JPH10253324A - Method for measuring film thickness of multi-layer thin film, and method and device for manufacturing optical information recording medium - Google Patents

Method for measuring film thickness of multi-layer thin film, and method and device for manufacturing optical information recording medium

Info

Publication number
JPH10253324A
JPH10253324A JP9051241A JP5124197A JPH10253324A JP H10253324 A JPH10253324 A JP H10253324A JP 9051241 A JP9051241 A JP 9051241A JP 5124197 A JP5124197 A JP 5124197A JP H10253324 A JPH10253324 A JP H10253324A
Authority
JP
Japan
Prior art keywords
film
thickness
thin film
spectral reflectance
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9051241A
Other languages
Japanese (ja)
Other versions
JP3764794B2 (en
Inventor
Tetsuya Akiyama
哲也 秋山
Eiji Ono
鋭二 大野
Nobuo Akahira
信夫 赤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05124197A priority Critical patent/JP3764794B2/en
Priority to US08/883,530 priority patent/US5883720A/en
Publication of JPH10253324A publication Critical patent/JPH10253324A/en
Application granted granted Critical
Publication of JP3764794B2 publication Critical patent/JP3764794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an information recording medium wherein such production loss as accompanies film-formation speed measurement is reduced, by making film-thickness measurement easier of each thin film layer of the optical information recording medium. SOLUTION: Plural thin films are sequentially film-formed on a sample piece at specified speed and time (S1-S5), and a spectral reflectance of a multi-layer thin film on the sample piece is measured after film-forming (S6), and an extreme value is detected from the measurement result (S7 and S13). The film thickness of first thin film is estimated from such side as measuring spectral reflectance based on the difference between the wavelength at extreme value of detected spectral reflectance and its standard value (S7-S10), and the film thickness of first thin film is estimated based on the difference from a standard value in reflectance difference at maximum and minimum values of spectral reflectance, from such side as measuring spectral reflectance, while that of second thin film from such side as measuring spectral reflectance (S12-S17). According to difference between a desired film thickness and the assumed value of film thickness of the obtained first and second thin films, film-forming speed and film-forming time of the first and second thin films are corrected (S11 and S18), and on a new substrate, plural thin films are sequentially film-formed based on corrected respective film-forming speed and film-forming time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に設けられ
たそれぞれ光学定数の異なる複数の薄膜からなる多層薄
膜の膜厚測定方法及びその膜厚測定方法を用いた光学情
報記録媒体の製造方法及び光学情報記録媒体の製造装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a multilayer thin film comprising a plurality of thin films provided on a substrate and having different optical constants, and a method for manufacturing an optical information recording medium using the method. And an optical information recording medium manufacturing apparatus.

【0002】[0002]

【従来の技術】大容量で高密度なメモリーとして、書換
えが可能な消去型と呼ばれる光学情報記録媒体の開発が
進められている。この消去型の光学情報記録媒体の一つ
として、アモルファス状態と結晶状態の間で相変化する
薄膜を記録層として用い、レーザー光の照射による熱エ
ネルギーによって情報の記録及び消去を行うものがあ
る。
2. Description of the Related Art A rewritable optical information recording medium called a erasable type has been developed as a large-capacity, high-density memory. As one of the erasable optical information recording media, there is a type that uses a thin film that changes phase between an amorphous state and a crystalline state as a recording layer, and performs recording and erasing of information by thermal energy by laser light irradiation.

【0003】この記録層用の相変化材料としては、G
e,Sb,Te,In等を主成分とする、例えばGeS
bTe,GeSbTeSe,InSb,InSbTe,
InSbTeAg等の合金膜が一般的に知られている。
一般的に、情報の記録は記録層の部分的なアモルファス
化によってマークを形成して行い、消去はこのアモルフ
ァスマークの結晶化によって行う。アモルファス化は記
録層を融点以上に加熱した後に一定値以上の速さで冷却
することによって行われる。また、結晶化は記録層を結
晶化温度以上、融点以下の温度に加熱することによって
行われる。
As a phase change material for this recording layer, G
e, Sb, Te, In or the like as a main component, for example, GeS
bTe, GeSbTeSe, InSb, InSbTe,
An alloy film such as InSbTeAg is generally known.
Generally, information is recorded by forming a mark by partially amorphizing the recording layer, and erasing is performed by crystallization of the amorphous mark. Amorphization is performed by heating the recording layer to a temperature equal to or higher than the melting point and then cooling the recording layer at a speed equal to or higher than a predetermined value. The crystallization is performed by heating the recording layer to a temperature higher than the crystallization temperature and lower than the melting point.

【0004】さらに、一般的には、記録層の上下に誘電
体層が設けられている。この誘電体層の第1の目的は、
瞬間的に融点以上に昇温する記録層の熱から基板を保護
するとともに記録層の変形や破損を防止することであ
る。また、第二の目的は、光干渉効果により記録情報の
再生時に十分な信号強度を得ることである。さらに、第
三の目的は、記録時に良好な形状のアモルファスマーク
を形成するのに適した冷却速度を実現することである。
そのため、誘電体材料としては、十分な耐熱性、大きな
屈折率、適度な熱伝導率等の特性が要求される。これら
の条件を満たす材料として、例えばZnS−SiO2
ある。
Further, generally, dielectric layers are provided above and below the recording layer. The primary purpose of this dielectric layer is to:
The purpose of the present invention is to protect the substrate from the heat of the recording layer that instantaneously rises to a temperature higher than the melting point and to prevent the recording layer from being deformed or damaged. A second object is to obtain a sufficient signal intensity at the time of reproducing recorded information by an optical interference effect. Further, a third object is to realize a cooling rate suitable for forming a good-shaped amorphous mark during recording.
Therefore, characteristics such as sufficient heat resistance, a large refractive index, and an appropriate thermal conductivity are required for the dielectric material. As these conditions are satisfied materials, for example, a ZnS-SiO 2.

【0005】一般的な消去型の光学情報記録媒体10の
断面図を図2に示す。透明基板1は中心孔9及び複数の
環状の案内溝2を有する円盤状である。透明基板1上に
は順に、ZnS−SiO2薄膜からなる膜厚約100nm
の下引層3、GeSbTe合金薄膜からなる膜厚約20
nmの記録層4、ZnS−SiO2薄膜からなる膜厚約2
0nmの上引層5、Al合金薄膜からなる膜厚約100nm
の反射層6が、スパッタリングによって形成され、さら
にその上に樹脂保護層7が設けられている。この光学情
報記録媒体の記録特性は各層の膜厚に大きく依存し、特
に下引層3、記録層4の膜厚のばらつきによる影響が大
きい。そのため、製造に当たっては、これらの膜厚を正
確に管理する必要がある。
FIG. 2 is a sectional view of a general erasable optical information recording medium 10. The transparent substrate 1 has a disk shape having a center hole 9 and a plurality of annular guide grooves 2. On the transparent substrate 1, a ZnS-SiO2 thin film having a thickness of about 100 nm
Undercoat layer 3, a film thickness of about 20 made of a GeSbTe alloy thin film
recording layer 4 having a thickness of about 2 formed of a ZnS-SiO 2 thin film.
0 nm overcoat layer 5, about 100 nm thick made of Al alloy thin film
Is formed by sputtering, and a resin protective layer 7 is further provided thereon. The recording characteristics of this optical information recording medium greatly depend on the film thickness of each layer, and in particular, the influence of the variation in the film thickness of the undercoat layer 3 and the recording layer 4 is great. Therefore, it is necessary to accurately control these film thicknesses in manufacturing.

【0006】従来、上記光学情報記録媒体10の主要部
分である各薄膜層の製膜工程において、各層の膜厚管理
のために、各層毎に所定の条件下でスパッタリングによ
って一定時間成膜したサンプルを定期的に作成し、その
膜厚を段差計またはエリプソメータによって測定し、そ
の測定結果から得られた成膜速度をもとに所望の膜厚が
得られるよう成膜時間を補正する方法が採用されてい
る。
Conventionally, in the process of forming each thin film layer, which is a main part of the optical information recording medium 10, a sample formed by sputtering for a certain period of time under predetermined conditions for each layer in order to control the thickness of each layer. Is periodically created, the film thickness is measured by a step gauge or ellipsometer, and the film formation time is corrected so that the desired film thickness can be obtained based on the film formation speed obtained from the measurement result. Have been.

【0007】[0007]

【発明が解決しょうとする課題】しかしながら、上記従
来の方法によれば、光学情報記録媒体10を構成する各
薄膜層と同数の成膜速度測定用サンプルを作成し、各層
毎にその膜厚を測定する必要があり、工程が複雑になる
と共に、成膜に時間を要するという問題点を有してい
た。また、バッチ式のスパッタリングによって成膜を行
う場合、サンプル作成のバッチでは光学情報記録媒体を
生産することができず、成膜速度の測定に伴う生産ロス
が大きいという問題点を有していた。さらに、サンプル
作成のために一時的に製造条件を変える必要があること
や、各サンプルを段差計やエリプソメータでの測定に適
した膜厚で成膜するため実際の媒体の構造とは異なる膜
厚で成膜速度を算出することになり、誤差を伴うという
問題点を有していた。
However, according to the above-mentioned conventional method, the same number of thin film layers as the number of thin film layers constituting the optical information recording medium 10 are prepared, and the number of samples for measuring the film thickness is determined for each layer. There is a problem that measurement is required, the process becomes complicated, and time is required for film formation. In addition, when film formation is performed by batch-type sputtering, an optical information recording medium cannot be produced in a batch for preparing a sample, and there is a problem that a production loss accompanying measurement of a film formation speed is large. Furthermore, it is necessary to temporarily change manufacturing conditions for sample preparation, and each sample is formed with a film thickness suitable for measurement with a step gauge or ellipsometer. In this case, the film formation rate is calculated, and there is a problem that an error is involved.

【0008】本発明は上記従来の問題点を解決するため
になされたものであり、1回の測定で複数の薄膜層の膜
厚測定が可能な多層薄膜の膜厚測定方法、及びその膜厚
測定方法を用いて、成膜速度測定用サンプルの作成によ
る生産ロスが少なく、製造条件の一時的な変更の必要の
ない光学情報記録媒体の製造方法及び光学情報記録媒体
の製造装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and a method for measuring the thickness of a multilayer thin film capable of measuring the thickness of a plurality of thin film layers by one measurement, and the thickness thereof. To provide a method for manufacturing an optical information recording medium and an apparatus for manufacturing an optical information recording medium, in which a production loss due to creation of a sample for measuring a film formation rate is small by using a measuring method, and there is no need to temporarily change manufacturing conditions. With the goal.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の光記録媒体の製造方法は、基板上に設けら
れたそれぞれ光学定数の異なる複数の薄膜からなる多層
薄膜の膜厚測定方法であって、前記多層薄膜の分光反射
率を測定し、測定結果から極値を検出し、その極大値に
おける波長とその標準値との差異に基づいて、多層薄膜
の分光反射率を測定する側から第1番目の薄膜の膜厚を
求める。
In order to achieve the above object, a method for manufacturing an optical recording medium according to the present invention comprises a method for measuring the thickness of a multilayer thin film comprising a plurality of thin films having different optical constants provided on a substrate. Measuring the spectral reflectance of the multilayer thin film, detecting an extreme value from the measurement result, and measuring the spectral reflectance of the multilayer thin film based on the difference between the wavelength at the maximum value and the standard value. From this, the thickness of the first thin film is obtained.

【0010】さらに、分光反射率の測定結果の極大値と
極小値における反射率差とその標準値との差異及び多層
薄膜の分光反射率を測定する側から第1番目の薄膜の膜
厚に基づいて、多層薄膜の分光反射率を測定する側から
第2番目の薄膜の膜厚を求める。
Further, based on the difference between the reflectance difference between the maximum value and the minimum value of the measurement result of the spectral reflectance and the standard value and the thickness of the first thin film from the side where the spectral reflectance of the multilayer thin film is measured. Then, the thickness of the second thin film from the side where the spectral reflectance of the multilayer thin film is measured is determined.

【0011】一方、本発明における光学情報記録媒体の
製造方法は、基板上に設けられたそれぞれ光学定数の異
なる複数の薄膜からなる多層薄膜を有する光学情報記録
媒体の製造方法であって、基板又はサンプル片上に前記
複数の薄膜をそれぞれ所定の成膜速度と成膜時間により
順次成膜する工程と、成膜後の基板又はサンプル片上の
多層薄膜の分光反射率を測定する工程と、前記分光反射
率の測定結果から極値を検出しその極大値における波長
とその標準値との差異に基づいて分光反射率を測定する
側から第1番目の薄膜の膜厚を推定する工程と、前記第
1番目の薄膜の膜厚の推定値と所望の膜厚との差異に応
じて前記第1番目の薄膜の成膜速度及び成膜時間の少な
くとも一方を補正する工程と、新たな基板上に前記複数
の薄膜をそれぞれ補正された成膜速度及び成膜時間によ
り順次成膜する工程とを備えている。
On the other hand, a method for manufacturing an optical information recording medium according to the present invention is a method for manufacturing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate. A step of sequentially forming the plurality of thin films on the sample piece at a predetermined film formation rate and a film formation time respectively; a step of measuring a spectral reflectance of the multilayer thin film on the substrate or the sample piece after the film formation; Detecting an extreme value from the measurement result of the reflectance, and estimating the thickness of the first thin film from the side where the spectral reflectance is measured based on the difference between the wavelength at the maximum value and the standard value; Correcting at least one of the film forming speed and the film forming time of the first thin film according to the difference between the estimated value of the film thickness of the second thin film and the desired film thickness; Each thin film And a step of sequentially formed by deposition rate and the deposition time was Tadashisa.

【0012】上記方法において、さらに、分光反射率の
極大値と極小値における反射率差の標準値との差異及び
分光反射率を測定する側から第1番目の薄膜の膜厚から
分光反射率を測定する側から第2番目の薄膜の膜厚を推
定し、これによって求められた膜厚の推定値と所望の膜
厚との差異に応じて前記第2番目の薄膜の成膜速度及び
成膜時間の少なくとも一方を補正する工程を備えている
ことが好ましい。
In the above method, the spectral reflectance is further determined from the difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the thickness of the first thin film from the side where the spectral reflectance is measured. The thickness of the second thin film is estimated from the side to be measured, and the film forming rate and the film forming of the second thin film are determined according to the difference between the estimated value of the film thickness thus obtained and the desired film thickness. It is preferable to include a step of correcting at least one of the times.

【0013】また、本発明における別の光学情報記録媒
体の製造方法は、基板上に設けられたそれぞれ光学定数
の異なる複数の薄膜からなる多層薄膜を有する光学情報
記録媒体の製造方法であって、基板又はサンプル片上に
前記複数の薄膜をそれぞれ所定の成膜速度と成膜時間に
より順次成膜する工程と、成膜後の基板又はサンプル片
上の多層薄膜の分光反射率を測定する工程と、前記分光
反射率の測定結果から極値を検出しその極大値における
波長とその標準値との差異に基づいて分光反射率を測定
する側から第1番目の薄膜の膜厚を推定する工程と、前
記第1番目の薄膜の膜厚の推定値と所望の膜厚との差異
に基づいて基板上に形成された多層薄膜の良否を判定し
選別する工程とを備えている。
Further, another method of manufacturing an optical information recording medium according to the present invention is a method of manufacturing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate, A step of sequentially forming the plurality of thin films on a substrate or a sample piece at a predetermined film forming rate and a film forming time, and a step of measuring the spectral reflectance of the multilayer thin film on the substrate or the sample piece after the film formation; Detecting the extreme value from the measurement result of the spectral reflectance, and estimating the thickness of the first thin film from the side where the spectral reflectance is measured based on the difference between the wavelength at the maximum value and the standard value; A step of judging the quality of the multilayer thin film formed on the substrate based on the difference between the estimated value of the thickness of the first thin film and the desired thickness and selecting the same.

【0014】上記方法において、さらに、分光反射率の
極大値と極小値における反射率差の標準値との差異及び
分光反射率を測定する側から第1番目の薄膜の膜厚から
分光反射率を測定する側から第2番目の薄膜の膜厚を推
定し、これによって求められた膜厚の推定値と所望の膜
厚との差異にも基づいて基板上に形成された多層薄膜の
良否を判定し選別する工程を備えていることが好まし
い。
In the above method, the spectral reflectance is further determined from the difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the thickness of the first thin film from the side where the spectral reflectance is measured. The thickness of the second thin film is estimated from the side to be measured, and the quality of the multilayer thin film formed on the substrate is determined based on the difference between the estimated value of the thickness and the desired thickness. It is preferable to include a step of sorting.

【0015】また、上記各方法において、分光反射率を
測定する際の各測定波長の間隔が5nm以下であること
が好ましい。
In each of the above methods, it is preferable that the interval between each measurement wavelength when measuring the spectral reflectance is 5 nm or less.

【0016】また、本発明の光学情報記録媒体の製造装
置は、基板上に設けられたそれぞれ光学定数の異なる複
数の薄膜からなる多層薄膜を有する光学情報記録媒体の
製造装置であって、基板又はサンプル片上に前記複数の
薄膜をそれぞれ所定の成膜速度及び成膜時間により順次
成膜する手段と、成膜後の基板又はサンプル片上の多層
薄膜の分光反射率を測定する手段と、前記分光反射率の
測定結果から極値を検出しその極大値における波長とそ
の標準値との差異に基づいて分光反射率を測定する側か
ら第1番目の薄膜の膜厚を推定する手段と、これによっ
て求められた膜厚の推定値と所望の膜厚との差異に応じ
て前記第1番目の薄膜の成膜速度及び成膜時間の少なく
とも一方を補正する手段とを備えている。
Further, the apparatus for manufacturing an optical information recording medium according to the present invention is an apparatus for manufacturing an optical information recording medium having a multilayer thin film comprising a plurality of thin films having different optical constants provided on a substrate. Means for sequentially forming the plurality of thin films on the sample piece at predetermined film forming rates and film forming times, means for measuring the spectral reflectance of the multilayer thin film on the substrate or the sample piece after film formation, and Means for detecting an extreme value from the measurement result of the reflectance and estimating the thickness of the first thin film from the side for measuring the spectral reflectance based on the difference between the wavelength at the maximum value and the standard value; Means for correcting at least one of the film forming speed and the film forming time of the first thin film in accordance with the difference between the obtained estimated film thickness and the desired film thickness.

【0017】上記製造装置において、さらに、分光反射
率の極大値と極小値における反射率差の標準値との差異
及び分光反射率を測定する側から第1番目の薄膜の膜厚
から分光反射率を測定する側から第2番目の薄膜の膜厚
を推定する手段と、これによって求められた膜厚の推定
値と所望の膜厚との差異に応じて前記第2番目の薄膜の
成膜速度及び成膜時間の少なくとも一方を補正する手段
を備えることが好ましい。
In the above manufacturing apparatus, the difference between the maximum value of the spectral reflectance and the standard value of the reflectance difference between the minimum value and the spectral reflectance is determined from the thickness of the first thin film from the side where the spectral reflectance is measured. Means for estimating the thickness of the second thin film from the side from which the second thin film is measured, and the deposition rate of the second thin film in accordance with the difference between the estimated value of the thickness obtained by this and the desired thickness. It is preferable to provide a means for correcting at least one of the film formation time and the film formation time.

【0018】また、本発明の別の光学情報記録媒体の製
造装置は、基板上に設けられたそれぞれ光学定数の異な
る複数の薄膜からなる多層薄膜を有する光学情報記録媒
体の製造装置であって、基板又はサンプル片上に前記複
数の薄膜をそれぞれ所定の成膜速度及び成膜時間により
順次成膜する手段と、成膜後の基板又はサンプル片上の
多層薄膜の分光反射率を測定する手段と、前記分光反射
率の測定結果から極値を検出しその極大値における波長
とその標準値との差異に基づいて分光反射率を測定する
側から第1番目の薄膜の膜厚を推定する手段と、これに
よって求められた膜厚の推定値と所望の膜厚との差異に
基づいて基板上に形成された多層薄膜の良否を判定し選
別する手段とを備えている。
Further, another apparatus for manufacturing an optical information recording medium according to the present invention is an apparatus for manufacturing an optical information recording medium having a multilayer thin film comprising a plurality of thin films having different optical constants provided on a substrate, Means for sequentially forming the plurality of thin films on a substrate or sample piece at a predetermined film formation rate and film formation time, means for measuring the spectral reflectance of the multilayer thin film on the substrate or sample piece after film formation, Means for detecting an extreme value from the measurement result of the spectral reflectance and estimating the thickness of the first thin film from the side for measuring the spectral reflectance based on the difference between the wavelength at the maximum value and the standard value; Means for judging the quality of the multilayer thin film formed on the substrate based on the difference between the estimated value of the film thickness obtained by the above and the desired film thickness and selecting the same.

【0019】上記製造装置において、さらに、分光反射
率の極大値と極小値における反射率差の標準値との差異
及び分光反射率を測定する側から第1番目の薄膜の膜厚
から分光反射率を測定する側から第2番目の薄膜の膜厚
を推定する手段と、これによって求められた膜厚の推定
値と所望の膜厚との差異にも基づいて基板上に形成され
た多層薄膜の良否を判定し選別する手段とを備えること
が好ましい。
In the above-described manufacturing apparatus, the difference between the maximum value and the minimum value of the spectral reflectance and the standard value of the reflectance difference and the spectral reflectance from the thickness of the first thin film from the side where the spectral reflectance is measured. Means for estimating the thickness of the second thin film from the side for measuring the thickness of the second thin film; It is preferable to include means for judging pass / fail and selecting.

【0020】また、上記各製造装置において、分光反射
率を測定する際の各測定波長の間隔が5nm以下である
ことが好ましい。
In each of the above-mentioned manufacturing apparatuses, it is preferable that an interval between each measurement wavelength when measuring the spectral reflectance is 5 nm or less.

【0021】[0021]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】本発明は、多層薄膜の各層の膜厚が変化す
ると分光反射率特性が変化することに着目し、各膜厚の
変化に対応して分光反射率の極大点及び極小点の波長、
反射率が特有の変化をすることに基づき、非破壊で多層
薄膜の膜厚を測定するものである。
The present invention focuses on the fact that the spectral reflectance characteristics change as the thickness of each layer of the multilayer thin film changes, and the wavelength of the maximum point and the minimum point of the spectral reflectance corresponding to the change of each film thickness,
The thickness of the multilayer thin film is measured nondestructively based on a specific change in the reflectance.

【0023】(第1の実施形態)第1の実施形態は、多
層薄膜の膜厚測定方法及びその膜厚測定方法を用いた光
学情報記録媒体の製造方法に関するものであり、図1か
ら図3を参照しつつ説明する。
(First Embodiment) The first embodiment relates to a method for measuring the thickness of a multilayer thin film and a method for manufacturing an optical information recording medium using the method for measuring the thickness of a multilayer thin film. This will be described with reference to FIG.

【0024】図1は本発明の光学情報記録媒体の製造方
法の要部を示すフローチャートである。図2は、前述の
一般的な消去型の光学情報記録媒体の断面図である。ま
た、図3は図2に示す構成を有する光学情報記録媒体の
分光器による分光反射率の測定結果の一例を示す特性図
である。
FIG. 1 is a flowchart showing a main part of a method for manufacturing an optical information recording medium according to the present invention. FIG. 2 is a sectional view of the above-mentioned general erasable optical information recording medium. FIG. 3 is a characteristic diagram showing an example of the measurement result of the spectral reflectance of the optical information recording medium having the configuration shown in FIG. 2 by the spectroscope.

【0025】図1に示すように、まず、所定の条件下で
の各層の成膜時間を設定する(S1)。次に、この成膜
時間にしたがって透明基板1上に下引層3、記録層4、
上引層5、反射層6の順に成膜する(S1〜S5)。そ
の後、分光器によって基板側からの分光反射率を測定波
長範囲350〜860nm、波長間隔5nmで測定する
(S6)。図3にこの測定結果を示す。
As shown in FIG. 1, first, a film formation time of each layer under predetermined conditions is set (S1). Next, the undercoat layer 3, the recording layer 4,
An overcoat layer 5 and a reflective layer 6 are formed in this order (S1 to S5). Thereafter, the spectral reflectance from the substrate side is measured with a spectroscope at a measurement wavelength range of 350 to 860 nm and a wavelength interval of 5 nm (S6). FIG. 3 shows the measurement results.

【0026】次に、得られた分光反射率の極大点及び極
小点を検出する(S7、S13)。極大点の波長λを測
定し(S8)、あらかじめ定められた標準値と比較し、
その差異Δλを求める(S9)。これと平行して、極大
点の反射率Rmax及び極小点の反射率Rminを測定
し、この反射率差Rmax−Rminをあらかじめ定め
られた標準値と比較し、その差異Δ(Rmax−Rmi
n)を求める(S12、S14、S15、S16)。こ
こで、標準値とは、各薄膜層が本来の設計値どうりの膜
厚に形成されている場合の、分光反射率の極大点におけ
る波長及び極大点と極小点の反射率差をいう。これらは
あらかじめ実験的に、あるいは計算上求めておくことが
できる。
Next, the maximum point and the minimum point of the obtained spectral reflectance are detected (S7, S13). The wavelength λ of the maximum point is measured (S8) and compared with a predetermined standard value,
The difference Δλ is obtained (S9). In parallel with this, the reflectance Rmax at the maximum point and the reflectance Rmin at the minimum point are measured, the reflectance difference Rmax−Rmin is compared with a predetermined standard value, and the difference Δ (Rmax−Rmi) is measured.
n) (S12, S14, S15, S16). Here, the standard value refers to the wavelength at the local maximum point of the spectral reflectance and the reflectance difference between the local maximum point and the local minimum point when each of the thin film layers is formed to have a film thickness similar to the original design value. These can be obtained in advance experimentally or by calculation.

【0027】次に、この測定結果をもとに、光学情報記
録媒体10の下引層3、記録層4の膜厚を算出する(S
10、S17)。その算出方法は、以下の通りである。
Next, based on the measurement results, the thicknesses of the undercoat layer 3 and the recording layer 4 of the optical information recording medium 10 are calculated (S
10, S17). The calculation method is as follows.

【0028】下引層3の膜厚の標準値である100nm
との差x(%)、記録層の膜厚の標準値である20nm
との差y(%)を、以下に示す式(1)、(2)に従っ
て算出する。
The standard value of the thickness of the undercoat layer 3 is 100 nm.
X (%), 20 nm which is a standard value of the thickness of the recording layer.
Is calculated according to the following equations (1) and (2).

【0029】[0029]

【数1】 Δλ=ax ・・・(1)Δλ = ax (1)

【0030】[0030]

【数2】 Δ(Rmax−Rmin)=bx+cy ・・・(2) 上記関係式は、下引層3が厚くなるとλが長波長側にず
れ、薄くなると短波長側にずれ、下引層3の膜厚が一定
であれば、記録層4及び上引層5の膜厚が変化してもλ
はほぼ一定であること、下引層3及び記録層4の膜厚が
変化するとRmax−Rminが変化することから導か
れたものである。
Δ (Rmax−Rmin) = bx + cy (2) In the above relational expression, λ shifts to the longer wavelength side when the undercoat layer 3 is thicker, shifts to the shorter wavelength side when the undercoat layer 3 is thinner, and Is constant, the film thickness of the recording layer 4 and the overcoat layer 5 changes even if
Is substantially constant, and is derived from the fact that Rmax-Rmin changes when the film thickness of the undercoat layer 3 and the recording layer 4 changes.

【0031】ただし、定数a=2.5、b=−0.2
2、c=0.34である。ここで、x、yは、各層膜厚
の標準値との差異の標準値に対する比率である。各定数
は、各層の膜厚を実験的に変化させた場合の分光反射率
から求めることができる。また、各層薄膜の各波長にお
ける光学定数がわかっている場合には、多重干渉による
反射率を算出することによって求めることもできる。こ
の定数は各層膜厚の標準値によって異なる。
Where constants a = 2.5 and b = −0.2
2, c = 0.34. Here, x and y are the ratios of the difference from the standard value of each layer thickness to the standard value. Each constant can be obtained from the spectral reflectance when the film thickness of each layer is experimentally changed. In addition, when the optical constant at each wavelength of each layer thin film is known, it can be obtained by calculating the reflectance due to multiple interference. This constant depends on the standard value of each layer thickness.

【0032】以上のようにして算出された各層の膜厚と
その目標値との差異に応じて、所望の膜厚になるように
成膜時間を変更して(S11、S18)、以後の生産を
行う。
In accordance with the difference between the thickness of each layer calculated as described above and the target value, the film formation time is changed to a desired film thickness (S11, S18), and the subsequent production I do.

【0033】その結果、従来例における各層毎の成膜速
度測定用サンプルを作成する必要が無く、生産ロスを低
減することができる。特にバッチ式のスパッタリングに
よって成膜を行う場合にはその効果が顕著である。ま
た、サンプル作成のために一時的に製造条件を変える必
要がなく、2層の膜厚を同時に測定することにより成膜
速度測定に要する時間が短縮できるため、製造ラインを
より効率的に稼働することができる。さらに、実際の媒
体の構造で膜厚を測定することができるので、製造した
媒体の良否を判定し、選別することも可能である。
As a result, it is not necessary to prepare a sample for measuring the film forming speed for each layer in the conventional example, and the production loss can be reduced. In particular, when the film is formed by batch-type sputtering, the effect is remarkable. Further, it is not necessary to temporarily change the manufacturing conditions for sample preparation, and the time required for the film forming speed measurement can be reduced by simultaneously measuring the film thicknesses of the two layers, so that the manufacturing line operates more efficiently. be able to. Further, since the film thickness can be measured by the actual structure of the medium, it is possible to judge the quality of the manufactured medium and select the medium.

【0034】(第2の実施形態)第2の実施形態は、上
記多層薄膜の膜厚測定方法を用いた光学情報記録媒体の
製造装置に関するものであり、図2及び図4を参照しつ
つ説明する。
(Second Embodiment) The second embodiment relates to an apparatus for manufacturing an optical information recording medium using the method for measuring the thickness of a multilayer thin film, and will be described with reference to FIGS. I do.

【0035】図4に示す光学情報記録媒体の製造装置2
0は、基板投入室11、下引層成膜室12、記録層成膜
室13、上引層成膜室14、反射層成膜室15、基板排
出室16、分光器17、演算処理装置18及び成膜条件
制御装置19で構成されている。
An optical information recording medium manufacturing apparatus 2 shown in FIG.
0 denotes a substrate input chamber 11, an undercoat layer deposition chamber 12, a recording layer deposition chamber 13, an overcoat layer deposition chamber 14, a reflective layer deposition chamber 15, a substrate discharge chamber 16, a spectroscope 17, and an arithmetic processing unit. 18 and a film forming condition control device 19.

【0036】以上のように構成された光学情報記録媒体
の製造装置について、その動作を説明する。基板投入室
11から光学情報記録媒体10の透明基板1を投入し、
下引層成膜室12、記録層成膜室13、上引層成膜室1
4及び反射層成膜室15において、それぞれ下引層3、
記録層4、上引層5及び反射層6を順次形成する。その
後、各層の薄膜が形成された基板1’を基板排出室16
から取り出す。各成膜室12〜15では、成膜条件制御
装置19によってガス流量、圧力、電力及び時間がそれ
ぞれ所定の値に制御され、その条件の下でスパッタリン
グにより成膜が行われる。
The operation of the apparatus for manufacturing an optical information recording medium configured as described above will be described. The transparent substrate 1 of the optical information recording medium 10 is loaded from the substrate loading chamber 11,
Undercoat layer deposition chamber 12, recording layer deposition chamber 13, upper underlayer deposition chamber 1
4 and the reflective layer deposition chamber 15, the undercoat layer 3,
A recording layer 4, an overcoat layer 5, and a reflective layer 6 are sequentially formed. Thereafter, the substrate 1 ′ on which the thin films of the respective layers are formed is removed from the substrate discharge chamber 16.
Remove from In each of the film forming chambers 12 to 15, the gas flow rate, the pressure, the power, and the time are controlled to predetermined values by the film forming condition control device 19, and the film is formed by sputtering under the conditions.

【0037】分光器17は、成膜された基板1’の成膜
した面の反対側から分光反射率を測定する。演算処理装
置18は、例えばCPU、メモリ等を含み、分光器17
によって測定した分光反射率の極大点及び極小点を検出
するプロセスと、極大点における波長λをあらかじめ定
められた標準値と比較し、その差異Δλを求めるプロセ
スと、極大点と極小点におけるの反射率の差Rmax−
Rminをあらかじめ定められた標準値と比較し、その
差異Δ(Rmax−Rmin)を求めるプロセスと、前
記Δλから上記所定の計算式により当該光学情報記録媒
体10の下引層3の膜厚と標準値との差異を算出するプ
ロセスと、前記Δ(Rmax−Rmin)と下引層3の
膜厚とから上記所定の計算式により当該光記録媒体10
の記録層4の膜厚と標準値との差異を算出するプロセス
と、各層の膜厚と標準値との差異をもとに所望の膜厚と
なる成膜時間を算出するプロセスを有しており、その計
算結果に基づいて成膜条件制御装置19で設定されてい
る成膜時間を変更する。
The spectroscope 17 measures the spectral reflectance from the side opposite to the surface on which the film is formed of the film-formed substrate 1 '. The arithmetic processing device 18 includes, for example, a CPU, a memory, and the like.
Detecting the maximum point and the minimum point of the spectral reflectance measured by the method, comparing the wavelength λ at the maximum point with a predetermined standard value, and determining the difference Δλ, and the reflection at the maximum point and the minimum point. Rate difference Rmax-
Rmin is compared with a predetermined standard value to determine a difference Δ (Rmax−Rmin); and the film thickness of the undercoat layer 3 of the optical information recording medium 10 and the standard The optical recording medium 10 is calculated from the process of calculating the difference between the values and the Δ (Rmax−Rmin) and the thickness of the undercoat layer 3 according to the above-mentioned predetermined formula.
A process of calculating the difference between the film thickness of the recording layer 4 and the standard value, and a process of calculating the film formation time to obtain a desired film thickness based on the difference between the film thickness of each layer and the standard value. Then, the film forming time set by the film forming condition control device 19 is changed based on the calculation result.

【0038】この製造装置によれば、各層毎に成膜速度
測定用サンプルを作成する必要が無く、生産ロスを低減
することができる。特に、バッチ式のスパッタリングに
よって成膜を行う場合に、その効果が顕著である。ま
た、サンプル作成のために一時的に製造条件を変える必
要がなく、2層の膜厚を同時に測定することにより成膜
速度測定に要する時間が短縮できるため、製造ラインを
より効率的に稼働させることができる。さらに、実際の
媒体の構造で膜厚を測定することができるので、製造し
た媒体の良否を判定し、選別することも可能である。
According to this manufacturing apparatus, it is not necessary to prepare a sample for measuring the film forming speed for each layer, and the production loss can be reduced. In particular, when the film is formed by batch type sputtering, the effect is remarkable. In addition, it is not necessary to temporarily change the manufacturing conditions for sample preparation, and by simultaneously measuring the film thicknesses of the two layers, the time required for measuring the film forming speed can be reduced, so that the manufacturing line can be operated more efficiently. be able to. Further, since the film thickness can be measured by the actual structure of the medium, it is possible to judge the quality of the manufactured medium and select the medium.

【0039】なお、上記各実施形態の説明において、各
層の薄膜を所望の膜厚にするために成膜時間を変更した
が、スパッタリングの電力、すなわち成膜速度を変更し
ても良い。また、光学情報記録媒体そのものの分光反射
率を測定する代わりに、同時に別の基板に成膜したサン
プルの分光反射率を測定しても良い。分光反射率の測定
は、一定の製造枚数毎に行っても良いし、1枚毎に行っ
ても良い。
In the description of each of the above embodiments, the film forming time is changed in order to make the thin film of each layer a desired film thickness. However, the power of sputtering, that is, the film forming speed may be changed. Instead of measuring the spectral reflectance of the optical information recording medium itself, the spectral reflectance of a sample formed on another substrate may be measured at the same time. The measurement of the spectral reflectance may be performed for each fixed number of sheets manufactured, or may be performed for each sheet.

【0040】また、分光反射率の測定波長間隔が大きい
と膜厚の測定精度が悪くなる。例えば下引層3の場合λ
の差10nmが膜厚の約5%に相当する。したがって、
必要とする膜厚の測定精度を5%とすると、測定波長間
隔はその半分の5nm以下とすることが好ましい。
If the wavelength interval for measuring the spectral reflectance is large, the accuracy of measuring the film thickness is deteriorated. For example, in the case of the undercoat layer 3, λ
10 nm corresponds to about 5% of the film thickness. Therefore,
Assuming that the required film thickness measurement accuracy is 5%, it is preferable that the measurement wavelength interval is half or less, that is, 5 nm or less.

【0041】このように、本発明における光学情報記録
媒体の第1の製造方法は、基板上に設けられたそれぞれ
光学定数の異なる複数の薄膜からなる多層薄膜を有する
光学情報記録媒体の製造方法であって、基板又はサンプ
ル片上に前記複数の薄膜をそれぞれ所定の成膜速度及び
成膜時間により順次成膜する工程と、成膜後の基板又は
サンプル片上の多層薄膜の分光反射率を測定する工程
と、前記分光反射率の測定結果から極値を検出しその極
大値における波長とその標準値との差異に基づいて分光
反射率を測定する側から第1番目の薄膜(下引層)の膜
厚を推定する工程と、分光反射率の極大値と極小値にお
ける反射率差の標準値との差異及び分光反射率を測定す
る側から第1番目の薄膜(下引層)の膜厚から分光反射
率を測定する側から第2番目の薄膜(記録層)の膜厚を
推定する工程と、前記第1番目及び第2番目の薄膜の膜
厚の推定値と所望の膜厚との差異に応じて前記第1番目
及び第2番目の薄膜の成膜速度及び成膜時間の少なくと
も一方を補正する工程と、新たな基板上に前記複数の薄
膜をそれぞれ補正された成膜速度及び成膜時間により順
次成膜する工程とを備えている。すなわち、上記多層薄
膜の膜厚測定方法を用いて、最初に成膜した基板又は基
板と同時に成膜したサンプル片の膜厚を直接測定するこ
とにより、1回の測定で複数の薄膜の膜厚をそれぞれ測
定することができ、膜厚測定に要する時間を短縮するこ
とができ、成膜速度測定に要する時間が短縮できる。ま
た、実際の媒体の構造で膜厚を測定することができるの
で、サンプル作成のために一時的に製造条件を変える必
要がない。したがって、製造ラインをより効率的に稼働
させることができ、生産ロスを低減することができる。
特に、バッチ式のスパッタリングにより成膜する場合に
顕著な効果を奏する。
As described above, the first method for manufacturing an optical information recording medium according to the present invention is a method for manufacturing an optical information recording medium having a multilayer thin film composed of a plurality of thin films having different optical constants provided on a substrate. A step of sequentially forming the plurality of thin films on a substrate or a sample piece at a predetermined film forming speed and a predetermined film forming time, and a step of measuring a spectral reflectance of the multilayer thin film on the substrate or the sample piece after the film formation. A first thin film (undercoat layer) from the side for detecting an extreme value from the measurement result of the spectral reflectance and measuring the spectral reflectance based on a difference between the wavelength at the maximum value and the standard value. Estimating the thickness and analyzing the spectral reflectance from the difference between the standard value of the reflectance difference between the maximum value and the minimum value, and the thickness of the first thin film (undercoat layer) from the side where the spectral reflectance is measured. From the side where the reflectance is measured Estimating the thickness of the second thin film (recording layer); and determining the first and second thicknesses according to a difference between the estimated value of the thickness of the first and second thin films and a desired thickness. A step of correcting at least one of the film forming speed and the film forming time of the second thin film, and a step of sequentially forming the plurality of thin films on a new substrate with the corrected film forming speed and the film forming time. Have. That is, the thickness of a plurality of thin films can be measured in one measurement by directly measuring the thickness of a substrate formed first or a sample piece formed simultaneously with the substrate by using the method for measuring the thickness of a multilayer thin film. Can be measured individually, the time required for film thickness measurement can be reduced, and the time required for film deposition rate measurement can be reduced. Further, since the film thickness can be measured with the actual medium structure, there is no need to temporarily change the manufacturing conditions for preparing a sample. Therefore, the production line can be operated more efficiently, and the production loss can be reduced.
In particular, a remarkable effect is obtained when the film is formed by batch-type sputtering.

【0042】また、本発明における光学情報記録媒体の
第2の製造方法は、基板上に設けられたそれぞれ光学定
数の異なる複数の薄膜からなる多層薄膜を有する光学情
報記録媒体の製造方法であって、基板又はサンプル片上
に前記複数の薄膜をそれぞれ所定の成膜速度及び成膜時
間により順次成膜する工程と、成膜後の基板又はサンプ
ル片上の多層薄膜の分光反射率を測定する工程と、前記
分光反射率の測定結果から極値を検出しその極大値にお
ける波長とその標準値との差異に基づいて分光反射率を
測定する側から第1番目の薄膜(下引層)の膜厚を推定
する工程と、分光反射率の極大値と極小値における反射
率差の標準値との差異及び分光反射率を測定する側から
第1番目の薄膜(下引層)の膜厚から分光反射率を測定
する側から第2番目の薄膜(記録層)の膜厚を推定する
工程と、前記第1番目及び第2番目の薄膜の膜厚の推定
値と所望の膜厚との差異に基づいて基板上に形成された
多層薄膜の良否を判定し選別する工程とを備えている。
したがって、実際に製造した光学情報記録媒体の膜厚を
直接測定することができるので、製造した光学情報記録
媒体の良否を判定し、選別することが可能である。
A second method for manufacturing an optical information recording medium according to the present invention is a method for manufacturing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate. A step of sequentially forming the plurality of thin films on a substrate or sample piece at a predetermined film forming rate and a film forming time, and a step of measuring the spectral reflectance of the multilayer thin film on the substrate or sample piece after film formation, An extreme value is detected from the measurement result of the spectral reflectance, and the thickness of the first thin film (undercoat layer) from the side where the spectral reflectance is measured is determined based on the difference between the wavelength at the maximum value and the standard value. Estimating process, spectral reflectance from difference between standard value of reflectance difference between maximum value and minimum value of spectral reflectance and thickness of first thin film (undercoat layer) from the side where spectral reflectance is measured Second from the side measuring Estimating the thickness of the thin film (recording layer) of the first and second thin films, and the multilayer thin film formed on the substrate based on a difference between the estimated value of the thickness of the first and second thin films and a desired thickness. And a step of judging pass / fail and sorting.
Therefore, the thickness of the actually manufactured optical information recording medium can be directly measured, so that the quality of the manufactured optical information recording medium can be determined and sorted.

【0043】一方、本発明における光学情報記録媒体の
第1の製造装置は、基板上に設けられたそれぞれ光学定
数の異なる複数の薄膜からなる多層薄膜を有する光学情
報記録媒体の製造装置であって、基板又はサンプル片上
に前記複数の薄膜をそれぞれ所定の成膜速度及び成膜時
間により順次成膜する手段と、成膜後の基板又はサンプ
ル片上の多層薄膜の分光反射率を測定する手段と、前記
分光反射率の測定結果から極値を検出しその極大値にお
ける波長とその標準値との差異に基づいて分光反射率を
測定する側から第1番目の薄膜(下引層)の膜厚を推定
する手段と、分光反射率の極大値と極小値における反射
率差の標準値との差異及び分光反射率を測定する側から
第1番目の薄膜(下引層)の膜厚から分光反射率を測定
する側から第2番目の薄膜(記録層)の膜厚を推定する
手段と、前記第1番目及び第2番目の薄膜の膜厚の推定
値と所望の膜厚との差異に応じて前記第1番目及び第2
番目の薄膜の成膜速度及び成膜時間の少なくとも一方を
補正する手段とを備えている。すなわち、上記多層薄膜
の膜厚測定方法を用いて、最初に成膜した基板又は基板
と同時に成膜したサンプル片の膜厚を測定し、測定値と
標準値との差異に応じて各薄膜の成膜時間及び成膜速度
の少なくとも一方を補正することにより、次回基板上に
成膜される薄膜の膜厚を設計値により近づけることがで
きる。さらに、この工程を繰り返すことにより、製造さ
れた光学情報記録媒体の各薄膜の膜厚の精度をより高く
することができる。
On the other hand, the first apparatus for manufacturing an optical information recording medium according to the present invention is an apparatus for manufacturing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate. A means for sequentially forming the plurality of thin films on a substrate or a sample piece at a predetermined film formation rate and a film formation time, and a means for measuring a spectral reflectance of a multilayer thin film on a substrate or a sample piece after film formation, An extreme value is detected from the measurement result of the spectral reflectance, and the thickness of the first thin film (undercoat layer) from the side where the spectral reflectance is measured is determined based on the difference between the wavelength at the maximum value and the standard value. Means for estimating the spectral reflectance from the difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the thickness of the first thin film (undercoat layer) from the side where the spectral reflectance is measured Second from the side measuring Thin film (recording layer) and the means for estimating the thickness of the 1st and the 1st according to the second difference in the estimated value of the film thickness of the thin film and a desired thickness and a second
Means for correcting at least one of the film forming speed and the film forming time of the second thin film. That is, using the above-described method for measuring the thickness of a multilayer thin film, the thickness of a substrate formed first or a sample piece formed simultaneously with the substrate is measured, and the thickness of each thin film is determined according to the difference between the measured value and the standard value. By correcting at least one of the deposition time and the deposition rate, the thickness of the thin film to be deposited next time on the substrate can be made closer to the design value. Further, by repeating this process, the accuracy of the thickness of each thin film of the manufactured optical information recording medium can be further improved.

【0044】また、本発明における光学情報記録媒体の
第2の製造装置は、基板上に設けられたそれぞれ光学定
数の異なる複数の薄膜からなる多層薄膜を有する光学情
報記録媒体の製造装置であって、基板又はサンプル片上
に前記複数の薄膜をそれぞれ所定の成膜速度及び成膜時
間により順次成膜する手段と、成膜後の基板又はサンプ
ル片上の多層薄膜の分光反射率を測定する手段と、前記
分光反射率の測定結果から極値を検出しその極大値にお
ける波長とその標準値との差異に基づいて分光反射率を
測定する側から第1番目の薄膜(下引層)の膜厚を推定
する手段と、分光反射率の極大値と極小値における反射
率差の標準値との差異及び分光反射率を測定する側から
第1番目の薄膜(下引層)の膜厚から分光反射率を測定
する側から第2番目の薄膜(記録層)の膜厚を推定する
手段と、前記第1番目及び第2番目の薄膜の膜厚の推定
値と所望の膜厚との差異に基づいて基板上に形成された
多層薄膜の良否を判定し選別する手段とを備えている。
したがって、実際に製造した光学情報記録媒体の膜厚を
直接測定することができるので、製造した光学情報記録
媒体の良否を判定し、選別することが可能である。
Further, a second apparatus for manufacturing an optical information recording medium according to the present invention is an apparatus for manufacturing an optical information recording medium having a multilayer thin film provided on a substrate and comprising a plurality of thin films having different optical constants. A means for sequentially forming the plurality of thin films on a substrate or a sample piece at a predetermined film formation rate and a film formation time, and a means for measuring a spectral reflectance of a multilayer thin film on a substrate or a sample piece after film formation, An extreme value is detected from the measurement result of the spectral reflectance, and the thickness of the first thin film (undercoat layer) from the side where the spectral reflectance is measured is determined based on the difference between the wavelength at the maximum value and the standard value. Means for estimating the spectral reflectance from the difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the thickness of the first thin film (undercoat layer) from the side where the spectral reflectance is measured Second from the side measuring Means for estimating the thickness of the thin film (recording layer) of the first and second layers, and a multilayer thin film formed on the substrate based on a difference between the estimated value of the thickness of the first and second thin films and a desired thickness. Means for judging the pass / fail of the device and selecting it.
Therefore, the thickness of the actually manufactured optical information recording medium can be directly measured, so that the quality of the manufactured optical information recording medium can be determined and sorted.

【0045】さらに、上記光学情報記録媒体の各製造方
法及び製造装置において、分光反射率を測定する際の各
測定波長の間隔を5nm以下とすることにより、膜厚の
測定精度を約5%に維持することができる。
Further, in each of the methods and apparatus for manufacturing an optical information recording medium described above, the measurement accuracy of the film thickness is reduced to about 5% by setting the interval of each measurement wavelength at the time of measuring the spectral reflectance to 5 nm or less. Can be maintained.

【0046】[0046]

【発明の効果】以上のように、本発明の光学情報記録媒
体の膜厚測定造方法によれば、1回の測定で複数の薄膜
の膜厚をそれぞれ測定することができ、膜厚測定に要す
る時間を短縮することができる。
As described above, according to the method for measuring the thickness of an optical information recording medium of the present invention, the thickness of each of a plurality of thin films can be measured in one measurement. The time required can be reduced.

【0047】また、実際の媒体の構造で膜厚を測定する
ことができるので、サンプル作成のために一時的に製造
条件を変える必要がなく、特に、バッチ式のスパッタリ
ングにより成膜する場合に有効である。
Further, since the film thickness can be measured with the actual medium structure, there is no need to temporarily change the manufacturing conditions for sample preparation, and it is particularly effective when forming a film by batch-type sputtering. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学情報記録媒体の製造方法の一実施
形態の要部を示すフローチャート
FIG. 1 is a flowchart showing a main part of an embodiment of a method for manufacturing an optical information recording medium of the present invention.

【図2】一般的な光学情報記録媒体の構成を示す断面図FIG. 2 is a sectional view showing a configuration of a general optical information recording medium.

【図3】光学情報記録媒体の分光反射率と波長の関係を
示す特性図
FIG. 3 is a characteristic diagram showing a relationship between a spectral reflectance and a wavelength of an optical information recording medium.

【図4】本発明の光学情報記録媒体の製造装置の一実施
形態の要部を示す構成図
FIG. 4 is a configuration diagram illustrating a main part of an embodiment of an optical information recording medium manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 透明基板 1’ 多層薄膜が形成された透明基板 2 案内溝 3 下引層 4 記録層 5 上引層 6 反射層 7 樹脂保護層 9 中心孔 10光学情報記録媒体 11 基板投入室 12 下引層成膜室 13 記録層成膜室 14 上引層成膜室 15 反射層成膜室 16 基板排出室 17 分光器 18 演算処理装置 19 成膜条件制御装置 20 光学情報記録媒体の製造装置 REFERENCE SIGNS LIST 1 transparent substrate 1 ′ transparent substrate on which multilayer thin film is formed 2 guide groove 3 undercoat layer 4 recording layer 5 overcoat layer 6 reflective layer 7 resin protective layer 9 center hole 10 optical information recording medium 11 substrate loading chamber 12 undercoat layer Film forming chamber 13 Recording layer film forming chamber 14 Overcoat layer film forming chamber 15 Reflective layer film forming chamber 16 Substrate discharge chamber 17 Spectroscope 18 Arithmetic processing device 19 Film forming condition control device 20 Optical information recording medium manufacturing device

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けられたそれぞれ光学定数の
異なる複数の薄膜からなる多層薄膜の膜厚測定方法であ
って、総合反射光の反射率のピークを与える波長と、第
1の膜厚との関係を、あらかじめ得ておき、総合反射光
における実際の反射率のピークを与える波長を検出し、
上記関係を利用して、その波長に対応する膜厚から前記
第1番目の膜厚を測定することを特徴とする多層薄膜の
膜厚測定方法。
1. A method for measuring the thickness of a multilayer thin film provided on a substrate and comprising a plurality of thin films having different optical constants, the method comprising: providing a wavelength giving a peak of the reflectance of total reflected light; Is obtained in advance, and the wavelength that gives the peak of the actual reflectance in the total reflected light is detected,
A method for measuring the thickness of a multilayer thin film, wherein the first thickness is measured from the thickness corresponding to the wavelength using the above relationship.
【請求項2】 基板上に設けられたそれぞれ光学定数の
異なる複数の薄膜からなる多層薄膜の膜厚測定方法であ
って、あらかじめ第1の膜厚が所定の厚さの場合の、第
2の膜厚と、総合反射光の反射率のピーク値との関係を
得ておき、請求項1の測定方法により測定された第1の
膜厚と、その膜厚における、前記第2の膜厚と反射率の
ピークとの関係とを利用して、実際の反射率のピーク値
から第2の膜厚を測定することを特徴とする多層薄膜の
膜厚測定方法。
2. A method for measuring the thickness of a multilayer thin film provided on a substrate and comprising a plurality of thin films having different optical constants, wherein a second thickness is determined in advance when the first thickness is a predetermined thickness. A relationship between the film thickness and the peak value of the reflectance of the total reflected light is obtained, and the first film thickness measured by the measuring method according to claim 1 and the second film thickness in the film thickness. A method for measuring the thickness of a multilayer thin film, comprising: measuring a second thickness from an actual peak value of a reflectance using a relationship with a reflectance peak.
【請求項3】 基板上に設けられたそれぞれ光学定数の
異なる複数の薄膜からなる多層薄膜の膜厚測定方法であ
って、前記多層薄膜の分光反射率を測定し、測定結果か
ら極値を検出し、その極大値における波長とその標準値
との差異に基づいて、多層薄膜の分光反射率を測定する
側から第1番目の薄膜の膜厚を求める多層薄膜の膜厚測
定方法。
3. A method for measuring the thickness of a multilayer thin film provided on a substrate and comprising a plurality of thin films having different optical constants, wherein a spectral reflectance of the multilayer thin film is measured, and an extreme value is detected from the measurement result. And a method for measuring the thickness of the first thin film from the side where the spectral reflectance of the multilayer thin film is measured based on the difference between the wavelength at the maximum value and the standard value.
【請求項4】 分光反射率の測定結果の極大値と極小値
における反射率差とその標準値との差異及び多層薄膜の
分光反射率を測定する側から第1番目の薄膜の膜厚に基
づいて、多層薄膜の分光反射率を測定する側から第2番
目の薄膜の膜厚を求めることを特徴とする請求項3記載
の多層膜の膜厚測定方法。
4. A method according to claim 1, wherein the difference between the maximum value and the minimum value of the measurement result of the spectral reflectance and the difference between the standard value and the thickness of the first thin film from the side where the spectral reflectance of the multilayer thin film is measured. 4. The method according to claim 3, wherein the thickness of the second thin film is determined from the side where the spectral reflectance of the multilayer thin film is measured.
【請求項5】 基板上に設けられたそれぞれ光学定数の
異なる複数の薄膜からなる多層薄膜を有する光学情報記
録媒体の製造方法であって、基板又はサンプル片上に前
記複数の薄膜をそれぞれ所定の成膜速度と成膜時間によ
り順次成膜する工程と、成膜後の基板又はサンプル片上
の多層薄膜の分光反射率を測定する工程と、前記分光反
射率の測定結果から極値を検出しその極大値における波
長とその標準値との差異に基づいて分光反射率を測定す
る側から第1番目の薄膜の膜厚を推定する工程と、前記
第1番目の薄膜の膜厚の推定値と所望の膜厚との差異に
応じて前記第1番目の薄膜の成膜速度及び成膜時間の少
なくとも一方を補正する工程と、新たな基板上に前記複
数の薄膜をそれぞれ補正された成膜速度及び成膜時間に
より順次成膜する工程とを備えた光学情報記録媒体の製
造方法。
5. A method for producing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate, wherein the plurality of thin films are formed on a substrate or a sample piece, respectively. A step of sequentially forming a film according to a film speed and a film forming time; a step of measuring a spectral reflectance of a multilayer thin film on a substrate or a sample piece after the film formation; Estimating the thickness of the first thin film from the side where the spectral reflectance is measured based on the difference between the wavelength in the value and the standard value, and estimating the thickness of the first thin film and a desired value. Correcting at least one of the film forming speed and the film forming time of the first thin film in accordance with the difference between the film thickness and the film thickness; and correcting the film forming speed and the film forming of the plurality of thin films on a new substrate. Steps to form films sequentially according to film time A method for manufacturing an optical information recording medium comprising:
【請求項6】 分光反射率の極大値と極小値における反
射率差の標準値との差異及び分光反射率を測定する側か
ら第1番目の薄膜の膜厚から分光反射率を測定する側か
ら第2番目の薄膜の膜厚を推定し、これによって求めら
れた膜厚の推定値と所望の膜厚との差異に応じて前記第
2番目の薄膜の成膜速度及び成膜時間の少なくとも一方
を補正することを特徴とする請求項5記載の光学情報記
録媒体の製造方法。
6. The difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the side from which the spectral reflectance is measured from the thickness of the first thin film from the side where the spectral reflectance is measured. Estimating the film thickness of the second thin film, and at least one of the film forming speed and the film forming time of the second thin film according to a difference between the estimated value of the film thickness thus obtained and a desired film thickness. 6. The method for manufacturing an optical information recording medium according to claim 5, wherein
【請求項7】 基板上に設けられたそれぞれ光学定数の
異なる複数の薄膜からなる多層薄膜を有する光学情報記
録媒体の製造方法であって、基板又はサンプル片上に前
記複数の薄膜をそれぞれ所定の成膜速度と成膜時間によ
り順次成膜する工程と、成膜後の基板又はサンプル片上
の多層薄膜の分光反射率を測定する工程と、前記分光反
射率の測定結果から極値を検出しその極大値における波
長とその標準値との差異に基づいて分光反射率を測定す
る側から第1番目の薄膜の膜厚を推定する工程と、前記
第1番目の薄膜の膜厚の推定値と所望の膜厚との差異に
基づいて基板上に形成された多層薄膜の良否を判定し選
別する工程とを備えた光学情報記録媒体の製造方法。
7. A method for manufacturing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate, wherein the plurality of thin films are formed on a substrate or a sample piece, respectively. A step of sequentially forming a film according to a film speed and a film formation time, a step of measuring a spectral reflectance of a multilayer thin film on a substrate or a sample piece after the film is formed, and detecting an extreme value from a result of the measurement of the spectral reflectance to obtain a maximum value. Estimating the thickness of the first thin film from the side where the spectral reflectance is measured based on the difference between the wavelength in the value and the standard value, and estimating the thickness of the first thin film and a desired value. A step of judging the quality of a multilayer thin film formed on a substrate based on a difference from the film thickness and selecting the multilayer thin film.
【請求項8】 分光反射率の極大値と極小値における反
射率差の標準値との差異及び分光反射率を測定する側か
ら第1番目の薄膜の膜厚から分光反射率を測定する側か
ら第2番目の薄膜の膜厚を推定し、これによって求めら
れた膜厚の推定値と所望の膜厚との差異に基づいて基板
上に形成された多層薄膜の良否を判定し選別することを
特徴とする請求項7記載の光学情報記録媒体の製造方
法。
8. The difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the side from which the spectral reflectance is measured from the thickness of the first thin film from the side where the spectral reflectance is measured. Estimating the thickness of the second thin film, judging the quality of the multilayer thin film formed on the substrate based on the difference between the estimated thickness of the second thin film and the desired thickness and selecting the thin film. The method for manufacturing an optical information recording medium according to claim 7, wherein:
【請求項9】 分光反射率の測定波長の間隔が5nm以
下であることを特徴とする請求項5又は請求項7記載の
光学情報記録媒体の製造方法。
9. The method for manufacturing an optical information recording medium according to claim 5, wherein an interval between wavelengths for measuring spectral reflectance is 5 nm or less.
【請求項10】 基板上に設けられたそれぞれ光学定数
の異なる複数の薄膜からなる多層薄膜を有する光学情報
記録媒体の製造装置であって、基板又はサンプル片上に
前記複数の薄膜をそれぞれ所定の成膜速度及び成膜時間
により順次成膜する手段と、成膜後の基板又はサンプル
片上の多層薄膜の分光反射率を測定する手段と、前記分
光反射率の測定結果から極値を検出しその極大値におけ
る波長とその標準値との差異に基づいて分光反射率を測
定する側から第1番目の薄膜の膜厚を推定する手段と、
前記第1番目の薄膜の膜厚の推定値と所望の膜厚との差
異に応じて前記第1番目の薄膜の成膜速度及び成膜時間
の少なくとも一方を補正する手段とを備えた光学情報記
録媒体の製造装置。
10. An apparatus for manufacturing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate, wherein the plurality of thin films are formed on a substrate or a sample piece, respectively. A means for sequentially forming a film according to a film speed and a film formation time, a means for measuring a spectral reflectance of a multilayer thin film on a substrate or a sample piece after the film formation, and detecting an extreme value from the measurement result of the spectral reflectance to obtain a maximum value. Means for estimating the thickness of the first thin film from the side for measuring the spectral reflectance based on the difference between the wavelength in the value and the standard value;
Means for correcting at least one of a film forming speed and a film forming time of the first thin film according to a difference between an estimated value of the film thickness of the first thin film and a desired film thickness. Manufacturing equipment for recording media.
【請求項11】 分光反射率の極大値と極小値における
反射率差の標準値との差異及び分光反射率を測定する側
から第1番目の薄膜の膜厚から分光反射率を測定する側
から第2番目の薄膜の膜厚を推定する手段と、これによ
って求められた膜厚の推定値と所望の膜厚との差異に応
じて前記第2番目の薄膜の成膜速度及び成膜時間の少な
くとも一方を補正する手段を備えた請求項10記載の光
学情報記録媒体の製造装置。
11. The difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the side from which the spectral reflectance is measured based on the thickness of the first thin film from the side from which the spectral reflectance is measured. Means for estimating the film thickness of the second thin film, and determining the film forming rate and the film forming time of the second thin film according to the difference between the estimated value of the film thickness obtained thereby and the desired film thickness. 11. The apparatus for manufacturing an optical information recording medium according to claim 10, further comprising means for correcting at least one of the optical information.
【請求項12】 基板上に設けられたそれぞれ光学定数
の異なる複数の薄膜からなる多層薄膜を有する光学情報
記録媒体の製造装置であって、基板又はサンプル片上に
前記複数の薄膜をそれぞれ所定の成膜速度及び成膜時間
により順次成膜する手段と、成膜後の基板又はサンプル
片上の多層薄膜の分光反射率を測定する手段と、前記分
光反射率の測定結果から極値を検出しその極大値におけ
る波長とその標準値との差異に基づいて分光反射率を測
定する側から第1番目の薄膜の膜厚を推定する手段と、
前記第1番目の薄膜の膜厚の推定値と所望の膜厚との差
異に基づいて基板上に形成された多層薄膜の良否を判定
し選別する手段とを備えた光学情報記録媒体の製造装
置。
12. An apparatus for manufacturing an optical information recording medium having a multilayer thin film formed of a plurality of thin films having different optical constants provided on a substrate, wherein the plurality of thin films are formed on a substrate or a sample piece, respectively. A means for sequentially forming a film according to a film speed and a film formation time, a means for measuring a spectral reflectance of a multilayer thin film on a substrate or a sample piece after the film formation, and detecting an extreme value from the measurement result of the spectral reflectance to obtain a maximum value. Means for estimating the thickness of the first thin film from the side for measuring the spectral reflectance based on the difference between the wavelength in the value and the standard value;
Means for judging the quality of a multilayer thin film formed on a substrate based on a difference between an estimated value of the thickness of the first thin film and a desired thickness and selecting the same. .
【請求項13】 分光反射率の極大値と極小値における
反射率差の標準値との差異及び分光反射率を測定する側
から第1番目の薄膜の膜厚から分光反射率を測定する側
から第2番目の薄膜の膜厚を推定する手段と、これによ
って求められた膜厚の推定値と所望の膜厚との差異に基
づいて基板上に形成された多層薄膜の良否を判定し選別
する手段とを備えた請求項12記載の光学情報記録媒体
の製造方法。
13. The difference between the standard value of the reflectance difference between the maximum value and the minimum value of the spectral reflectance and the side from which the spectral reflectance is measured from the thickness of the first thin film from the side where the spectral reflectance is measured. Means for estimating the thickness of the second thin film, and judging the quality of the multilayer thin film formed on the substrate based on a difference between the estimated value of the thickness obtained by the second thin film and a desired thickness, and selecting the same. 13. The method for manufacturing an optical information recording medium according to claim 12, comprising means.
【請求項14】 分光反射率の測定波長の間隔が5nm
以下であることを特徴とする請求項10又は請求項12
記載の光記録媒体の製造装置。
14. An interval between wavelengths for measuring spectral reflectance is 5 nm.
The following is characterized by the following.
An apparatus for manufacturing the optical recording medium according to the above.
JP05124197A 1996-06-26 1997-03-06 Multilayer thin film thickness measuring method, optical information recording medium manufacturing method and manufacturing apparatus Expired - Fee Related JP3764794B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05124197A JP3764794B2 (en) 1997-03-06 1997-03-06 Multilayer thin film thickness measuring method, optical information recording medium manufacturing method and manufacturing apparatus
US08/883,530 US5883720A (en) 1996-06-26 1997-06-26 Method of measuring a film thickness of multilayer thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05124197A JP3764794B2 (en) 1997-03-06 1997-03-06 Multilayer thin film thickness measuring method, optical information recording medium manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH10253324A true JPH10253324A (en) 1998-09-25
JP3764794B2 JP3764794B2 (en) 2006-04-12

Family

ID=12881462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05124197A Expired - Fee Related JP3764794B2 (en) 1996-06-26 1997-03-06 Multilayer thin film thickness measuring method, optical information recording medium manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3764794B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164020A (en) * 2008-01-09 2009-07-23 Sony Corp Manufacturing device of organic el element
WO2010097972A1 (en) * 2009-02-27 2010-09-02 三菱重工業株式会社 Apparatus and method for inspecting thin film
WO2013099107A1 (en) * 2011-12-28 2013-07-04 信越半導体株式会社 Method for measuring film thickness distribution
CN104713485A (en) * 2015-03-17 2015-06-17 许筱晓 System and method for measuring micro-nano length through SiO2 membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332307A (en) * 1986-07-25 1988-02-12 Olympus Optical Co Ltd Optical film thickness measuring instrument
JPH04172208A (en) * 1990-11-05 1992-06-19 Olympus Optical Co Ltd Apparatus of optical type for measuring film thickness
JPH05149720A (en) * 1991-11-29 1993-06-15 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Method and device for inspecting superconducting oxide film
JPH0791921A (en) * 1993-09-20 1995-04-07 Dainippon Screen Mfg Co Ltd Measuring method for film thickness
JPH07306017A (en) * 1994-05-12 1995-11-21 Nissan Motor Co Ltd Measurement device of thickness of coating film
JPH08139147A (en) * 1994-11-07 1996-05-31 Mitsubishi Materials Corp Method and apparatus for measuring deposition rate of epitaxial film
JPH0933223A (en) * 1995-07-17 1997-02-07 Seiko Epson Corp Optical film-thickness measuring method, film formation method and manufacture of semiconductor laser device
JPH109829A (en) * 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd Measuring method of film thickness of multilayer thin film and method and equipment for manufacturing optical information recording medium which use the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332307A (en) * 1986-07-25 1988-02-12 Olympus Optical Co Ltd Optical film thickness measuring instrument
JPH04172208A (en) * 1990-11-05 1992-06-19 Olympus Optical Co Ltd Apparatus of optical type for measuring film thickness
JPH05149720A (en) * 1991-11-29 1993-06-15 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Method and device for inspecting superconducting oxide film
JPH0791921A (en) * 1993-09-20 1995-04-07 Dainippon Screen Mfg Co Ltd Measuring method for film thickness
JPH07306017A (en) * 1994-05-12 1995-11-21 Nissan Motor Co Ltd Measurement device of thickness of coating film
JPH08139147A (en) * 1994-11-07 1996-05-31 Mitsubishi Materials Corp Method and apparatus for measuring deposition rate of epitaxial film
JPH0933223A (en) * 1995-07-17 1997-02-07 Seiko Epson Corp Optical film-thickness measuring method, film formation method and manufacture of semiconductor laser device
JPH109829A (en) * 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd Measuring method of film thickness of multilayer thin film and method and equipment for manufacturing optical information recording medium which use the method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164020A (en) * 2008-01-09 2009-07-23 Sony Corp Manufacturing device of organic el element
WO2010097972A1 (en) * 2009-02-27 2010-09-02 三菱重工業株式会社 Apparatus and method for inspecting thin film
JP2010203814A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Apparatus and method for testing thin film
WO2013099107A1 (en) * 2011-12-28 2013-07-04 信越半導体株式会社 Method for measuring film thickness distribution
JP2013137205A (en) * 2011-12-28 2013-07-11 Shin Etsu Handotai Co Ltd Film thickness distribution measurement method
US9279665B2 (en) 2011-12-28 2016-03-08 Shin-Etsu Handotai Co., Ltd. Method for measuring film thickness distribution
CN104713485A (en) * 2015-03-17 2015-06-17 许筱晓 System and method for measuring micro-nano length through SiO2 membrane

Also Published As

Publication number Publication date
JP3764794B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
US5883720A (en) Method of measuring a film thickness of multilayer thin film
US7182976B2 (en) Process for forming a thin film and apparatus therefor
EP1636541B1 (en) Method for measuring thickness of an optical disc
EP1773601B1 (en) Optical recording medium
JP3732894B2 (en) Method for measuring film thickness of multilayer thin film, method for manufacturing optical information recording medium using the method, and apparatus for manufacturing optical information recording medium
EP1426939A1 (en) Optical information recording medium
EP1575041B1 (en) Optical information recording medium and method for manufacturing same
JP3764794B2 (en) Multilayer thin film thickness measuring method, optical information recording medium manufacturing method and manufacturing apparatus
KR100426045B1 (en) Method for determining the thickness of a multi-thin-layer structure
US5151295A (en) Process for manufacturing an optical recording medium
EP1551018B1 (en) Optical information recording medium and manufacturing method thereof
KR101020906B1 (en) Optical information recording medium and process for producing the same
JP2001126324A (en) Method for manufacturing optical recording medium
JPH10149586A (en) Method and device for producing recording medium
JP2000249520A (en) Method for measuring thickness of multilayer thin film
JPH1186350A (en) Method for inspecting optical recording medium
JPH0973667A (en) Production of optical recording medium
JP3402026B2 (en) Manufacturing method and evaluation method of optical information recording medium
Arsac12 et al. Improved polychromatic optical monitoring strategies of thin-film optical filters
JP3407463B2 (en) Optical information recording medium and method of manufacturing the same
JPH09128817A (en) Method and device for inspecting optical recording medium, method and device for initializing it and its manufacture
JPH10289478A (en) Optical information recording medium and its production
Hofmann et al. Characterization of multilayer depositions of DVD-RAM disks
JPH11230719A (en) Inspection method and manufacture of optical record medium
JP2006147002A (en) Information recording medium and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees