterioration of the active material is accelerated for the first reason. Because it becomes.

【0009】一方、逆に活物質の粒径が大きくなり過ぎ
ると、大電流使用時の電池内部抵抗が大きくなり、急速
充放電特性が悪くなる(例えば、安井ら、電気化学協会
第62回大会(1995年4月3日、東京)予稿集p.261)。
そこで、活物質粒子の大きさを最適な粒径に揃える(微
粒子および粗大な粒子を排除する)ことにより、急速充
放電特性を損なうことなしに、リチウムマンガン複合酸
化物のサイクル耐久特性を改善することが可能になると
考えられる。
On the other hand, if the particle size of the active material is too large, the internal resistance of the battery when a large current is used increases, and the rapid charge / discharge characteristics deteriorate (for example, Yasui et al., The 62nd Annual Meeting of the Electrochemical Society of Japan). (Tokyo, April 3, 1995) Proceedings p.261).
Therefore, by adjusting the size of the active material particles to an optimum particle size (eliminating fine particles and coarse particles), the cycle durability characteristics of the lithium manganese composite oxide can be improved without impairing the rapid charge / discharge characteristics. It will be possible.

【0010】しかし、活物質粒子の粒径を制御しようと
する場合には、活物質粒子径が関与する他の影響も考慮
せねばならない。例えばリチウムイオン二次電池の電極
は、テフロン(登録商標)などの結合剤を用いて電極材
科をアルミ箔などの基質上に固定することにより製造さ
れる。しかし、電極材料粒子の粒子径が粒子径制御によ
り全体的に小さくなれば、十分な強度で基質上に固定す
るためには結合剤を多く使わねばならず、これにより電
極活物質の充填密度が低くなり、電池体積あたりの充放
電容量には不利になる。このことから、粒子の平均粒径
があまり小さいと、充放電容量に不利な影響をもたらす
ことになる。
However, when trying to control the particle size of the active material particles, other influences related to the active material particle size must be considered. For example, an electrode of a lithium ion secondary battery is manufactured by fixing an electrode material family on a substrate such as an aluminum foil using a binder such as Teflon (registered trademark). However, if the particle size of the electrode material particles is reduced as a whole by controlling the particle size, a large amount of binder must be used in order to fix the particles on the substrate with sufficient strength, thereby reducing the packing density of the electrode active material. This is disadvantageous for the charge / discharge capacity per battery volume. From this, if the average particle size of the particles is too small, the charge / discharge capacity is adversely affected.

【0011】さらに、活物質としてより好ましくは、セ
パレーターの細孔よりも大きい、具体的には少なくとも
2μm以上の平均粒径を有するものであることが望まれ
る。すなわち平均粒子径が小さければ、セパレーターの
細孔を通り抜けられる粒子が多くなり、長期間の使用に
伴って活物質の一部が基質から脱離した場合に、極板間
の短絡を招くことがあるからである。ところが実際に
は、この2μm以上という(平均)粒径は、急速充放電
特性にとって十分小さな粒径とはいえない。
Further, it is more preferable that the active material has an average particle diameter larger than the pores of the separator, specifically, at least 2 μm or more. That is, if the average particle diameter is small, more particles can pass through the pores of the separator, and when a part of the active material is detached from the substrate with long-term use, a short circuit between the electrode plates may be caused. Because there is. However, actually, the (average) particle size of 2 μm or more cannot be said to be a sufficiently small particle size for rapid charge / discharge characteristics.

【0012】このように、リチウムマンガン複合酸化物
の粒子径分布を規制して、あまり微細な粒子を含ませな
いようにすることは、リチウムイオン電池電極活物質と
しての充放電サイクル耐久性を改善するために有効であ
る。しかし、急速充放電特性を劣化させないためには、
活物質をあまり大きくできない一方で、電池系への適用
の観点からは、活物質の粒子径にはさらに制限があり、
比較的小さな粒子径に分布を持つことは好ましくない。
これらの条件をすべて満足させる形態を持つリチウムマ
ンガン複合酸化物活物質はこれまで得られていなかっ
た。本発明の課題は、これらの条件を満足させることの
できるリチウムマンガン複合酸化物電極活物質を得るこ
とである。
As described above, by regulating the particle size distribution of the lithium manganese composite oxide so as not to include very fine particles, the charge / discharge cycle durability as a lithium ion battery electrode active material is improved. It is effective to do. However, in order not to deteriorate the rapid charge / discharge characteristics,
While the active material cannot be made too large, from the viewpoint of application to battery systems, the particle size of the active material is further limited,
It is not preferable to have a distribution with a relatively small particle size.
A lithium manganese composite oxide active material having a form satisfying all of these conditions has not been obtained so far. An object of the present invention is to obtain a lithium manganese composite oxide electrode active material that can satisfy these conditions.

【0013】[0013]

【課題を解決するための手段】本発明者らは上記の課題
について鋭意検討の結果、所定形状の板状粒子であるリ
チウムマンガン複合酸化物により、サイクル耐久性に優
れ、急速充放電特性の劣化も少なく、また電池系への適
用も容易な非水電解液二次電池用電極活物質を得られる
ことを見出すに至り、本発明を完成させたものである。
Means for Solving the Problems The present inventors have made intensive studies on the above-mentioned problems, and as a result, the lithium manganese composite oxide, which is a plate-like particle having a predetermined shape, has excellent cycle durability and deteriorates rapid charge / discharge characteristics. The present inventors have found that an electrode active material for a non-aqueous electrolyte secondary battery which can be easily applied to a battery system can be obtained, and the present invention has been completed.

【0014】即ち本発明は、平均板径1〜50μm、平均
板厚0.2〜2μm、板径/板厚の比が3以上の板状粒子で
あるリチウムマンガン複合酸化物からなることを特徴と
する、非水電解液二次電池用正極活物質を提供するもの
である。
That is, the present invention is characterized by comprising a lithium-manganese composite oxide which is a plate-like particle having an average plate diameter of 1 to 50 μm, an average plate thickness of 0.2 to 2 μm, and a ratio of plate diameter / plate thickness of 3 or more. And a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0015】また本発明は、上記の正極活物質を用いて
作成された正極を用いた非水電解液二次電池をも提供す
る。こうした非水電解液二次電池としては特に、金属リ
チウム、炭素その他を負極活物質とするリチウムイオン
二次電池が有用である。さらに本発明は、粒子径の規制
された酸化マンガン、水酸化マンガン、またはオキシ水
酸化マンガンの板状粒子を原科として、上記のリチウム
マンガン複合酸化物を合成する方法をも提供する。さら
に本発明においては、またこのような形態を有する酸化
マンガン、水酸化マンガンまたはオキシ水酸化マンガン
を製造するひとつの方法をも提供する。
The present invention also provides a non-aqueous electrolyte secondary battery using a positive electrode prepared using the above-mentioned positive electrode active material. As such a non-aqueous electrolyte secondary battery, a lithium ion secondary battery using metallic lithium, carbon or the like as a negative electrode active material is particularly useful. Furthermore, the present invention also provides a method for synthesizing the above-described lithium manganese composite oxide using plate-like particles of manganese oxide, manganese hydroxide, or manganese oxyhydroxide having a regulated particle diameter as a starting material. Further, the present invention also provides a method for producing manganese oxide, manganese hydroxide or manganese oxyhydroxide having such a form.

【0016】[0016]

【発明の実施の形態】本発明において、正極活物質とな
るリチウムマンガン複合酸化物は、電子顕微鏡観察によ
る平均板径1〜50μm、平均板厚0.2〜2μm、板径/板
厚の比が3以上の板状粒子である。好ましい範囲は、平
均板径が2〜5μm、平均板厚が0.3〜1μm、板径/板
厚の比が3〜20である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a lithium manganese composite oxide serving as a positive electrode active material has an average plate diameter of 1 to 50 μm, an average plate thickness of 0.2 to 2 μm, and a ratio of plate diameter / plate thickness of 3 by electron microscope observation. These are the plate-like particles described above. Preferred ranges are an average plate diameter of 2 to 5 μm, an average plate thickness of 0.3 to 1 μm, and a ratio of plate diameter / plate thickness of 3 to 20.

【0017】本発明のリチウムマンガン複合酸化物正極
材科を作成する原料となるのは、板状の粒子形態、即ち
平均板径1〜50μm、平均板厚0.2〜2μm、板径/板厚
の比が3以上の板状粒子形態の酸化マンガン、水酸化マ
ンガン、またはオキシ水酸化マンガンである。これらの
板状酸化マンガン、水酸化マンガン、またはオキシ水酸
化マンガンは、一例として以下のようにして合成するこ
とができる。
The raw material for preparing the lithium manganese composite oxide cathode material of the present invention is a plate-like particle form, that is, an average plate diameter of 1 to 50 μm, an average plate thickness of 0.2 to 2 μm, and a ratio of plate diameter / plate thickness. Manganese oxide, manganese hydroxide, or manganese oxyhydroxide in the form of plate-like particles having a ratio of 3 or more. These plate-like manganese oxide, manganese hydroxide, or manganese oxyhydroxide can be synthesized, for example, as follows.

【0018】硫酸マンガン(4水和物)のようなマンガ
ン塩を蒸留水に溶解し、非酸化雰囲気下又は非酸素雰囲
気下、例えば真空や窒素またはアルゴン雰囲気下におい
て、攪件しながらアンモニア水を投入する。この際、雰
囲気中に酸素が含まれるとオキシ水酸化マンガンの微粒
子を生じるようになり、粒子径が規制されたマンガン化
合物の板状形態を得ることは困難になる。反応系は、70
〜100℃でしばらく攪絆した後、析出した固体を非酸化
雰囲気下又は非酸素雰囲気下、例えば真空や窒素または
アルゴン雰囲気下で濾過、水洗する。これをそのまま乾
燥しても良いが、好ましくは次いで有機溶媒、例えばア
セトンで置換してから非水環境下で減圧乾燥した後、空
気中で200〜700℃の温度で加熱する。これは好ましく
は、300〜600℃の温度で空気雰囲気、0.5〜5時間か焼
することによって行われる。これをさらに水洗し、例え
ば80〜150℃の温度でオーブン乾燥することにより、平
均板径2〜5μm、平均板厚約0.5μmの板状のマンガン
化合物粒子を得る。
A manganese salt such as manganese sulfate (tetrahydrate) is dissolved in distilled water, and the ammonia water is stirred under a non-oxidizing atmosphere or a non-oxygen atmosphere, for example, under a vacuum, nitrogen, or argon atmosphere. throw into. At this time, if oxygen is contained in the atmosphere, fine particles of manganese oxyhydroxide will be generated, and it will be difficult to obtain a manganese compound having a regulated particle size. The reaction system is 70
After stirring at 100100 ° C. for a while, the precipitated solid is filtered and washed under a non-oxidizing atmosphere or a non-oxygen atmosphere, for example, under a vacuum, nitrogen or argon atmosphere. Although this may be dried as it is, it is preferably replaced with an organic solvent, for example, acetone, and then dried under reduced pressure in a non-aqueous environment, and then heated at a temperature of 200 to 700 ° C. in air. This is preferably done by calcination at a temperature of 300-600 ° C. in an air atmosphere for 0.5-5 hours. This is further washed with water and oven-dried at a temperature of, for example, 80 to 150 ° C. to obtain plate-like manganese compound particles having an average plate diameter of 2 to 5 μm and an average plate thickness of about 0.5 μm.

【0019】本発明による板状のリチウムマンガン複合
酸化物は、例えば上記のようにして得られたマンガン化
合物から、以下のようにして合成することができる。即
ち上記のようにして得られた平均板径1〜50μm、平均
板厚0.2〜2μm、板径/板厚の比が3以上の板状粒子形
態の酸化マンガン、水酸化マンガンまたはオキシ水酸化
マンガンに、これと1/2モル比率(対マンガン)の水
酸化リチウム、炭酸リチウム、または硝酸リチウムの如
き他のリチウム塩を加えて混合し、600〜700℃で加熱処
理を行う。処理時間は24ないし100時間を要する。この
操作により、リチウムマンガン複合酸化物スピネル結晶
を得ることができる。以下に実施例を用いて本発明をさ
らに詳しく説明するが、本発明がこれら実施例に限定さ
れるものではないことは言うまでもない。なお以下で
「部」とあるのはすべて重量部を意味する。
The plate-like lithium manganese composite oxide according to the present invention can be synthesized, for example, from the manganese compound obtained as described above as follows. That is, manganese oxide, manganese hydroxide or manganese oxyhydroxide in the form of plate-like particles having an average plate diameter of 1 to 50 μm, an average plate thickness of 0.2 to 2 μm, and a ratio of plate diameter / plate thickness of 3 or more obtained as described above. Then, a 1/2 molar ratio (relative to manganese) of another lithium salt such as lithium hydroxide, lithium carbonate, or lithium nitrate is added and mixed, and heat treatment is performed at 600 to 700 ° C. Processing time takes 24 to 100 hours. By this operation, a lithium manganese composite oxide spinel crystal can be obtained. Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. In the following, “parts” all mean parts by weight.

【0020】[0020]

【実施例】【Example】

[実施例1]硫酸マンガン(4水和物)38.6部を蒸留水
600部に溶解し、窒素雰囲気下、85℃で撹拌しながら、
蒸留水200部で希釈したアンモニア4.4部の溶液を投入し
た。反応系は、そのまま85℃で1時間撹拌し、窒素雰囲
気下で濾過し、水洗を行った。つぎにアセトン置換し、
減圧乾燥の後、550℃(空気雰囲気)で1時間加熱し
た。これを水洗し、オーブンで乾燥(100℃)した。
Example 1 38.6 parts of manganese sulfate (tetrahydrate) was distilled water
Dissolve in 600 parts and stir at 85 ° C under nitrogen atmosphere
A solution of 4.4 parts of ammonia diluted with 200 parts of distilled water was added. The reaction system was stirred as it was at 85 ° C. for 1 hour, filtered under a nitrogen atmosphere, and washed with water. Then replace with acetone,
After drying under reduced pressure, it was heated at 550 ° C. (air atmosphere) for 1 hour. This was washed with water and dried in an oven (100 ° C.).

【0021】得られたマンガン化合物7.2部と水酸化リ
チウム1水和物1.93部を混合し、650℃で72時間の加熱
処理を行った。これにより、板径2〜2.5μm、板厚約0.
5μmの板状リチウムマンガン複合酸化物を得た。なおこ
の測定は、電子顕微鏡により写真撮影して行った。
The obtained manganese compound (7.2 parts) and lithium hydroxide monohydrate (1.93 parts) were mixed, and heated at 650 ° C. for 72 hours. As a result, the plate diameter is 2 to 2.5 μm and the plate thickness is approximately
A 5 μm plate-like lithium manganese composite oxide was obtained. This measurement was performed by taking a photograph with an electron microscope.

【0022】電極活物質としての特性評価は以下の手順
によった。即ち得られたリチウムマンガン複合酸化物か
らなる活物質15部、グラファイト1部、アセチレンブラ
ック1部、ポリフッ化ビニリデン1.0部、N-メチルピロ
リドン35部を混合し、ホモミキサーで分散させた。これ
をアルミ箔上に塗布し、乾燥した。
The evaluation of characteristics as an electrode active material was performed according to the following procedure. That is, 15 parts of the obtained active material composed of a lithium manganese composite oxide, 1 part of graphite, 1 part of acetylene black, 1.0 part of polyvinylidene fluoride, and 35 parts of N-methylpyrrolidone were mixed and dispersed by a homomixer. This was applied on an aluminum foil and dried.

【0023】得られた塗膜を切り出して正極を作成し、
リチウム対極を用いてその充放電特性を測定した。電極
間のセパレーターにはポリエチレン多孔膜、電解液には
ジメチルカーボネート/エチレンカーボネート(1/1
(重量比))混合液、電解質には過塩素酸リチウム(1
mol/l)を用いた。
The obtained coating film is cut out to form a positive electrode,
The charge / discharge characteristics were measured using a lithium counter electrode. The separator between the electrodes is a polyethylene porous membrane, and the electrolyte is dimethyl carbonate / ethylene carbonate (1/1).
(Weight ratio)) Lithium perchlorate (1
mol / l).

【0024】[比較例1]市販の針状オキシ水酸化マン
ガン(軸径約0.2μm、軸長約1〜2μm)8部と水酸化
リチウム1水和物1.93部とを混合し、650℃で72時間の
加熱処理を行い、もとの形状の保持された針状のリチウ
ムマンガン複合酸化物を得た。
Comparative Example 1 8 parts of commercially available acicular manganese oxyhydroxide (shaft diameter: about 0.2 μm, axis length: about 1 to 2 μm) and 1.93 parts of lithium hydroxide monohydrate were mixed, and the mixture was heated at 650 ° C. Heat treatment was performed for 72 hours to obtain an acicular lithium manganese composite oxide having the original shape.

【0025】実施例1と同様にして、こうして得られた
リチウムマンガン複合酸化物を活物質として15部、グラ
ファイト1部、アセチレンブラック1部、ポリフッ化ビ
ニリデン1.0部、及びN-メチルピロリドン35部と混合
し、ホモミキサーで分散させ、得られた懸濁液をアルミ
箔上に塗布し、乾燥したところ、塗膜はひび割れし、ま
た基質への接着が悪く一部剥離した。このため、ポリフ
ッ化ビニリデンを1.5部とし、他は同じ配合で懸濁液を
調製し、アルミ簿上に塗布、乾燥したところ、良好な塗
膜を得た。
In the same manner as in Example 1, the lithium manganese composite oxide thus obtained was used as an active material in an amount of 15 parts, 1 part of graphite, 1 part of acetylene black, 1.0 part of polyvinylidene fluoride and 35 parts of N-methylpyrrolidone. The resulting suspension was mixed and dispersed with a homomixer, and the obtained suspension was applied on an aluminum foil and dried. As a result, the coating film cracked and was poorly adhered to the substrate and partially peeled off. For this reason, a suspension was prepared with the same composition except that the amount of polyvinylidene fluoride was 1.5 parts, and the suspension was applied on an aluminum plate and dried to obtain a good coating film.

【0026】得られた塗膜を切り出して正極を作成し、
リチウム対極を用いて、実施例1と同様にその充放電特
性を測定した。
The resulting coating film is cut out to form a positive electrode,
The charge / discharge characteristics of the lithium counter electrode were measured in the same manner as in Example 1.

【0027】[比較例2]和光純薬製炭酸マンガン(マ
ンガン含量45%)8部、水酸化リチウム1水和物1.37部
を混合し、空気雰囲気中850℃に48時間保持することに
より、粒子径0.1μmの微粒子から10μm以上の粗大な粒
子までを含む、リチウムマンガン複合酸化物を得た。
Comparative Example 2 Particles were prepared by mixing 8 parts of manganese carbonate (manganese content: 45%) manufactured by Wako Pure Chemical and 1.37 parts of lithium hydroxide monohydrate and keeping the mixture at 850 ° C. for 48 hours in an air atmosphere. A lithium manganese composite oxide containing fine particles having a diameter of 0.1 μm to coarse particles having a diameter of 10 μm or more was obtained.

【0028】実施例1と同様にして、この活物質15部、
グラファイト1部、アセチレンブラック1部、ポリフッ
化ビニリデン1.0部、N-メチルピロリドン35部を混合
し、ホモミキサーで分散させ、アルミ箔上に塗布し、乾
燥した。得られた塗膜を切り出して正極を作成し、実施
例と同様にリチウム対極を用いてその充放電特性を測定
した。以上の結果について表1に示した。
In the same manner as in Example 1, 15 parts of this active material
One part of graphite, one part of acetylene black, 1.0 part of polyvinylidene fluoride and 35 parts of N-methylpyrrolidone were mixed, dispersed by a homomixer, applied on an aluminum foil, and dried. The obtained coating film was cut out to produce a positive electrode, and the charge / discharge characteristics were measured using a lithium counter electrode in the same manner as in the example. Table 1 shows the above results.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】表1の結果からも理解されるように、本
発明により得られる電極活物質は、サイクル耐久性及び
縦放電容量の実用特性において優れており、また急速充
放電特性の劣化も少ない。さらに実施例1と比較例1の
製造時の比較より、電池系への適用も容易なものであ
る。
As can be understood from the results shown in Table 1, the electrode active material obtained by the present invention is excellent in practical characteristics such as cycle durability and vertical discharge capacity, and also deteriorates rapid charge / discharge characteristics. Few. Further, from the comparison between Example 1 and Comparative Example 1 at the time of manufacture, application to a battery system is also easy.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均板径1〜50μm、平均板厚0.2〜2μ
m、板径/板厚の比が3以上の板状粒子であるリチウム
マンガン複合酸化物からなることを特徴とする、非水電
解液二次電池用正極活物質。
1. An average plate diameter of 1 to 50 μm and an average plate thickness of 0.2 to 2 μm.
m. A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a lithium manganese composite oxide which is a plate-like particle having a plate diameter / plate thickness ratio of 3 or more.
【請求項2】 正極が、平均板径1〜50μm以下、平均
板厚0.2〜2μm、板径/板厚の比が3以上の板状粒子で
あるリチウムマンガン複合酸化物を電極活物質として含
むことを特徴とする、非水電解液二次電池。
2. The positive electrode contains as an electrode active material lithium manganese composite oxide, which is a plate-like particle having an average plate diameter of 1 to 50 μm or less, an average plate thickness of 0.2 to 2 μm, and a ratio of plate diameter / thickness of 3 or more. Non-aqueous electrolyte secondary battery characterized by the above-mentioned.
【請求項3】 平均板径1〜50μm、平均板厚0.2〜2μ
m、板径/板厚の比が3以上の板状粒子である酸化マン
ガン、オキシ水酸化マンガン、又は水酸化マンガンと、
水酸化リチウム、炭酸リチウム、硝酸リチウム又は他の
リチウム塩を混合し、混合物を加熱することを特徴とす
る、非水電解液二次電池用正極活物質の製造方法。
3. An average plate diameter of 1 to 50 μm and an average plate thickness of 0.2 to 2 μm.
m, manganese oxide, manganese oxyhydroxide, or manganese hydroxide, which is a plate-like particle having a plate diameter / plate thickness ratio of 3 or more;
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising mixing lithium hydroxide, lithium carbonate, lithium nitrate or another lithium salt and heating the mixture.
【請求項4】 平均板径1〜50μm、平均板厚0.2〜2μ
m、板径/板厚の比が3以上の板状粒子である酸化マン
ガン、オキシ水酸化マンガン、又は水酸化マンガンが、
マンガン塩を含む水溶液とアルカリを非酸化雰囲気下又
は非酸素雰囲気下で作用させ、析出する固体を非酸化雰
囲気下又は非酸素雰囲気下で取り出し、そのまま乾燥す
るか又は非酸化雰囲気下で有機溶媒に置換してから非水
環境下で乾燥し、200ないし700℃の温度で加熱すること
によって得られることを特徴とする、請求項3の製造方
法。
4. An average plate diameter of 1 to 50 μm and an average plate thickness of 0.2 to 2 μm.
m, manganese oxide, manganese oxyhydroxide, or manganese hydroxide, which is a plate-like particle having a ratio of plate diameter / plate thickness of 3 or more,
An aqueous solution containing a manganese salt and an alkali are allowed to act under a non-oxidizing atmosphere or a non-oxygen atmosphere, and the precipitated solid is taken out under a non-oxidizing atmosphere or a non-oxygen atmosphere and dried as it is or in an organic solvent under a non-oxidizing atmosphere. The method according to claim 3, wherein the method is obtained by drying in a non-aqueous environment after the replacement, and heating at a temperature of 200 to 700 ° C.
JP9057794A 1997-03-12 1997-03-12 Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor Pending JPH10255797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9057794A JPH10255797A (en) 1997-03-12 1997-03-12 Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9057794A JPH10255797A (en) 1997-03-12 1997-03-12 Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH10255797A true JPH10255797A (en) 1998-09-25

Family

ID=13065806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9057794A Pending JPH10255797A (en) 1997-03-12 1997-03-12 Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH10255797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279990A (en) * 2001-03-22 2002-09-27 Mitsubishi Chemicals Corp Method of manufacturing lithium transition metal composite oxide
WO2009139397A1 (en) * 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
JP2011105538A (en) * 2009-11-17 2011-06-02 Tosoh Corp Manganese oxyhydroxide, method for preparing the same and lithium-manganese compound oxide using the same
WO2011162194A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for producing spinel lithium manganese oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279990A (en) * 2001-03-22 2002-09-27 Mitsubishi Chemicals Corp Method of manufacturing lithium transition metal composite oxide
WO2009139397A1 (en) * 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
JPWO2009139397A1 (en) * 2008-05-01 2011-09-22 日本碍子株式会社 Plate-like crystal particles, method for producing the same, and lithium secondary battery
JP2011105538A (en) * 2009-11-17 2011-06-02 Tosoh Corp Manganese oxyhydroxide, method for preparing the same and lithium-manganese compound oxide using the same
WO2011162194A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for producing spinel lithium manganese oxide

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
US6103422A (en) Cathode active material and nonaqueous secondary battery containing the same
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5265187B2 (en) Lithium metal oxide material, synthesis method and use
JP4221448B1 (en) Lithium manganese composite oxide for lithium ion battery and method for producing the same
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
KR101593725B1 (en) Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
EP2367224B1 (en) Method for preparing positive electrode active material for non-aqueous secondary battery
JP2024012441A (en) Lithium ion secondary battery cathode active material and lithium ion secondary battery
JP2004311427A (en) Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery
KR20080088177A (en) Spinel type cathode active material for lithium secondary batteries and manufacturing method for the same
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JPH10255797A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JP2000067869A (en) Non-aqueous electrolyte secondary battery
JP2003346807A (en) Non-aqueous electrolyte secondary battery
JP3055621B2 (en) Non-aqueous electrolyte secondary battery
JP2002321919A (en) Lithium manganese compound oxide and lithium secondary battery
TWI822956B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2020180032A (en) Nickel composite hydroxide, production method of nickel composite hydroxide, positive electrode active substance for lithium ion secondary battery, production method of positive electrode active substance for lithium ion secondary battery, and lithium ion secondary battery
JP2020004587A (en) Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2002097022A (en) New lithium manganese compound oxide and lithium secondary cell