JP2972051B2 - Steel continuous casting mold and continuous casting method - Google Patents

Steel continuous casting mold and continuous casting method

Info

Publication number
JP2972051B2
JP2972051B2 JP11365493A JP11365493A JP2972051B2 JP 2972051 B2 JP2972051 B2 JP 2972051B2 JP 11365493 A JP11365493 A JP 11365493A JP 11365493 A JP11365493 A JP 11365493A JP 2972051 B2 JP2972051 B2 JP 2972051B2
Authority
JP
Japan
Prior art keywords
mold
continuous casting
copper plate
molten steel
body portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11365493A
Other languages
Japanese (ja)
Other versions
JPH06297101A (en
Inventor
亨 志摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14617760&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2972051(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP11365493A priority Critical patent/JP2972051B2/en
Publication of JPH06297101A publication Critical patent/JPH06297101A/en
Application granted granted Critical
Publication of JP2972051B2 publication Critical patent/JP2972051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鋼の連続鋳造用鋳型およ
び連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold for steel and a continuous casting method.

【0002】[0002]

【従来の技術】従来より断面四角形鋳片に対する連続鋳
造用鋳型については、大きく分けて、鋳型横断面が製品
鋳片と相似形のものと、少なくとも一部分が異形断面の
もの、つまり鋳型横断面が製品鋳片と相似形でないもの
とがある。前記横断面が製品鋳片と相似形の鋳型につい
ては、単一テーパーのものや鋳込方向に複数段階に分け
て各段階でテーパー量を変える多段テーパーのものが公
知である。この四角形の鋳型を用いた鋳造方法として
は、鋳型内の溶鋼レベルを一定(一般には鋳型上端から
下へ100mm 近辺)にすることが基本となっている。すな
わち、浸漬ノズルや鋳型銅板の寿命延長の目的で20mm前
後人為的に移動させることはあるが、基本思想は鋳込速
度の増減に拘らず、特定の目標レベルに極力維持するこ
とが通常の方法である。
2. Description of the Related Art Conventionally, continuous casting molds for rectangular cast slabs are roughly classified into those having a mold cross-section similar to the product slab and those having at least a part of a deformed cross-section, that is, a mold cross-section. Some products are not similar to product slabs. With respect to the mold having a cross section similar to that of the product cast piece, a mold having a single taper or a mold having a multi-stage taper in which a taper amount is changed in a plurality of steps in a casting direction and a taper amount is changed in each step is known. The basic casting method using this square mold is to keep the molten steel level in the mold constant (generally around 100 mm below the top of the mold). In other words, although it may be moved about 20 mm artificially for the purpose of extending the life of the immersion nozzle or the copper plate, the basic idea is to maintain the specified target level as much as possible, regardless of the increase or decrease in the casting speed. It is.

【0003】前記異形断面の鋳型は、鋳込速度の増大と
鋳片破壊やブレークアウトを防止することを目的として
おり、特開平4−319044号公報や米国特許第 4207941号
公報に記載された鋳型がある。特開平4−319044号公報
に記載された鋳型は、図10〜11に示すように、鋳型103
の上半分では四辺を湾曲して張り出させて張出し部109
を形成し、その張出し量110 は下方に向って減少させて
おり、鋳型の下半分113 ではキャビティー106 が略四角
形に形成されている。米国特許第 4207941号公報に記載
された鋳型は、図12〜13に示すように鋳型の上端部202
はコーナーが谷状になった四角形であり、中間部204 は
テーパーが付けられ、下端部206 ではコーナーがハ字状
に形成され、横断面が不規則な十二角形に形成されてい
る。
[0003] The mold having the irregular cross section is intended to increase the casting speed and prevent slab breakage and breakout, and is disclosed in Japanese Patent Application Laid-Open No. Hei 4-319044 and US Patent No. 4207941. There is. The mold described in Japanese Patent Laid-Open No. Hei 4-319044 has a mold 103 as shown in FIGS.
In the upper half, the four sides are curved and overhang and overhang 109
The overhang 110 is reduced downward, and the cavity 106 is formed in the lower half 113 of the mold in a substantially square shape. The mold described in U.S. Pat.No. 4,420,791 has an upper end 202 of the mold as shown in FIGS.
Is a quadrilateral having a valley-shaped corner, the middle portion 204 is tapered, and the lower end 206 is formed in a C-shape at the lower end portion 206, and is formed in an irregular dodecagon.

【0004】[0004]

【発明が解決しようとする課題】しかるに、横断面が製
品鋳片と相似形の鋳型による従来の鋳造方法では鋳型内
溶鋼レベルの設定は、鋼種、鋳込温度、鋳込速度等の操
業条件が変わっても、変えないのが基本であったので鋳
型内キャビティ寸法は最もクリティカルな操業条件(す
なわち、初期凝固による収縮が小さい鋼種を、高速で鋳
込む場合)でも、鋳型内で鋳片を拘束することのないよ
うな、小さいテーパーが採用されていた。このため、通
常の操業条件では、鋳型銅板と鋳片の接触域は鋳型内溶
鋼レベル下方200 〜300mm までの全周および、それより
下方では各辺の中央部に限定されるという不充分な接触
状態下で操業せざるをえなかった。
However, in a conventional casting method using a mold having a cross section similar to that of a product slab, the setting of the molten steel level in the mold depends on operating conditions such as steel type, casting temperature and casting speed. Even if it changed, the cavity size in the mold was basically the same, so the slab was constrained in the mold even under the most critical operating conditions (ie, when casting steel with low shrinkage due to initial solidification at high speed). A small taper was used so that it would not occur. Therefore, under normal operating conditions, the contact area between the mold copper plate and the cast slab is limited to the entire circumference up to 200 to 300 mm below the level of molten steel in the mold, and below that, the contact area is limited to the center of each side. We had to operate under the condition.

【0005】そしてこの場合、鋳片横断面のコーナー付
近は、各辺よりも冷却が早く、従来の鋳型では初期凝固
直後には銅板から離れるため、コーナー近傍のシェル生
成遅れの原因となっていた。これが、コーナー近傍にシ
ェル生成不良部を形成し、鋳込速度の高速化を阻むとと
もに、コーナー付近での縦ワレ、菱形変形等の品質低下
の原因となっていた。一方、従来の異形断面の鋳型のよ
うに、横断面形状を鋳込方向で変えてしまうと、鋳型の
製作、維持保全が困難であり、摩耗寿命についても不利
である。さらに鋳片の断面が四角形でなく十二角形にな
ってしまうという問題もある。
[0005] In this case, the vicinity of the corner of the cross section of the slab cools faster than each side, and in the conventional mold, it separates from the copper plate immediately after the initial solidification, causing a delay in shell formation near the corner. . This forms a defective shell formation portion near the corner, hinders an increase in casting speed, and causes quality deterioration such as vertical cracking and rhombic deformation near the corner. On the other hand, if the cross-sectional shape is changed in the casting direction as in the case of a conventional mold having a modified cross section, it is difficult to manufacture, maintain and maintain the mold, and disadvantageous in terms of wear life. Further, there is a problem that the cross section of the cast slab is not a square but a dodecagon.

【0006】本発明は上記の事情に鑑み、鋳型の製作、
維持保全が困難な異形断面鋳型を用いることなく、四角
形を基本とする鋳型を用い、凝固シェルの生成を促進し
凝固シェル厚さを均一にし、品質低下の原因となる縦ワ
レ、菱形変形等を生じないようにした鋼の連続鋳造用鋳
型および連続鋳造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has a
Instead of using a deformed cross-section mold that is difficult to maintain, use a square-based mold to promote the formation of a solidified shell, make the solidified shell thickness uniform, and eliminate vertical cracks, rhombic deformation, etc. that cause quality deterioration. An object of the present invention is to provide a continuous casting mold and a continuous casting method for steel that are prevented from being generated.

【0007】[0007]

【課題を解決するための手段】本発明の連続鋳造用鋳型
は、注湯された溶鋼が鋳型銅板と接触する鋳型本体部分
とその上方の溶鋼が鋳型銅板と接触しない上端余裕部と
からなる連続鋳造用鋳型であって、前記鋳型本体部分の
横断面形状が4本の直線辺を四個の四分の一円弧で接続
した四角形であり、内周長が鋳型本体部分の上端側で大
きく下端側で小さくなっており、内周長減少率が鋳型本
体部分の上端から下端に向って小さくなっていることを
特徴とする。なお、本発明における鋳型本体部分の内周
長は、鋳型本体部分のテーパー量のみによって変化させ
てもよく、鋳型本体部分のテーパー量と四分の一の円弧
の半径によって変化させるようにしてもよい。
According to the present invention, there is provided a continuous casting mold comprising a continuous casting mold comprising a casting body portion in which molten metal poured into contact with a casting copper plate and an upper end margin portion in which molten steel above does not contact with the casting copper plate. A casting mold, wherein the cross-sectional shape of the mold body is a quadrangle in which four straight sides are connected by four quarter-arcs, and the inner peripheral length is largely lower at the upper end of the mold body. And the inner peripheral length reduction rate decreases from the upper end to the lower end of the mold body. Note that the inner peripheral length of the mold body in the present invention may be changed only by the taper amount of the mold body portion, or may be changed by the taper amount of the mold body portion and the radius of a quarter arc. Good.

【0008】本発明の連続鋳造方法は、上記連続鋳造用
鋳型を用い、溶鋼湯面を上下に変位させることにより、
鋳片の初期凝固の収縮外形と近似的に等しい内周長の鋳
型部分を常に使用し、鋳型銅板と凝固シェルの接触状態
を最適に保つようにすることを特徴とする。この場合、
鋳型銅板と凝固シェルの接触状態を示す物理量として、
鋳型内引抜き抵抗値、銅板温度、鋳型冷却水の給水側と
排水側の温度差の一または二以上の組合せを用い、この
物理量に基づき溶鋼湯面を上下に変位させることが好ま
しい。
[0008] The continuous casting method of the present invention uses the above-mentioned continuous casting mold and displaces the molten steel surface up and down.
The present invention is characterized in that a mold portion having an inner peripheral length approximately equal to the shrinkage profile of the initial solidification of the slab is always used, and the contact state between the mold copper plate and the solidified shell is kept optimal. in this case,
As a physical quantity indicating the contact state between the mold copper plate and the solidified shell,
It is preferable to use one or two or more combinations of the pull-out resistance value in the mold, the copper plate temperature, and the temperature difference between the water supply side and the drainage side of the mold cooling water, and displace the molten steel surface up and down based on this physical quantity.

【0009】[0009]

【作用】連続鋳造時には、収縮した鋳片外形と鋳型内キ
ャビティ形状の対応が良く、鋳型銅板と凝固シェルの間
のエアギャップが小さいほど、凝固シェルと銅板の接触
が広い範囲で確保されるので凝固シェルの生成を促進さ
せることができる。ところで、鋳型内で溶鋼が凝固し、
凝固シェルを生成して行く過程を観察していくと、溶鋼
湯面より、下方約200 〜300mm の間に大きく収縮し、そ
れ以降の収縮はさほど大きくないことが見出された。ま
た、初期凝固の際の収縮の程度は鋼種、鋳込温度、鋳込
速度等の操業条件に大きく左右されることが知られてい
る。
[Function] During continuous casting, the shape of the shrunk slab and the shape of the cavity in the mold are well matched, and the smaller the air gap between the mold copper plate and the solidified shell, the wider the contact between the solidified shell and the copper plate can be secured. The formation of a solidified shell can be promoted. By the way, molten steel solidifies in the mold,
When observing the process of forming the solidified shell, it was found that it contracted greatly between about 200 to 300 mm below the surface of the molten steel, and that the subsequent contraction was not so large. It is also known that the degree of shrinkage during initial solidification greatly depends on operating conditions such as the type of steel, casting temperature, and casting speed.

【0010】そこで、本発明では、操業条件の変化に対
応して溶鋼湯面の設定レベルを意図的に変えることによ
り、初期凝固の収縮によく合致する内周長を有する鋳型
部分を選択的に使用する。すなわち、鋳片の収縮外形と
近似的に等しい内周長の鋳型本体部分を使用することに
より、銅板各辺が相対する鋳片各辺を中心側へ押込む作
用を通して鋳片コーナー部が、銅板から離れようとする
のを防止するのである。また、操業条件が変わって、初
期凝固シェルと銅板との接触に過不足が発生した場合に
も、鋳型内溶鋼レベルの設定レベルを下降、上昇させる
ことによって常に最適の接触状態を保つことができる。
Therefore, in the present invention, by intentionally changing the set level of the molten steel surface in response to changes in operating conditions, a mold portion having an inner peripheral length that is well matched to the shrinkage of initial solidification can be selectively formed. use. That is, by using a mold body portion having an inner peripheral length approximately equal to the contracted outer shape of the slab, the slab corner portion is formed by the action of pressing each side of the slab to the center side where each side of the copper plate is opposed. It prevents you from moving away from it. In addition, even if the operating conditions change and the contact between the initially solidified shell and the copper plate becomes excessive or insufficient, the optimal contact state can always be maintained by lowering and increasing the set level of the molten steel level in the mold. .

【0011】[0011]

【実施例】つぎに、本発明の実施例を図面に基づき説明
する。図1は本発明に係る鋳型MDの概略縦断面図であ
り、1は注湯された溶鋼mが鋳型銅板と接触する鋳型本
体部分、2はその上方の上端余裕部である。この上端余
裕部2は注湯時の溶鋼の流出を防止する部分で、操業中
において通常、溶鋼mと接触することはない。溶鋼mが
接触するのは鋳型本体部分1で、その上端は操業時に溶
鋼mが最も上昇するレベルである。本発明ではこの鋳型
本体部分1の内周長の設定に特徴がある。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of a mold MD according to the present invention, wherein 1 is a mold main body portion where molten metal m poured into contact with a mold copper plate, and 2 is an upper end margin portion above it. The upper end margin 2 is a part for preventing the outflow of molten steel at the time of pouring, and does not normally come into contact with molten steel m during operation. The molten steel m comes into contact with the mold body portion 1, and the upper end thereof is at a level where the molten steel m rises most during operation. The present invention is characterized by the setting of the inner peripheral length of the mold body 1.

【0012】本発明に係る鋳型MDの横断面形状は四角形
であり、4本の直線辺を4個の四分の一円弧で接続した
形状である。なお、本明細書にいう四角形には、長四角
形のものも含んでおり、長辺Aと短辺Bとの比がA/B
≦2.0のものは、本発明に含まれる。本発明における
横断面形状の内周長Sは、鋳型本体部分1の上端側で大
きく下端側で小さくなっており、この内周長Sは鋳型本
体部分1のテーパーのみによって変化させてもよく、テ
ーパーと四分の一円弧の半径の両方によって変化させて
もよい。テーパー量を変える場合、図1の左側に示すよ
うに段階的に変えてもよく、図1の右側に示すように連
続的に変えてもよい。段階的にテーパー量を変える場
合、図1の左側に例示するように、上側部分3と下側部
分4の2段階に分けてもよく、3段階以上に分けてもよ
い。なお、前記上端余裕部2のテーパーは鋳型本体部分
1とは無関係に任意に付けてもよく、また付けなくても
よい。
The cross-sectional shape of the mold MD according to the present invention is a quadrangle, in which four straight sides are connected by four quarter-arcs. Note that the quadrangle in this specification includes a long quadrangle, and the ratio of the long side A to the short side B is A / B.
≦ 2.0 are included in the present invention. The inner peripheral length S of the cross-sectional shape in the present invention is large at the upper end side of the mold main body portion 1 and smaller at the lower end side, and the inner peripheral length S may be changed only by the taper of the mold main body portion 1, It may be varied by both the taper and the radius of the quarter arc. When the taper amount is changed, it may be changed stepwise as shown on the left side of FIG. 1 or may be changed continuously as shown on the right side of FIG. When the taper amount is changed stepwise, the upper part 3 and the lower part 4 may be divided into two stages or three or more stages as illustrated on the left side of FIG. The taper of the upper end margin 2 may be arbitrarily attached irrespective of the mold body 1 or may not be attached.

【0013】上記の鋳型本体部分におけるテーパー量あ
るいはテーパー量とコーナーの四分の一円弧の半径で規
定される内周長Sの減少率は上端から下端に向って小さ
くなっていなければならない。つまり、上端部では内周
長の変化の度合いが大きく、下端部では変化の度合いが
小さくなっていることが特徴である。
The reduction rate of the inner peripheral length S defined by the amount of taper or the amount of taper and the radius of a quarter arc of a corner in the mold body portion must decrease from the upper end to the lower end. That is, it is characterized in that the degree of change of the inner circumference length is large at the upper end, and the degree of change is small at the lower end.

【0014】つぎに、図2〜5に基づき、内周長Sの変
化の仕方をより詳細に説明する。図2は鋳型本体部分の
概略縦断面図であり、5は胴板である。一般に胴板5は
湾曲して形成されているが、本図では簡略して真直ぐに
描いている。図3〜5の(A)はそれぞれ図2における
上端、中央部、下端の横断面図、(B)はそぞれコーナ
ー円弧部の拡大図である。
Next, the manner of changing the inner circumference S will be described in more detail with reference to FIGS. FIG. 2 is a schematic vertical sectional view of a mold main body, and 5 is a body plate. Generally, the body plate 5 is formed to be curved, but is simply and straightly drawn in this figure. 3A to 5A are cross-sectional views of the upper end, the central portion, and the lower end in FIG. 2, respectively, and FIG. 3B is an enlarged view of each corner arc.

【0015】図2に示すように、鋳型下端のコーナー部
を除く内表面に原点0をとり、鋳型の鋳込方向と平行
に、上向きにY軸、それと直交方向にX軸をとる。y=
0から鋳型本体部分上端までの距離をL(mm)とし、任
意の横断面A−A断面(Y=y)における対辺寸法をB
(y)、コーナーの四分の一の円弧の半径をR(y)と
すると、内周長S(y)は次式で表される。 S(y) =4{B(y) −2・R(y) }+2π・R(y) ただし、B(y) =Bo +2x xは上記の如くyの関数として表されるので x=f
(y) となり、xとテーパーの関係は、モールドテー
パー=2/Bo ・dx /dy ×100 であるからdS(y)
/dy =8・dx /dy −(8−2π)・dR(y) /d
y となる。
As shown in FIG. 2, an origin 0 is set on the inner surface excluding the corners at the lower end of the mold, and the Y axis is set in the upward direction parallel to the casting direction of the mold, and the X axis is set in the direction perpendicular thereto. y =
The distance from 0 to the upper end of the mold main body portion is L (mm), and the opposite side dimension in an arbitrary cross section AA section (Y = y) is B
(Y), assuming that the radius of a quarter arc of the corner is R (y), the inner circumference S (y) is expressed by the following equation. S (y) = 4 {B (y) −2 · R (y)} + 2π · R (y) where B (y) = Bo + 2xx Since x is expressed as a function of y as described above, x = f
(Y), and the relationship between x and the taper is dS (y) since mold taper = 2 / Bo · dx / dy × 100.
/ Dy = 8 · dx / dy− (8−2π) · dR (y) / d
y.

【0016】いま、モールドテーパーをTmとすると、 dS(y) /dy =Bo/25・Tm−(8−2π)・dR
(y) /dy となり、上式から明らかなように、周長S
のy方向変化率はテーパーTmとコーナー部円弧の半径R
の変化率dR(y) /dy の関数となる。また、コーナー
部円弧の半径Rを一定とすれば、dS(y) /dy =Bo
/25・Tmとなり、テーパーのみに従属する関数とな
る。したがって、テーパーとコーナー部円弧の半径、あ
るいはコーナー部円弧を一定にしてテーパーを変えるこ
とで、鋳型本体部分1の横断面の内周長変化率S(y) を
任意に設定することができる。
Now, assuming that the mold taper is Tm, dS (y) / dy = Bo / 25 · Tm− (8−2π) · dR
(y) / dy, and as is apparent from the above equation, the circumference S
Is the rate of change in the y direction of the taper Tm and the radius R of the corner arc.
Is a function of the rate of change dR (y) / dy. If the radius R of the corner arc is constant, dS (y) / dy = Bo
/ 25 · Tm, which is a function dependent only on the taper. Therefore, by changing the taper while keeping the radius of the taper and the radius of the corner arc or the radius of the corner arc constant, the inner peripheral length change rate S (y) of the cross section of the mold body 1 can be set arbitrarily.

【0017】ただし、内周長変化率S(y) を小さくしす
ぎると、本発明の目的である鋳片の収縮外形と近似的に
等しい内周長の鋳型部分を使用することができなくな
り、反対に大きすぎると、鋳片を拘束してブレークアウ
トの原因となる。そこで、内周長変化率S(y) は 0≦
dS(y)/dy ≦0.08 の範囲で、鋳型本体部分1の
上端側で大きく、下端側で小さくするのが好ましい。図
3〜5に示す横断面形状はコーナー部円弧の半径Rが鋳
型本体部分1の上端から下端に向って大から小に変化し
ている例である。
However, if the rate of change of the inner circumference S (y) is too small, it is impossible to use a mold portion having an inner circumference approximately equal to the contracted outer shape of the slab, which is the object of the present invention. On the other hand, if it is too large, the slab is restrained and causes a breakout. Therefore, the inner circumference length change rate S (y) is 0 ≦
In the range of dS (y) /dy≦0.08, it is preferable that the ratio is large at the upper end of the mold body 1 and smaller at the lower end. The cross-sectional shapes shown in FIGS. 3 to 5 are examples in which the radius R of the corner arc changes from large to small from the upper end to the lower end of the mold body 1.

【0018】つぎに、鋳型内キャビティ寸法の好ましい
一例を、図6に基づき示すとつぎの通りである。なお、
本発明の鋳型はこれに限られないこと勿論である。 (1) 鋳型上部領域(図6(A) に示す、L−400 ≦y≦L
の領域) 1.5 ≦Tm ≦15(%/m ) 0≦dR(y)/dy≦0.15 0.005 ≦dS(y)/dy≦0.08 (2) 鋳型下部領域(図6(B) に示す、0≦y≦L−150
の領域) 0≦Tm ≦5.0 0≦dR(y)/dy≦0.03 0≦dS(y)/dy≦0.025 (3) 上記の各値はyの増加に伴って一定あるいは増加す
るものである。なお、上端余裕部2は50mmである。
Next, a preferred example of the cavity size in the mold is shown as follows based on FIG. In addition,
The mold of the present invention is not limited to this. (1) Upper mold area (L-400 ≦ y ≦ L shown in FIG. 6 (A))
1.5 ≦ Tm ≦ 15 (% / m) 0 ≦ dR (y) /dy≦0.15 0.005 ≦ dS (y) /dy≦0.08 (2) Mold lower region (0 ≦ y ≦ L-150
0 ≦ Tm ≦ 5.0 0 ≦ dR (y) /dy≦0.030 0 ≦ dS (y) /dy≦0.025 (3) The above values are constant or increase as y increases. The upper margin 2 is 50 mm.

【0019】つぎに、上記鋳型を用いた本発明の連続鋳
造方法を説明する。本発明では、操業条件の変化に対応
して溶鋼湯面の設定レベルを意図的に変えることによ
り、初期凝固の収縮によく合致する内周長Sを有する鋳
型部分を選択的に使用するのであるが、鋳型本体部分1
の内周長Sが、テーパーTmによってのみ変えられる鋳型
MDを使用する場合は、鋳片の収縮外形と近似的に等しい
周長減少率の、鋳型本体部分1を使用して、銅板各辺が
相対する鋳片各辺を中心側へ押込む作用を行なわせ、そ
れにより鋳片コーナー部が、銅板5から離れるのを防止
する。
Next, the continuous casting method of the present invention using the above mold will be described. In the present invention, by intentionally changing the set level of the molten steel surface in response to changes in operating conditions, a mold portion having an inner circumferential length S that matches well with the shrinkage of initial solidification is selectively used. But the mold body part 1
Mold whose inner peripheral length S can be changed only by the taper Tm
In the case of using MD, using the mold body 1 with a circumference reduction rate approximately equal to the contracted outer shape of the slab, the action of pushing each slab side where the copper plate side faces each other toward the center side is used. This prevents the slab corners from separating from the copper plate 5.

【0020】また、鋳型本体部分1の内周長Sが、テー
パーTmとコーナー部円弧の半径Rで変えられる鋳型MDを
使用する場合は、周長Sの減少率のみならず、鋳型キャ
ビティ横断面のコーナー円弧部で曲率半径の大きな凝固
シェルを初期に形成した後、鋳型下端へ向うに従って曲
率半径を減少させることにより、コーナー部における凝
固シェルと銅板の接触を確保するようにする。
When the mold MD in which the inner circumferential length S of the mold body 1 is changed by the taper Tm and the radius R of the corner arc is used, not only the reduction rate of the circumferential length S but also the cross section of the mold cavity is used. After a solidified shell having a large radius of curvature is initially formed at the corner arc, the radius of curvature is reduced toward the lower end of the mold, so that contact between the solidified shell and the copper plate at the corner is ensured.

【0021】さらに、鋼種、鋳込温度、鋳込速度等の操
業条件の変化により、初期凝固シェルと銅板との接触に
過不足が発生した場合にも、鋳型内溶鋼レベルの設定レ
ベルを下降、上昇させることにより最適の接触状態を保
ちうる。この上昇下降の範囲は、図1の上端余裕部2よ
り下へ10〜200mm の範囲が好ましい。
Furthermore, even if the contact between the initially solidified shell and the copper plate is excessive or insufficient due to changes in operating conditions such as steel type, casting temperature, casting speed, etc., the set level of the molten steel level in the mold is lowered. The optimal contact state can be maintained by raising. The range of the rise and fall is preferably 10 to 200 mm below the upper margin 2 in FIG.

【0022】上記のごとく、鋳込温度、鋼種等の操業条
件が変化した際は、凝固シェルと鋳型銅板の接触状態を
表す物理量が変化するので、これらの物理量をを測定あ
るいは算出することにより、その値が適正範囲になるよ
う鋳型内の溶鋼レベルを意図的に移動させるとよい。前
記物理量としては、(1) 鋳型内引抜き抵抗、(2) 銅板温
度(3) 鋳型冷却水の給水側と排水側の温度差等が挙げら
れ、これらの一または複数を組合わせて接触状況の指標
とすることができる。
As described above, when the operating conditions such as the casting temperature and the type of steel change, the physical quantity representing the contact state between the solidified shell and the mold copper plate changes. By measuring or calculating these physical quantities, The molten steel level in the mold may be intentionally moved so that the value falls within an appropriate range. Examples of the physical quantity include (1) pull-out resistance in the mold, (2) copper plate temperature, (3) temperature difference between the supply side and the drain side of the mold cooling water, and the like. It can be an index.

【0023】たとえば、操業中に過度の接触が生じる
と、鋳型冷却水の入側出側温度差、銅板温度、鋳型内引
抜抵抗値等の物理量が増大する。この傾向がさらに進む
と、鋳型に拘束された鋳片分より下部の凝固シェルの引
張応力が許容限度を越えて破断し、ブレークアウトに至
ることになる。したがって、これらの物理量の値が所定
の範囲を越えた場合は鋳型内溶鋼レベルを下降させ、テ
ーパーおよび内周長変化率の小さな鋳型部分を使用する
とよい。また逆に、銅板と凝固シェルの接触が少ない場
合は上記物理量が減少する。この場合には、鋳型内溶鋼
レベルを上昇させると鋳型テーパ、周長変化率の大きな
部分を使用することになり、上記物理量が増加する。し
たがって、上記物理量を監視しながら操業することで、
最適の接触状態を保つことができる。
For example, if excessive contact occurs during the operation, physical quantities such as the temperature difference between the inlet and the outlet of the mold cooling water, the temperature of the copper plate, and the resistance value of the pulling resistance in the mold increase. If this tendency further progresses, the tensile stress of the solidified shell below the slab constrained by the mold breaks beyond the allowable limit, leading to breakout. Therefore, when the values of these physical quantities exceed a predetermined range, it is preferable to lower the level of molten steel in the mold and use a mold portion having a small taper and a rate of change in inner circumference length. Conversely, when the contact between the copper plate and the solidified shell is small, the above physical quantity decreases. In this case, when the level of molten steel in the mold is increased, a portion having a large mold taper and a change rate of the circumferential length is used, and the physical quantity increases. Therefore, by operating while monitoring the above physical quantities,
Optimal contact can be maintained.

【0024】なお、上記の鋳型銅板と鋳片との接触状態
を表す物理量については、各鋳込みの都度測定せずと
も、事前に蓄積したデータに基づき、操業条件に対する
適正な鋳型内溶鋼レベルの算出方法を確立しておくこと
も可能である。
It should be noted that the physical quantity representing the contact state between the mold copper plate and the slab does not need to be measured each time casting is performed, but an appropriate calculation of the molten steel level in the mold with respect to the operating conditions is performed based on data accumulated in advance. It is also possible to establish a method.

【0025】つぎに、上記物理量を検出する具体的手段
を例示する。図7は、鋳型MDを鋳型テーブル11へ載せた
状態のオシレーション装置を示しており、鋳型内引抜抵
抗を検出する一例として、プッシュロッド12と偏心回転
体13の間に荷重計14を設置したものである。これによ
り、鋳型内引抜き抵抗を検知することができる。図8は
鋳型銅板5の背面(鋳型冷却水側)に熱電対TC1 〜TC6
を埋込んだものである。なお、これは鋳型内溶鋼レベル
検出装置として熱電対を使用しているものを兼用するこ
ともできる。この銅板5に埋込まれた熱電対は、上記物
理量よりも直接的に鋳型銅板5と凝固シェルの接触状態
を表すことができる。図9は鋳型MDの冷却装置を示すも
ので、冷却水の供給口16と排水口17における温度を計測
すれば、給水温度と排水温度の温度差を物理量として用
いることができる。
Next, specific means for detecting the physical quantity will be described. FIG. 7 shows the oscillation device in a state where the mold MD is placed on the mold table 11, and as an example of detecting the pull-out resistance in the mold, a load meter 14 is installed between the push rod 12 and the eccentric rotator 13. Things. Thereby, the pull-out resistance in the mold can be detected. FIG. 8 shows thermocouples TC1 to TC6 on the back side (mold cooling water side) of mold copper plate 5.
Is embedded. It is to be noted that the apparatus using a thermocouple as the molten steel level detecting apparatus in the mold can be used also. The thermocouple embedded in the copper plate 5 can express the contact state between the mold copper plate 5 and the solidified shell more directly than the above physical quantity. FIG. 9 shows a cooling device for the mold MD. If the temperatures at the supply port 16 and the drain port 17 of the cooling water are measured, the temperature difference between the supply water temperature and the drain temperature can be used as a physical quantity.

【0026】[0026]

【発明の効果】本発明によれば、鋳型内の溶鋼レベルを
上下に移動させることにより、鋳型銅板と、鋳片の接触
を適正化することができるので、鋳型から引出される鋳
片の凝固シェルは、従来よりもシェル厚が厚く、均一な
ものが得られ、ブレークアウトの心配なしに高速鋳込み
が可能になると同時に、菱形変形も発生し難くなる。
According to the present invention, by moving the molten steel level in the mold up and down, the contact between the mold copper plate and the slab can be optimized, so that the solidification of the slab drawn from the mold can be achieved. The shell is thicker and more uniform than before, and high-speed casting can be performed without fear of breakout, and rhombic deformation hardly occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る連続鋳造用鋳型の概略縦断面図で
ある。
FIG. 1 is a schematic longitudinal sectional view of a continuous casting mold according to the present invention.

【図2】本発明に係る鋳型の鋳型本体部分における内周
長を説明するための図である。
FIG. 2 is a view for explaining an inner peripheral length in a mold body portion of the mold according to the present invention.

【図3】(A) は図2における鋳型本体部分の上端の横断
面図、(B) はコーナー円弧部の拡大図である。
3 (A) is a cross-sectional view of the upper end of the mold body in FIG. 2, and FIG. 3 (B) is an enlarged view of a corner arc.

【図4】(A) は図2における鋳型本体部分の中央部の横
断面図、(B) はコーナー円弧部の拡大図である。
4 (A) is a cross-sectional view of a central portion of a mold main body portion in FIG. 2, and FIG. 4 (B) is an enlarged view of a corner arc portion.

【図5】(A) は図2における鋳型本体部分の下端の横断
面図、(B) はコーナー円弧部の拡大図である。
5A is a cross-sectional view of the lower end of the mold body in FIG. 2, and FIG. 5B is an enlarged view of a corner arc.

【図6】本発明の一実施例に係わる連続鋳造用鋳型にお
ける鋳型本体部分の上部領域と下部領域の説明図であ
る。
FIG. 6 is an explanatory view of an upper region and a lower region of a mold body in a continuous casting mold according to one embodiment of the present invention.

【図7】鋳型内引抜き抵抗検出器を備えたオシレーショ
ン装置の説明図である。
FIG. 7 is an explanatory diagram of an oscillation device provided with a pull-out resistance detector in a mold.

【図8】鋳型銅板の温度検出装置の説明図である。FIG. 8 is an explanatory diagram of a temperature detecting device for a mold copper plate.

【図9】鋳型の冷却水温度の検出装置の説明図である。FIG. 9 is an explanatory diagram of an apparatus for detecting a cooling water temperature of a mold.

【図10】従来例に係わる鋳型の縦断面図である。FIG. 10 is a longitudinal sectional view of a mold according to a conventional example.

【図11】図10の鋳型の平面図である。FIG. 11 is a plan view of the mold of FIG. 10;

【図12】他の従来例に係る鋳型の縦断面図である。FIG. 12 is a longitudinal sectional view of a mold according to another conventional example.

【図13】図12の鋳型の平面図である。FIG. 13 is a plan view of the mold of FIG. 12.

【符号の説明】[Explanation of symbols]

MD 鋳型 m 溶鋼 1 鋳型本体部分 2 上端余裕
部 S 内周長 R コーナー
円弧部の半径
MD Mold m Molten steel 1 Mold main body 2 Margin at upper end S Inner circumference R Radius of corner arc

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22D 11/04 311 B22D 11/00 B22D 11/16 104 B22D 11/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) B22D 11/04 311 B22D 11/00 B22D 11/16 104 B22D 11/18

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】注湯された溶鋼が鋳型銅板と接触する鋳型
本体部分とその上方の溶鋼が鋳型銅板と接触しない上端
余裕部とからなる連続鋳造用鋳型であって、前記鋳型本
体部分の横断面形状が4本の直線辺を四個の四分の一円
弧で接続した四角形であり、内周長が鋳型本体部分の上
端側で大きく下端側で小さくなっており、内周長減少率
が鋳型本体部分の上端から下端に向って小さくなってい
ることを特徴とする鋼の連続鋳造用鋳型。
1. A continuous casting mold comprising a mold body portion in which molten metal poured into contact with a mold copper plate and an upper end margin portion in which molten steel above does not contact with the mold copper plate, wherein the molten steel crosses the mold body portion. The surface shape is a quadrangle in which four straight sides are connected by four quarter arcs, and the inner perimeter is larger at the upper end of the mold body portion and smaller at the lower end, and the inner peripheral length reduction rate is small. A mold for continuous casting of steel, characterized in that the size of the mold decreases from the upper end to the lower end of the mold body.
【請求項2】前記鋳型本体部分の内周長が、鋳型本体部
分のテーパー量のみによって変化するものである請求項
1記載の連続鋳造用鋳型。
2. The continuous casting mold according to claim 1, wherein the inner peripheral length of the mold body changes only by the taper amount of the mold body.
【請求項3】前記鋳型本体部分の内周長が、鋳型本体部
分のテーパー量と四分の一円弧の半径によって変化する
ものである請求項1記載の連続鋳造用鋳型。
3. The continuous casting mold according to claim 1, wherein an inner peripheral length of said mold body portion changes depending on a taper amount of said mold body portion and a radius of a quarter arc.
【請求項4】請求項1記載の連続鋳造用鋳型を用い、溶
鋼湯面を上下に変位させることにより、鋳片の初期凝固
の収縮外形と近似的に等しい内周長となる鋳型部分を使
用し、鋳型銅板と凝固シェルの接触状態を最適に保つよ
うにすることを特徴とする鋼の連続鋳造方法。
4. A continuous casting mold according to claim 1, wherein the molten steel surface is displaced up and down to use a mold part having an inner peripheral length approximately equal to the contracted outer shape of the initial solidification of the slab. And a method of continuously casting steel, wherein the contact state between the mold copper plate and the solidified shell is kept optimal.
【請求項5】鋳型銅板と凝固シェルの接触状態を示す物
理量として、鋳型内引抜き抵抗値、、銅板温度、鋳型冷
却水の給水側と排水側の温度差の一または二以上の組合
せを用い、この物理量に基づき溶鋼湯面を上下に変位さ
せることを特徴とする請求項4記載の鋼の連続鋳造方
法。
5. A physical quantity indicating a contact state between a mold copper plate and a solidified shell, using one or two or more combinations of a withdrawal resistance value in a mold, a copper plate temperature, and a temperature difference between a supply side and a drain side of mold cooling water. The continuous casting method for steel according to claim 4, wherein the molten steel surface is vertically displaced based on the physical quantity.
JP11365493A 1993-04-15 1993-04-15 Steel continuous casting mold and continuous casting method Expired - Lifetime JP2972051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11365493A JP2972051B2 (en) 1993-04-15 1993-04-15 Steel continuous casting mold and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11365493A JP2972051B2 (en) 1993-04-15 1993-04-15 Steel continuous casting mold and continuous casting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20897499A Division JP3179069B2 (en) 1999-07-23 1999-07-23 Mold for continuous casting of steel

Publications (2)

Publication Number Publication Date
JPH06297101A JPH06297101A (en) 1994-10-25
JP2972051B2 true JP2972051B2 (en) 1999-11-08

Family

ID=14617760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11365493A Expired - Lifetime JP2972051B2 (en) 1993-04-15 1993-04-15 Steel continuous casting mold and continuous casting method

Country Status (1)

Country Link
JP (1) JP2972051B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024162A (en) * 1994-12-28 2000-02-15 Nippon Steel Corporation Continuous casting method for billet
JP3197230B2 (en) * 1997-04-08 2001-08-13 三菱重工業株式会社 Billet continuous casting machine and casting method
DE19742795A1 (en) * 1997-09-27 1999-04-01 Schloemann Siemag Ag Funnel geometry of a mold for the continuous casting of metal
DE102005057580A1 (en) * 2005-11-30 2007-06-06 Km Europa Metal Ag Mold for continuous casting of metal
JP5423434B2 (en) * 2009-03-11 2014-02-19 新日鐵住金株式会社 Continuous casting method and continuous casting apparatus
JP5817681B2 (en) * 2012-08-22 2015-11-18 新日鐵住金株式会社 Mold for continuous casting of high alloy steel round billet slab and continuous casting method
CN110076303B (en) * 2019-05-22 2024-05-03 中冶赛迪工程技术股份有限公司 Method for changing convexity of crystallizer copper pipe and variable convexity crystallizer copper pipe

Also Published As

Publication number Publication date
JPH06297101A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
US3910342A (en) Molds for continuous casting
US2983972A (en) Metal casting system
JP2668329B2 (en) Continuous casting equipment for rolling billets
JP2972051B2 (en) Steel continuous casting mold and continuous casting method
JP3179069B2 (en) Mold for continuous casting of steel
US3520352A (en) Continuous casting mold having insulated portions
JP2683157B2 (en) Method for continuously casting metal, especially steel, on bloom and billet slabs
JP2005529750A (en) Suitable for continuous casting molds, especially in the casting area
AU757475B2 (en) High speed continuous casting device and relative method
US2564723A (en) Apparatus for the continuous casting of metal slab
KR101353881B1 (en) Mold for Continuous Casting
RU2203158C2 (en) Pipe of mold for continuous casting of steels, namely peritectic steels and mold with such pipe
JP3320040B2 (en) Continuous casting mold
KR101060114B1 (en) Continuous casting molds for casting molten metal, especially steel materials, into polygonal billet castings, bloom castings, preliminary section castings, etc. at high casting speeds.
MXPA00001023A (en) Mould plate for a mould with a funnel shaped entry for the continuous casting of metal.
JP3389449B2 (en) Continuous casting method of square billet
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
US6176298B1 (en) Continuous casting mould
JPH10249492A (en) Mold for continuously casting steel
JPH09239496A (en) Mold for continuously casting square billet
JPH0126791B2 (en)
JPH0550186A (en) Lower mold for semi-continuous casting apparatus for aluminum
CA1047731A (en) Molds for continuous casting
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
KR200260645Y1 (en) Mold having round lower edges for reducing surface defects and break-out of slab

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120827

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

EXPY Cancellation because of completion of term