JPH10249492A - Mold for continuously casting steel - Google Patents

Mold for continuously casting steel

Info

Publication number
JPH10249492A
JPH10249492A JP7283797A JP7283797A JPH10249492A JP H10249492 A JPH10249492 A JP H10249492A JP 7283797 A JP7283797 A JP 7283797A JP 7283797 A JP7283797 A JP 7283797A JP H10249492 A JPH10249492 A JP H10249492A
Authority
JP
Japan
Prior art keywords
side wall
long side
mold
wall surface
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7283797A
Other languages
Japanese (ja)
Inventor
Hisao Esaka
久雄 江阪
Toshiyuki Kajitani
敏之 梶谷
Kenichi Tomizawa
憲一 富沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7283797A priority Critical patent/JPH10249492A/en
Publication of JPH10249492A publication Critical patent/JPH10249492A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain sound solidified shell in a cast slab at the lower end of a mold by freely changing tapered degree of long side plates regardless of width size at the upper and the lower parts of short side plates based on information of thermocouples buried into the long side plate in a mold and suitably holding a cast slab cooling speed according to kind of steel and casting speed. SOLUTION: The continuous casting mold 1 arranges one pair of the long side plates 2 to the side surfaces of one pair of the faced short side plates 3 and forms as an interposing system with hydraulic cylinders 4 arranged on the back surfaces of the long side plates. On the back sides of the short side plates 2, cylinders 5 for adjusting the long side tapered degree are arranged. The change of the tapered degree is decided according to the casting conditions of drawing speed, flux quantity, etc., and cooling changable width of the mold, etc., by using the detected information of the thermocouples 7 buried into the long side plate 2 through an arithmetic device 10, and executed by adjusting the displacement of the cylinders 5 for adjusting the tapered degree through a control device 11. The width of the short side plate 2 is manufactured so as to become narrower as going to downward, and it is desirable to easily adjust the tapered degree.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造用鋳
型に関する。
TECHNICAL FIELD The present invention relates to a mold for continuous casting of steel.

【0002】[0002]

【従来の技術】鋼の凝固の進行(凝固シェル生成)かつ
温度の低下(凝固シェル成長)により凝固シェル部分の
体積は、それが液相であった時の体積に比べて収縮する
ため、鋼の連続鋳造用鋳型の断面積は上方に比較して下
方は小さくする(=正のテーパーを付与すると言う)こ
とが一般的である。ところが、鋼のスラブ用の鋳型で
は、4枚の壁面を組み立てる組立方式、特に対向する一
対の短辺壁面を他の対向する長辺壁面で挟みつける方式
が一般的であるため、短辺側に限ってテーパーを付与し
ている。この短辺側テーパー量についてはいくつかの先
行例もあるとおり、種々の設定ができる。
2. Description of the Related Art As the solidification of steel progresses (solidification shell formation) and the temperature decreases (solidification shell growth), the volume of the solidified shell portion shrinks compared to the volume when it is in a liquid phase. In general, the cross-sectional area of the continuous casting mold is smaller in the lower part than in the upper part (= it means that a positive taper is given). However, in a mold for steel slabs, an assembling method of assembling four wall surfaces, particularly a method of sandwiching a pair of opposing short side wall surfaces with other opposing long side wall surfaces, is generally used. Tapered only. Various settings can be made for the short-side taper amount as in some prior examples.

【0003】例えば、特開平2−284747には、鋳
造方向には放物線状の形状を持ち、かつその平均テーパ
ー量が短辺幅中央部からコーナー部に向かって徐々に増
大するような複雑な構造を有する技術も開示されてい
る。ここで、鋳造速度以外の条件が同一の場合に、鋳型
下端位置における凝固シェルの厚みを比較すると、鋳造
速度が遅いほどシェル厚が厚くなり、全体としての凝固
シェル部分の収縮量は大きくなる。従って鋳型のテーパ
ー量を大きくする必要がある。鋳造速度の遅い場合と
は、例えば鋳造初期がある。
For example, Japanese Unexamined Patent Publication No. 2-284747 discloses a complicated structure in which the casting direction has a parabolic shape and the average taper gradually increases from the center of the short side width toward the corner. Are also disclosed. Here, when the conditions other than the casting speed are the same, comparing the thickness of the solidified shell at the lower end of the mold, the lower the casting speed, the thicker the shell thickness, and the larger the shrinkage of the solidified shell portion as a whole. Therefore, it is necessary to increase the taper amount of the mold. The case where the casting speed is low is, for example, the initial stage of casting.

【0004】一方、鋳造速度が速くなるに従ってシェル
厚は薄くなり、体積の収縮量も小さくなる。この場合
は、鋳型テーパー量を小さくしないと、引き抜き抵抗が
過大となり引き抜き不能もしくは鋳片のブレークアウト
につながる。更に、実際の操業では、連続鋳造用パウダ
ーの使用状況および消費状況、溶鋼成分、一次冷却水量
および水圧等の変動によって鋳型内の凝固の進行は時々
刻々変化するため、鋳型テーパー量を大きくしたり小さ
くしたり変化させるのが理想である。
On the other hand, as the casting speed increases, the shell thickness decreases and the volume shrinkage decreases. In this case, if the amount of the mold taper is not reduced, the pull-out resistance becomes excessively large, and the pull-out becomes impossible or the slab breaks out. Furthermore, in the actual operation, the progress of solidification in the mold changes every moment due to the use and consumption of the powder for continuous casting, the molten steel component, the amount of primary cooling water, the water pressure, and the like. Ideally, make it smaller or change it.

【0005】操業中にテーパー量を可変とした技術とし
て、CAMP−ISIJ:vol.8(1995)−1
45に短辺側壁面のメニスカス部のテーパー可変技術が
開示されている。これにより、コーナー縦割れが減少
し、鋳型抜熱量が増大する旨の報告がなされている。こ
のように短辺側壁面のテーパーに限れば種々の工夫が提
案されている。
As a technique for changing the taper amount during operation, CAMP-ISIJ: vol. 8 (1995) -1
45 discloses a technique for changing the taper of the meniscus portion on the short side wall surface. As a result, it has been reported that corner vertical cracks are reduced and the amount of heat released from the mold is increased. Various contrivances have been proposed as far as the short side wall surface is tapered.

【0006】[0006]

【発明が解決しようとしている課題】一方、長辺側壁面
についてはテーパーを付与しないのが一般的である。付
与する場合には、短辺側壁面としてその上下幅を連続的
に変えたものを製作し、これの側方を対向する一対の長
辺壁面で挟みつける方式が考えられる。
On the other hand, it is general that the long side wall surface is not tapered. In the case of applying, a method is conceivable in which a short side wall surface in which the upper and lower widths are continuously changed is manufactured, and the side is sandwiched between a pair of opposing long side wall surfaces.

【0007】しかしながら、この方式では、予め一種類
のテーパーを付与することしかできない。しかも短辺側
壁面の上下幅寸法が異なる場合に短辺側壁面の側面と長
辺側壁面との間隙寸法を一定に保つため、短辺側壁面の
テーパー量の変更に応じて長辺側壁面のテーパー量を変
更せざるを得ないという問題が生じる。短辺側壁面と長
辺側壁面とではその冷却条件が相違するため好ましくな
い。つまり、鋼種や鋳造速度に応じて冷却を適正に維持
できず、結果として鋳型下端において健全な凝固シェル
を得ることは困難であった。
However, in this method, only one type of taper can be provided in advance. In addition, when the vertical width of the short side wall surface is different, the gap between the side surface of the short side wall surface and the long side wall surface is kept constant. The problem arises that the amount of taper must be changed. The short side wall surface and the long side wall surface are not preferable because the cooling conditions are different. That is, cooling could not be properly maintained according to the steel type and casting speed, and as a result, it was difficult to obtain a sound solidified shell at the lower end of the mold.

【0008】[0008]

【課題を解決するための手段】本発明は、これらの問題
点を鑑みてなされたもので、短辺側壁面の上下幅寸法に
依らず、長辺側壁面のテーパー量を自在に変更する点に
ある。すなわち、短辺側壁面の上下幅寸法が異なる異な
らないに拘らず、短辺側壁面の側面と長辺側壁面との間
隙の寸法を、鋳造方向にわたって一定に保たなくてもコ
ーナー部の冷却に悪影響がないと言う知見に基づいたも
ので、本発明の要旨とするところは、下記手段にある。
SUMMARY OF THE INVENTION The present invention has been made in view of these problems, and is intended to freely change the amount of taper on the long side wall surface regardless of the vertical width of the short side wall surface. It is in. That is, regardless of whether the vertical width of the short side wall surface is different or not, the cooling of the corner portion is not required to keep the dimension of the gap between the side surface of the short side wall surface and the long side wall surface constant in the casting direction. The gist of the present invention is based on the finding that there is no adverse effect on the following.

【0009】(1)対向する一対の短辺側壁面の側方を
対向する一対の長辺側壁面により挟みつけて組み立てる
鋼の連続鋳造鋳型であって、前記長辺側壁面の挟みつけ
機構にそのテーパー量を自在に変更するための駆動機構
を有し、かつ前記長辺側壁面と前記短辺側壁面の側面と
の間隙のうち鋳造方向の少なくとも一部に相異なる寸法
の間隙を有する鋼の連続鋳造用鋳型。 (2)長辺側壁面内に埋め込んだ熱電対により検出した
温度情報又は熱流束センサーにより検出した熱流束情報
に基づいて、前記長辺側壁面の挟みつけ機構に備えたテ
ーパー量変更用の駆動機構を駆動させる上記(1)記載
の鋼の連続鋳造用鋳型。
(1) A steel continuous casting mold assembled by sandwiching a pair of opposed short side wall surfaces with a pair of opposed long side wall surfaces. Steel having a drive mechanism for freely changing the taper amount, and having gaps of different dimensions in at least a part of the gap between the long side wall surface and the short side wall surface in the casting direction. For continuous casting. (2) Driving for changing the amount of taper provided in the pinching mechanism of the long side wall surface based on temperature information detected by a thermocouple embedded in the long side wall surface or heat flux information detected by a heat flux sensor. The continuous casting mold for steel according to (1), wherein the mechanism is driven.

【0010】(3)長辺側壁面の挟みつけ機構に備える
テーパー量変更用の駆動機構として、油圧シリンダーを
短辺側壁面の裏側に一対の長辺側壁面の両方に連設する
ように配置した上記(1)又は(2)に記載の鋼の連続
鋳造用鋳型。 (4)長辺側壁面の挟みつけ機構に備えるテーパー量変
更用の駆動機構として、形状記憶合金を短辺側壁面の裏
側に一対の長辺側壁面の両方に連設するように配置した
上記(1)又は(2)に記載の鋼の連続鋳造用鋳型。 (5)短辺側壁面の裏側に一対の長辺側壁面の両方に連
設した油圧シリンダー又は形状記憶合金の発生圧力の総
和の大きさが、一対の短辺側壁面を挟みつける長辺側壁
面の外側の油圧シリンダーの発生圧力の総和よりも大き
い上記(1)ないし(4)のいずれかに記載の鋼の連続
鋳造用鋳型。
(3) As a drive mechanism for changing the taper amount provided in the clamping mechanism for the long side wall surface, a hydraulic cylinder is arranged behind the short side wall surface so as to be connected to both of the pair of long side wall surfaces. A continuous casting mold for steel according to the above (1) or (2). (4) As the drive mechanism for changing the taper amount provided in the pinching mechanism of the long side wall surface, the shape memory alloy is disposed behind the short side wall surface so as to be connected to both of the pair of long side wall surfaces. The mold for continuous casting of steel according to (1) or (2). (5) The magnitude of the sum of the pressures generated by the hydraulic cylinders or shape memory alloys connected to both of the pair of long side walls on the back side of the short side wall is the long side that sandwiches the pair of short side walls. The continuous casting mold for steel according to any one of the above (1) to (4), which is larger than a sum of pressures generated by the hydraulic cylinders outside the wall surface.

【0011】[0011]

【発明の実施の形態】本発明の鋼の連続鋳造用鋳型につ
いて図1ないし図3を用いて詳述すると以下のようにな
る。図1に示したように連続鋳造鋳型は、対向する一対
の短辺側壁面3、3’の側方を、対向する一対の長辺側
壁面2、2’の裏側に配した4対の油圧シリンダー4に
よって挟みつける方式で組み立てられている。短辺側壁
面3、3’の裏側には長辺テーパー量調整用シリンダー
5を配する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The continuous casting mold for steel of the present invention will be described in detail with reference to FIGS. As shown in FIG. 1, the continuous casting mold has four pairs of hydraulic pressures in which a pair of opposed short side wall surfaces 3 and 3 ′ are arranged on the back side of a pair of opposed long side wall surfaces 2 and 2 ′. Assembled by the method of sandwiching by the cylinder 4. A long side taper amount adjusting cylinder 5 is disposed on the back side of the short side wall surfaces 3, 3 '.

【0012】本願のポイントは短辺側壁面の上下幅寸法
に依らず、長辺側壁面のテーパー量を自在に変更する点
にある。逆に敢えて短辺側壁面の側面と長辺側壁面との
間隙の寸法を、鋳造方向の少なくとも一部に相異なる寸
法の間隙を有するようにしたのである。すなわち、テー
パー調整用シリンダー5の変位は連続鋳造用鋳型1の全
長、鋳造する鋼種、鋳造速度範囲等によって異なるが、
現行の連続鋳造方法においては高々1mm程度であり、
短辺側壁面の側面と長辺側壁面との間隙の寸法を0.5
mm超にしたところで、湯漏れやブレークアウトの危険
性は極めて少ない。
The point of the present application is that the taper amount of the long side wall surface is freely changed regardless of the vertical width of the short side wall surface. Conversely, the dimension of the gap between the side surface of the short side wall surface and the long side wall surface is designed to have different sizes in at least a part of the casting direction. That is, the displacement of the taper adjusting cylinder 5 varies depending on the total length of the continuous casting mold 1, the type of steel to be cast, the casting speed range, and the like.
In the current continuous casting method, it is at most about 1 mm,
The dimension of the gap between the side surface of the short side wall surface and the long side wall surface is 0.5
When the distance exceeds mm, the danger of hot water leakage and breakout is extremely small.

【0013】ただ、図1のような長辺テーパーを大きく
する時に鋳型上方を広げる方式(鋳型上方に隙間が生ず
る方式)に比べると、図2のような、あらかじめ短辺側
壁面の幅が下ほど狭くなるように製作し、鋳型下方の長
辺側壁面間隔を広げてテーパー量を小さくしたり、短辺
側壁面の側面に長辺側壁面を完全密着させるとテーパー
量を大きくできる方式の方が湯漏れなどの点からは好ま
しい。いずれの場合も鋳型直下での鋳片厚みとしては1
mm以内の偏差であり、二次冷却帯でのロール配置には
特別の措置をとる必要はない。もちろんテーパー変更に
同期させてロール間隔を変更できる機構を組み入れても
差し支えない。
However, as compared with the method in which the upper side of the mold is widened when the long side taper is increased as shown in FIG. 1 (a method in which a gap is formed above the mold), the width of the short side wall surface is previously reduced as shown in FIG. If the taper is reduced by increasing the distance between the long side walls below the mold to reduce the amount of taper, or if the long side wall is completely adhered to the side of the short side, the amount of taper can be increased. However, it is preferable from the viewpoint of hot water leakage. In any case, the slab thickness immediately below the mold is 1
mm, and no special measures need to be taken for the arrangement of the rolls in the secondary cooling zone. Of course, a mechanism capable of changing the roll interval in synchronization with the taper change may be incorporated.

【0014】図3では図2と同様に長辺テーパー量を小
さくする時に鋳型下方に隙間が生ずる例であるが、長辺
テーパー量の調整を形状記憶合金12とその周囲に制御
装置11の信号により制御される温度調節装置13とか
らなる例を示す。テーパー調整用シリンダーの代わりに
形状記憶合金が使用される以外は図2と同一である。こ
こでの特徴はテーパー調整用シリンダー5に比べ、鋳型
全体が非常にコンパクトになるという特徴を持つ。
FIG. 3 shows an example in which a gap is formed below the mold when the taper amount of the long side is reduced as in FIG. 2, but the taper amount of the long side is adjusted by controlling the shape memory alloy 12 and the signal of the control device 11 around the shape memory alloy 12. An example comprising the temperature control device 13 controlled by the following is shown. 2 except that a shape memory alloy is used instead of the taper adjusting cylinder. The feature here is that the whole mold is very compact compared to the taper adjusting cylinder 5.

【0015】形状記憶合金の例としては、Fe−Ti
系、Mn−Ti系、Ni−Ti系合金等が考えられ、そ
れぞれの加工度、組成等から変形可能な温度域が異な
る。Ni−Ti系合金の一例では40℃程度である。
As an example of the shape memory alloy, Fe—Ti
System, Mn-Ti system, Ni-Ti system alloy, etc. are considered, and the temperature range in which deformation is possible differs depending on the degree of processing, composition, etc. The temperature is about 40 ° C. in an example of a Ni—Ti alloy.

【0016】長辺側壁面には鋳型内の情報収集機器とし
て熱電対7あるいは鋳型内熱流束計8の例を示した。鋳
型内に埋め込んだ熱電対7によって鋳型温度が測定され
ているが、この変動を解析することにより、鋳型内でエ
アギャップが生成したか否かの判断が可能である。例え
ば熱電対の温度が低下していく場合には、徐々にエアギ
ャップが生成していることを示している。よって熱電対
の検出温度の低下に対しては鋳型長辺側壁面のテーパー
を増大させて対処する(図4)。
An example of a thermocouple 7 or a heat flux meter 8 in the mold is shown on the long side wall surface as an information collecting device in the mold. The mold temperature is measured by the thermocouple 7 embedded in the mold. By analyzing the fluctuation, it is possible to determine whether or not an air gap has been generated in the mold. For example, when the temperature of the thermocouple decreases, it indicates that an air gap is gradually generated. Therefore, a decrease in the temperature detected by the thermocouple is dealt with by increasing the taper of the long side wall surface of the mold (FIG. 4).

【0017】実際の制御シーケンスとしては、熱電対で
検出した鋳型温度を移動平均処理するなどした後の情報
を用いる。また、熱電対7の代わりに熱流束計8を用い
ても良い。熱流束の計算値が低下してくれば徐々にエア
ギャップが生成していることを示しているので、これに
対してはテーパー量を大きくする等の措置をとる。これ
により抜熱を大きくして、適正な冷却にすることが可能
となる。
As an actual control sequence, information obtained by performing a moving average process on a mold temperature detected by a thermocouple is used. Further, a heat flux meter 8 may be used instead of the thermocouple 7. If the calculated value of the heat flux decreases, it indicates that an air gap is gradually generated. For this, measures such as increasing the taper amount are taken. As a result, it is possible to increase the heat removal and perform appropriate cooling.

【0018】一方、熱電対7の温度が過剰に高くなった
場合、あるいは熱流束計8の値が大きくなった場合では
長辺側壁面テーパー量が過大となっていることを示して
いるので、長辺側壁面テーパー量を小さくする措置をと
る必要がある。検出データ量に応じて増減させるテーパ
ー量については、引き抜き速度や鋳型潤滑フラックス種
類などの鋳造条件や、鋳型の冷却効率可変幅などに応じ
て設定する必要がある。これらの情報処理は演算装置1
0で行い、その結果を用いて制御装置11を経てテーパ
ー調整用シリンダー5の変位を調整する。
On the other hand, if the temperature of the thermocouple 7 becomes excessively high, or if the value of the heat flux meter 8 becomes large, it indicates that the taper of the long side wall surface is excessive. It is necessary to take measures to reduce the taper amount of the long side wall surface. The taper amount to be increased or decreased according to the detected data amount needs to be set according to the casting conditions such as the drawing speed and the type of mold lubricating flux, the mold cooling efficiency variable width, and the like. The information processing is performed by the arithmetic unit 1
0, and the displacement of the taper adjusting cylinder 5 is adjusted via the control device 11 using the result.

【0019】[0019]

【実施例】本発明による連続鋳造鋳型を用いて鋼の連続
鋳造をした場合を比較例と共に図4および図5に示し
た。ここでは長辺の鋳造方向に埋め込んだ熱電対情報と
長辺のテーパー量、および、鋳型内でサルファー添加に
よって求めた鋳型直下での凝固シェル厚のデータを示し
た。ここでは鋳型内熱電対の変化に基づいて、鋳型下部
にシリンダーを配して、長辺テーパーを変更した例を示
した。
EXAMPLE FIGS. 4 and 5 show a case where steel was continuously cast using a continuous casting mold according to the present invention, together with a comparative example. Here, the thermocouple information embedded in the casting direction on the long side, the taper amount on the long side, and the data of the solidified shell thickness immediately below the mold obtained by adding sulfur in the mold are shown. Here, an example is shown in which a cylinder is arranged below the mold and the long-side taper is changed based on the change of the thermocouple in the mold.

【0020】継ぎ目部での速度低下が起こっても、鋳型
内に埋め込んだ熱電対は安定し、結果としての凝固シェ
ル厚の変化も非常に軽微であり、操業阻害に至るような
シェル厚の薄い部分、逆に過大となる部分は発生しなか
った(図4)。
Even if the speed decreases at the seam, the thermocouple embedded in the mold is stable, the resulting change in the solidified shell thickness is very small, and the shell thickness is small enough to hinder operation. No portion or conversely, an excessive portion occurred (FIG. 4).

【0021】これに対し、通常鋳型の場合には継ぎ目部
の速度低下した部位で熱電対が下部で異常に低下するな
ど、操業異常が見られ、凝固シェル厚の変化も著しく、
非常に不安定な状況となった。さらに、高速時は鋳型直
下での凝固シェル圧が不足し、非定常バルジング性の湯
面変動も生じるなど、操業上の問題も多発した(図
5)。
On the other hand, in the case of a normal mold, an abnormal operation such as an abnormal lowering of the thermocouple at the lower portion of the portion where the speed of the joint is reduced is observed, and the change in the thickness of the solidified shell is remarkable.
The situation was very unstable. Furthermore, at high speeds, there were many operational problems, such as insufficient solidification shell pressure immediately below the mold, causing fluctuations in the unsteady bulging property of the molten metal surface (FIG. 5).

【0022】[0022]

【発明の効果】鋳造中に長辺側のテーパーを変更するこ
とにより長辺側の凝固シェル厚の確保が可能となり、鋼
種変更、鋳造速度変更に伴う鋳型内のエアギャップ生成
に基づくシェル厚変動を可急的に少なくすることが可能
になった。この効果により飛躍的に鋳造の安定性を向上
できる。さらに、継ぎ目部での鋳造速度変化を小さくす
ることができることから、平均鋳造速度が向上し、生産
性の向上にもつながる。
The thickness of the solidified shell on the long side can be ensured by changing the taper on the long side during casting, and the shell thickness changes based on the air gap generation in the mold due to the change in steel type and casting speed. Can be reduced as quickly as possible. This effect can dramatically improve the stability of casting. Further, since the change in casting speed at the seam can be reduced, the average casting speed is improved, which leads to an improvement in productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋼の連続鋳造用鋳型(長辺側のテーパ
ー変更にシリンダーを用いた例、長辺がテーパーを大き
くする時には上方が広くなる方式)の1例を示した図
FIG. 1 is a view showing an example of a steel continuous casting mold of the present invention (an example in which a cylinder is used for changing the taper on the long side, a method in which the upper side is widened when the long side is tapered).

【図2】本発明の鋼の連続鋳造用鋳型(長辺側のテーパ
ー変更にシリンダーを用いた例、長辺がテーパーを大き
くする時には短辺に完全に密着し、テーパーを緩くする
場合には下方が広くなる方式)の1例を示した図
FIG. 2 is a mold for continuous casting of steel of the present invention (an example in which a cylinder is used to change the taper on the long side; when the long side has a large taper, it is completely adhered to the short side, and when the taper is loosened, Diagram showing one example of a method in which the lower part is widened)

【図3】本発明の鋼の連続鋳造用鋳型(長辺側のテーパ
ー変更に形状記憶合金を用いた例、長辺がテーパーを大
きくする時には短辺に完全に密着し、テーパーを緩くす
る場合には下方が広くなる方式)の1例を示した図
FIG. 3 is a continuous casting mold for steel according to the present invention (an example in which a shape memory alloy is used to change the taper on the long side; when the long side is increased in taper, it is completely adhered to the short side and the taper is loosened) Figure showing an example of a method in which the lower part is wider.

【図4】本発明の鋼の連続鋳造用鋳型を用いた実施例で
の結果を示したグラフ
FIG. 4 is a graph showing the results of an example using the steel continuous casting mold of the present invention.

【図5】従来の鋼の連続鋳造用鋳型を用いた比較例での
結果を示したグラフ
FIG. 5 is a graph showing a result of a comparative example using a conventional steel continuous casting mold.

【符号の説明】[Explanation of symbols]

1:連続鋳造鋳型 2:長辺側プレート 3:短辺側プレート 4:油圧シリンダー 5:テーパー調整用シリンダー 6:長辺フレーム 7:熱電対 8:熱流束計 10:演算装置 11:制御装置 12:形状記憶合金 13:温度調節装置 1: Continuous casting mold 2: Long side plate 3: Short side plate 4: Hydraulic cylinder 5: Cylinder for taper adjustment 6: Long side frame 7: Thermocouple 8: Heat flux meter 10: Computing device 11: Control device 12 : Shape memory alloy 13: Temperature controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 対向する一対の短辺側壁面の側方を対向
する一対の長辺側壁面により挟みつけて組み立てる鋼の
連続鋳造鋳型であって、前記長辺側壁面の挟みつけ機構
にそのテーパー量を自在に変更するための駆動機構を有
し、かつ前記長辺側壁面と前記短辺側壁面の側面との間
隙のうち鋳造方向の少なくとも一部に相異なる寸法の間
隙を有することを特徴とする鋼の連続鋳造用鋳型。
1. A continuous casting mold made of steel which is assembled by sandwiching a pair of opposed short side wall surfaces with a pair of opposed long side wall surfaces. A drive mechanism for freely changing the taper amount, and having a gap of different dimensions in at least a part of the gap between the long side wall surface and the short side wall surface in the casting direction. Features A continuous casting mold for steel.
【請求項2】 長辺側壁面内に埋め込んだ熱電対により
検出した温度情報又は、熱流束センサーにより検出した
熱流束情報に基づいて、前記長辺側壁面の挟みつけ機構
に備えたテーパー量変更用の駆動機構を駆動させること
を特徴とする請求項1記載の鋼の連続鋳造用鋳型。
2. A taper amount change mechanism provided in a pinching mechanism of the long side wall surface based on temperature information detected by a thermocouple embedded in a long side wall surface or heat flux information detected by a heat flux sensor. 2. The casting mold for continuous casting of steel according to claim 1, wherein a driving mechanism is driven.
【請求項3】 長辺側壁面の挟みつけ機構に備えるテー
パー量変更用の駆動機構として、油圧シリンダーを短辺
側壁面の裏側に一対の長辺側壁面の両方に連設するよう
に配置したことを特徴とする請求項1又は2に記載の鋼
の連続鋳造用鋳型。
3. A drive mechanism for changing a taper amount provided in a clamping mechanism for a long side wall surface, wherein a hydraulic cylinder is arranged behind the short side wall surface so as to be connected to both of the pair of long side wall surfaces. 3. The mold for continuous casting of steel according to claim 1 or 2, wherein:
【請求項4】 長辺側壁面の挟みつけ機構に備えるテー
パー量変更用の駆動機構として、形状記憶合金を短辺側
壁面の裏側に一対の長辺側壁面の両方に連設するように
配置したことを特徴とする請求項1又は2に記載の鋼の
連続鋳造用鋳型。
4. A drive mechanism for changing the amount of taper provided in a mechanism for clamping a long side wall surface, wherein a shape memory alloy is disposed on the back side of a short side wall surface so as to be continuously provided on both of a pair of long side wall surfaces. The mold for continuous casting of steel according to claim 1 or 2, wherein the mold is made.
【請求項5】 短辺側壁面の裏側に一対の長辺側壁面の
両方に連設した油圧シリンダー又は形状記憶合金の発生
圧力の総和の大きさが、一対の短辺側壁面を挟みつける
長辺側壁面の外側の油圧シリンダーの発生圧力の総和よ
りも大きいことを特徴とする請求項1ないし4のいずれ
かに記載の鋼の連続鋳造用鋳型。
5. The magnitude of the sum of the pressures generated by the hydraulic cylinders or shape memory alloys connected to both of the pair of long side walls on the back side of the short side walls is such a length that the pair of short side walls is sandwiched. The continuous casting mold for steel according to any one of claims 1 to 4, wherein the total pressure is larger than a total pressure generated by a hydraulic cylinder outside the side wall surface.
JP7283797A 1997-03-11 1997-03-11 Mold for continuously casting steel Withdrawn JPH10249492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7283797A JPH10249492A (en) 1997-03-11 1997-03-11 Mold for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7283797A JPH10249492A (en) 1997-03-11 1997-03-11 Mold for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH10249492A true JPH10249492A (en) 1998-09-22

Family

ID=13500931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7283797A Withdrawn JPH10249492A (en) 1997-03-11 1997-03-11 Mold for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH10249492A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501265A (en) * 1999-06-07 2003-01-14 エス・エム・エス・デマーク・アクチエンゲゼルシヤフト Operating method and system for high-speed continuous casting equipment
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2011079062A (en) * 2011-01-28 2011-04-21 Mishima Kosan Co Ltd Mold for continuous casting
CN103364117A (en) * 2012-04-01 2013-10-23 中钢设备有限公司 Experimental device for soft clamp force of slab crystallizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501265A (en) * 1999-06-07 2003-01-14 エス・エム・エス・デマーク・アクチエンゲゼルシヤフト Operating method and system for high-speed continuous casting equipment
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2011079062A (en) * 2011-01-28 2011-04-21 Mishima Kosan Co Ltd Mold for continuous casting
CN103364117A (en) * 2012-04-01 2013-10-23 中钢设备有限公司 Experimental device for soft clamp force of slab crystallizer

Similar Documents

Publication Publication Date Title
JP3090783B2 (en) Method for adjusting the degree of taper of narrow face plate which can be adjusted between wide face plate of liquid cooled plate material mold for producing billet shaped continuous cast material from molten steel
JPH0366457A (en) Apparatus for controlling twin roll type continuous casting machine
BR112019003906B1 (en) PROCESS AND DEVICE FOR ADJUSTING A TAPER ON THE NARROW SIDE OF A CONTINUOUS CASTING DIET
JPH10249492A (en) Mold for continuously casting steel
JPH07108435B2 (en) Twin roll type continuous casting machine
JP5428902B2 (en) Continuous casting method and continuous casting apparatus
JPH10305352A (en) Control of continuous casting machine with twin rolls
JP2972051B2 (en) Steel continuous casting mold and continuous casting method
JPH0252149A (en) Method for controlling roll correction in twin roll type continuous casting machine
JP3179069B2 (en) Mold for continuous casting of steel
JP3035587B2 (en) Continuous casting apparatus and continuous casting method
JPH084893B2 (en) Continuous casting method and mold for continuous casting equipment
JPS61232044A (en) Continuous casting method for thin sheet
JPS59193740A (en) Continuous casting method of metallic plate
JP3090183B2 (en) Austenitic stainless steel thin cast slab and method for producing the same
JP3020538B2 (en) Width expansion method during continuous casting
JP2000210759A (en) Casting method using twin-drum type continuous casting machine
JP3068839B2 (en) Slab thickness control method in twin roll continuous casting
JP2913114B2 (en) Method of expanding mold width during continuous casting
JP2598356B2 (en) Twin roll continuous casting method
JPH02247059A (en) Method and device for controlling curved short wall side in mold for continuous casting
JPH0133254Y2 (en)
JP2005503927A (en) Method and apparatus for cooling copper plate of continuous casting mold for liquid metal, especially liquid steel
JPH08257714A (en) Continuous casting apparatus
JP2533601B2 (en) Twin roll type continuous casting machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511