JPH10244163A - Photocatalyst having catalytic activity in visible light range - Google Patents

Photocatalyst having catalytic activity in visible light range

Info

Publication number
JPH10244163A
JPH10244163A JP9049014A JP4901497A JPH10244163A JP H10244163 A JPH10244163 A JP H10244163A JP 9049014 A JP9049014 A JP 9049014A JP 4901497 A JP4901497 A JP 4901497A JP H10244163 A JPH10244163 A JP H10244163A
Authority
JP
Japan
Prior art keywords
photocatalyst
visible light
hydrogen
oxygen
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9049014A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
彰 田中
Kiyoaki Shinohara
清晃 篠原
Kazunari Doumen
一成 堂免
Yukikazu Hara
亨和 原
Hiroshi Kawazoe
博司 川副
Hideo Hosono
秀雄 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9049014A priority Critical patent/JPH10244163A/en
Publication of JPH10244163A publication Critical patent/JPH10244163A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the efficiency of utilization of sunbeams and to ensure stable catalytic function over a long time by using an oxide contg. monovalent Cu for simultaneous production of hydrogen and oxygen by decomposition of water by irradiation with visible light. SOLUTION: An oxide contg. monovalent Cu represented by the formula CuMo2 or Cu2 O for simultaneous production of hydrogen and oxygen by decomposition of water by irradiation with visible light is used. When Fe is used as the element M, CuFeO2 is synthesized by mixing the constituent oxides of CuFeO2 in a stoichiometric ratio and adopting a solid phase method. Prescribed amts. of Cu2 O and Fe2 O3 are weighed, put in an alumina bowl and fired at 1,050 deg.C for 10hr in a circular furnace in an atmosphere of nitrogen and the resultant fired product is crushed to obtain the objective compd. having delafossite structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光で水を分解し、
水素と酸素の双方を同時に生成させる酸化物から成る光
触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention
The present invention relates to a photocatalyst comprising an oxide which simultaneously produces both hydrogen and oxygen.

【0002】[0002]

【従来の技術】現在、エネルギー源としては様々なもの
が用いられている。産業革命以後大量に使われ始めた石
油や石炭等の化石燃料は、その埋蔵量は無限ではなく、
燃焼させた際に二酸化炭素、窒素酸化物、硫黄酸化物等
が排出される。その結果、二酸化炭素は地球の温暖化を
もたらし、窒素酸化物や硫黄酸化物は酸性雨の原因とな
って環境破壊をもたらしている。又、新しいエネルギー
源として原子力発電が実用化されているが、安全性や廃
棄物処理等の問題を抱えている。このような状況の下
で、エネルギー資源や地球環境の問題を解決する一方法
としてクリーンなエネルギー源の一つである水素が注目
されている。水素は燃焼させても水になるのみであり、
環境汚染を引き起こさない。しかし、水素を発生させる
ために化石燃料等を用いたのでは意味がなくなってしま
う。光エネルギーから水素といった化学エネルギーを取
り出す方法の一つに、光照射によって水を水素、酸素に
分解する無機酸化物半導体粒子を用いた光触媒がある。
光触媒は、そのバンドギャップ以上のエネルギーを吸収
すると、ホールとエレクトロンを生成し、これらがそれ
ぞれ酸化反応、還元反応を行い、酸素、水素を発生させ
る。この光触媒の実用化を考えた場合、光源として太陽
光の利用は不可欠である。地表に降り注ぐ太陽光は、可
視光である波長500nm 付近に放射の最大強度をもってお
り、波長 400〜750nm の可視光領域のエネルギー量は全
太陽光の約43%である。一方、波長 400nm以下の紫外線
領域では5%にも満たない。従って、太陽光スペクトル
を効率よく利用するためには、可視光の光にも触媒活性
をもつ光触媒が望まれている。
2. Description of the Related Art At present, various energy sources are used. Fossil fuels such as oil and coal that have begun to be used in large quantities since the Industrial Revolution have infinite reserves,
When burned, carbon dioxide, nitrogen oxides, sulfur oxides and the like are emitted. As a result, carbon dioxide causes global warming, and nitrogen oxides and sulfur oxides cause acid rain and cause environmental destruction. Further, nuclear power generation has been put into practical use as a new energy source, but has problems such as safety and waste disposal. Under such circumstances, attention has been paid to hydrogen, which is one of the clean energy sources, as a method for solving the problems of energy resources and the global environment. Hydrogen is only turned into water when burned,
Does not cause environmental pollution. However, the use of fossil fuel or the like to generate hydrogen is meaningless. One of the methods for extracting chemical energy such as hydrogen from light energy is a photocatalyst using inorganic oxide semiconductor particles that decompose water into hydrogen and oxygen by light irradiation.
When the photocatalyst absorbs energy equal to or greater than its band gap, it generates holes and electrons, which respectively perform an oxidation reaction and a reduction reaction to generate oxygen and hydrogen. When considering the practical use of this photocatalyst, utilization of sunlight as a light source is indispensable. The sunlight falling on the surface of the earth has the maximum intensity of radiation near the visible wavelength of 500 nm, and the energy content in the visible light range from 400 to 750 nm is about 43% of the total sunlight. On the other hand, it is less than 5% in the ultraviolet region having a wavelength of 400 nm or less. Therefore, in order to use the solar spectrum efficiently, a photocatalyst having catalytic activity even for visible light is desired.

【0003】従来、可視光領域で比較的高い触媒活性を
示す光触媒として、特開平 8-89804に開示されたものが
ある。これは、複合酸化物を構成する元素として、可視
光領域に吸収をもつ遷移金属元素を用いたものである。
又、紫外光を照射して水を分解し、水素と酸素の双方を
同時に生成させる光触媒としては、Ni を担持させたK
4Nb617が知られている。
Conventionally, a photocatalyst exhibiting relatively high catalytic activity in the visible light region is disclosed in Japanese Patent Application Laid-Open No. 8-89804. This uses a transition metal element having absorption in a visible light region as an element constituting the composite oxide.
As a photocatalyst for irradiating ultraviolet light to decompose water and simultaneously generate both hydrogen and oxygen, Ni-supported K
4 Nb 6 O 17 is known.

【0004】[0004]

【発明が解決しようとする課題】特開平 8-89804に記載
された光触媒は、可視光にも活性をもち、メタノール水
溶液の分解反応において水素の発生が認められている
が、水の分解反応については記載されていない。今まで
見い出されてきた光触媒物質は、可視光が利用できても
活性が低く、しかも水分解反応において水素か酸素のい
ずれか一方しか発生させることができなかった。このよ
うに、水素、酸素のいずれか一方が発生しない場合、光
照射によって生成されたホールとエレクトロンがそれぞ
れ有効に反応に関与していないこととなり、触媒の寿命
が短くなったり、活性の値が低くなったりして触媒機能
の安定性に欠けることになる。
The photocatalyst described in JP-A-8-89804 has activity in visible light, and generation of hydrogen has been observed in the decomposition reaction of an aqueous methanol solution. Is not listed. The photocatalytic substances found so far have low activity even when visible light can be used, and they can only generate either hydrogen or oxygen in the water splitting reaction. As described above, when either one of hydrogen and oxygen is not generated, holes and electrons generated by light irradiation do not effectively participate in the reaction, and the life of the catalyst is shortened or the activity value is reduced. The stability of the catalytic function is lost due to the decrease in the temperature.

【0005】又、上述のNi を担持させたK4Nb617
は、エネルギーの高い紫外光を照射したときに水素と酸
素の双方を生成させるに過ぎなかった。そこで本発明の
目的は、太陽光の利用効率が高く、長時間安定した触媒
機能を有する光触媒を提供することにある。
Further, K 4 Nb 6 O 17 carrying Ni described above is used.
Merely produced both hydrogen and oxygen when irradiated with high energy ultraviolet light. Therefore, an object of the present invention is to provide a photocatalyst having high utilization efficiency of sunlight and having a stable catalytic function for a long time.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に記載
の発明は、「可視光の照射により水を分解し、且つ水素
と酸素の双方を同時に生成させる、1価の銅を含む酸化
物から成る」光触媒である。
According to the first aspect of the present invention, there is provided an oxide containing monovalent copper, which decomposes water by irradiation with visible light and simultaneously generates both hydrogen and oxygen. A photocatalyst.

【0007】1価の銅を含む酸化物としては、Cu2Oが
好ましい(請求項2)。又、1価の銅を含む酸化物とし
ては、3価の元素Mを含む化学式CuMO2 で表される
化合物が好ましい(請求項3)。
The oxide containing monovalent copper is preferably Cu 2 O (claim 2). As the oxide containing monovalent copper, a compound represented by the chemical formula CuMO 2 containing a trivalent element M is preferable (claim 3).

【0008】[0008]

【発明の実施の形態】本発明の光触媒は、1価の銅を含
む化合物であり、これを水中に入れ、可視光を照射する
と、水分解反応により水素と酸素の双方を同時に発生す
るものである。そのメカニズムは、光エネルギーによっ
て励起され生成したホールとエレクトロンがそれぞれ酸
化反応、還元反応を引き起こし、水に起因する酸素と水
素を同時に発生させるというものである。
BEST MODE FOR CARRYING OUT THE INVENTION The photocatalyst of the present invention is a compound containing monovalent copper. When the photocatalyst is placed in water and irradiated with visible light, both hydrogen and oxygen are simultaneously generated by a water decomposition reaction. is there. The mechanism is that holes and electrons generated by excitation by light energy cause an oxidation reaction and a reduction reaction, respectively, and simultaneously generate oxygen and hydrogen due to water.

【0009】本発明の請求項第2項に記載したCu2
は、最も単純な化合物であり、天然にも存在する。この
酸化銅の粉末を水の中に分散させ、光を照射するだけで
酸素及び水素が発生してくる。本発明の請求項第3項及
び4項に記載したCuMO2 は、一般式ABO2 で表さ
れるデラフォサイト(Delafossite)型の結晶構造をもつ
物質である。元素Mは、3価の価数をもち、Cr,Mn,F
e,Co,Ga からなる群から選択される。
The Cu 2 O according to claim 2 of the present invention.
Is the simplest compound and also exists in nature. Oxygen and hydrogen are generated simply by dispersing the copper oxide powder in water and irradiating light. CuMO 2 described in claims 3 and 4 of the present invention is a substance having a delafossite crystal structure represented by the general formula ABO 2 . The element M has a trivalent valence, and Cr, Mn, F
It is selected from the group consisting of e, Co, and Ga.

【0010】本発明の光触媒は、通常の固相法、すなわ
ち原料となる各金属成分の酸化物を目的組成の比率で混
合し、不活性ガス雰囲気下で焼成することで合成でき
る。本発明の光触媒の形状は、光を有効に利用するため
に表面積の大きい粒子であることが望ましく、一般には
粒子の大きさは 0.1〜10μm 、好ましくは 0.1〜 1μm
が適当である。このような粒径を得る慣用的な手段に
は、例えば、ボールミルや遊星ミルによる粉砕がある。
更に、本発明の光触媒に対しても、助触媒であるPt や
Ni Oの担持等の光触媒製造に通常用いられるような修
飾を行うことができる。又、水分解反応を行う際に用い
る水は、純水に限らず、通常、水の分解反応によく用い
られるように、炭酸塩や炭酸水素塩等の塩類を混ぜた水
を用いてもよい。或いは、アルコールや銀イオン等の犠
牲試薬を用いて、水素、酸素のいずれか一方を生成させ
てもよい。以下、本発明を具体的に説明するが、本発明
はこれに限られたものではない。
The photocatalyst of the present invention can be synthesized by a usual solid phase method, that is, by mixing oxides of respective metal components as raw materials at a ratio of a desired composition and firing the mixture under an inert gas atmosphere. The shape of the photocatalyst of the present invention is desirably particles having a large surface area in order to effectively utilize light, and the particle size is generally 0.1 to 10 μm, preferably 0.1 to 1 μm.
Is appropriate. Conventional means for obtaining such a particle size include, for example, grinding with a ball mill or a planetary mill.
Further, the photocatalyst of the present invention can be modified as commonly used for photocatalyst production, such as supporting Pt or NiO as a cocatalyst. Further, the water used for performing the water splitting reaction is not limited to pure water, and water containing a mixture of salts such as carbonates and bicarbonates may be used, as is commonly used for the water splitting reaction. . Alternatively, one of hydrogen and oxygen may be generated using a sacrificial reagent such as alcohol or silver ions. Hereinafter, the present invention will be specifically described, but the present invention is not limited thereto.

【0011】(光触媒の製造方法1)本発明の化学式C
uMO2 において、元素MとしてFe を用い、Cu Fe
2を合成した。合成は、各成分の酸化物を化学量論比
で調合し、固相法により行った。すなわち、Cu2Oを2.
36g、Fe23 を2.64gそれぞれ秤量し、アルミナボー
トに入れて、窒素雰囲気の環状炉中で1050℃、10時間の
焼成を行った。焼成終了後、この焼成物を乳鉢で10μm
以下の大きさに粉砕した。得られた粉末状試料を粉末X
線回折により同定したところ、目的とするデラフォサイ
ト構造をもつ化合物が得られた。
(Method 1 for producing photocatalyst) Chemical formula C of the present invention
In uMO 2 , Fe is used as the element M and CuFe
O 2 was synthesized. The synthesis was carried out by preparing the oxides of the respective components at a stoichiometric ratio and by a solid phase method. That is, Cu 2 O is converted to 2.
36 g and 2.64 g of Fe 2 O 3 were weighed, placed in an alumina boat, and fired at 1050 ° C. for 10 hours in an annular furnace in a nitrogen atmosphere. After firing, the fired product is 10 μm in a mortar
It was crushed to the following size. The obtained powdery sample is powder X
As a result of identification by line diffraction, a compound having an intended delafossite structure was obtained.

【0012】(光触媒の製造方法2)本発明の化学式C
uMO2 において、元素MとしてGa を用い、Cu Ga
2を合成した。合成は、各成分の酸化物を化学量論比
で調合し、固相法により行った。すなわち、Cu2Oを2.
16g、Ga23 を2.84gそれぞれ秤量し、アルミナボー
トに入れて、窒素雰囲気の環状炉中で1050℃、10時間の
焼成を行った。焼成終了後、この焼成物を乳鉢で10μm
以下の大きさに粉砕した。得られた粉末状試料を粉末X
線回折により同定したところ、目的とするデラフォサイ
ト構造をもつ化合物が得られた。
(Method 2 for producing photocatalyst) Chemical formula C of the present invention
In uMO 2 , Ga is used as the element M and Cu Ga
O 2 was synthesized. The synthesis was carried out by preparing the oxides of the respective components at a stoichiometric ratio and by a solid phase method. That is, Cu 2 O is converted to 2.
16 g and 2.84 g of Ga 2 O 3 were respectively weighed, placed in an alumina boat, and fired at 1050 ° C. for 10 hours in a ring furnace in a nitrogen atmosphere. After firing, the fired product is 10 μm in a mortar
It was crushed to the following size. The obtained powdery sample is powder X
As a result of identification by line diffraction, a compound having an intended delafossite structure was obtained.

【0013】(触媒活性の評価)水分解用の光触媒の触
媒活性の評価は、上記製造方法1及び2で作製したCu
Fe O2 、Cu Ga O2 と市販のCu2Oについて行っ
た。水分解反応には、閉鎖循環系触媒反応装置を用い、
純水中に光触媒0.5gを入れ、マグネチックスターラーで
攪拌しながら外部から可視光を照射した。光源には 500
Wキセノンランプを用い、反応管としてはパイレックス
ガラス製のものを用いた。光源からの光は、短波長側の
光をカットするカットオフフィルターを透過させてか
ら、試料(光触媒)に照射した。
(Evaluation of catalytic activity) The catalytic activity of the photocatalyst for water splitting was evaluated by using Cu prepared by the above-mentioned production methods 1 and 2.
It was performed on Fe O 2, Cu Ga O 2 with commercial Cu 2 O. For the water splitting reaction, a closed-circulation catalytic reactor was used,
0.5 g of a photocatalyst was put in pure water, and visible light was irradiated from the outside while stirring with a magnetic stirrer. 500 for light source
A W xenon lamp was used, and a reaction tube made of Pyrex glass was used. The light from the light source was transmitted through a cutoff filter that cuts light on the short wavelength side, and then irradiated onto the sample (photocatalyst).

【0014】Cu Fe O2 、Cu Ga O2 については42
0nm 以下の波長の光をカットし、Cu2Oについては460n
m 以下の波長の光をカットし、照射を行った。尚、Cu2
Oは市販のもの2種類(和光純薬製及び関東化学製)を
用いた。生成した水素及び酸素の検出及び定量はガスク
ロマトグラフィーで行った。検出の結果、水素、酸素と
もに発生が認められ、その測定結果は表1のとおりであ
った。表1には、気体の生成活性を1時間当たりの生成
量で表示してある。
[0014] Cu Fe O 2, for Cu Ga O 2 42
It cuts light with a wavelength of 0 nm or less and 460n for Cu 2 O.
The light having a wavelength of less than m was cut and irradiated. In addition, Cu 2
As O, two kinds of commercially available products (manufactured by Wako Pure Chemical Industries and manufactured by Kanto Chemical Co., Ltd.) were used. The detection and quantification of the generated hydrogen and oxygen were performed by gas chromatography. As a result of the detection, generation of both hydrogen and oxygen was recognized, and the measurement results were as shown in Table 1. Table 1 shows the gas generation activity in terms of the amount generated per hour.

【0015】[0015]

【表1】 [Table 1]

【0016】尚、本発明の光触媒は、水の分解反応だけ
ではなく、他の化学反応、例えば、有機物の分解反応や
貴金属イオンの還元反応にも適用することができる。
The photocatalyst of the present invention can be applied not only to the decomposition reaction of water but also to other chemical reactions such as decomposition reaction of organic substances and reduction reaction of noble metal ions.

【0017】[0017]

【発明の効果】以上の通り、本発明の1価の銅を含む化
合物からなる光触媒は、可視光の下で光触媒活性を示す
のみならず、水素と酸素の両方を同時に生成する。従っ
て、太陽光エネルギーの約43%を占める可視光を触媒反
応に利用でき、利用効率が大幅に上昇する。又、水素と
酸素の両方を同時に生成するので、触媒の寿命が長く保
つことができ、触媒機能の安定化に寄与する。
As described above, the photocatalyst comprising the compound containing monovalent copper of the present invention not only exhibits photocatalytic activity under visible light, but also simultaneously generates both hydrogen and oxygen. Therefore, visible light which accounts for about 43% of the solar energy can be used for the catalytic reaction, and the use efficiency is greatly increased. In addition, since both hydrogen and oxygen are produced simultaneously, the life of the catalyst can be kept long, which contributes to stabilization of the catalyst function.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C01G 3/00 B01J 23/82 M 3/02 23/84 311M (72)発明者 原 亨和 神奈川県横浜市緑区長津田町4259 東京工 業大学資源化学研究所内 (72)発明者 川副 博司 神奈川県横浜市緑区長津田町4259 東京工 業大学応用セラミックス研究所内 (72)発明者 細野 秀雄 神奈川県横浜市緑区長津田町4259 東京工 業大学応用セラミックス研究所内──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code FI C01G 3/00 B01J 23/82 M 3/02 23/84 311M (72) Inventor Towakazu Hara Nagatsuda-cho, Midori-ku, Yokohama-shi, Kanagawa 4259 Inside the Institute of Natural Resources and Chemicals, Tokyo Institute of Technology (72) Inventor Hiroshi Kawasoe 4259 Nagatsuda-cho, Midori-ku, Yokohama-shi, Kanagawa Prefecture Inside the Institute of Applied Ceramics, Tokyo Institute of Technology (72) Hideo Hosono 4259, Tokyo Institute of Applied Ceramics, Institute of Technology

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 可視光の照射により水を分解し、且つ水
素と酸素の双方を同時に生成させる、1価の銅を含む酸
化物から成ることを特徴とする、可視光領域で触媒活性
をもつ光触媒。
1. A catalyst having a catalytic activity in the visible light region, comprising an oxide containing monovalent copper, which decomposes water by irradiation with visible light and simultaneously generates both hydrogen and oxygen. photocatalyst.
【請求項2】 前記酸化物が化学式Cu2Oで表されるこ
とを特徴とする請求項1に記載の光触媒。
2. The photocatalyst according to claim 1, wherein the oxide is represented by a chemical formula Cu 2 O.
【請求項3】 前記酸化物が化学式CuMO2 で表さ
れ、前記Mは、3価の元素から選択された1種以上の元
素であることを特徴とする請求項1に記載の光触媒。
3. The photocatalyst according to claim 1, wherein the oxide is represented by a chemical formula CuMO 2 , and the M is at least one element selected from trivalent elements.
【請求項4】 前記Mは、Cr,Mn,Fe,Co,Ga からな
る群から選択された1種以上の元素であることを特徴と
する請求項3に記載の光触媒。
4. The photocatalyst according to claim 3, wherein said M is at least one element selected from the group consisting of Cr, Mn, Fe, Co, and Ga.
JP9049014A 1997-03-04 1997-03-04 Photocatalyst having catalytic activity in visible light range Pending JPH10244163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9049014A JPH10244163A (en) 1997-03-04 1997-03-04 Photocatalyst having catalytic activity in visible light range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9049014A JPH10244163A (en) 1997-03-04 1997-03-04 Photocatalyst having catalytic activity in visible light range

Publications (1)

Publication Number Publication Date
JPH10244163A true JPH10244163A (en) 1998-09-14

Family

ID=12819294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9049014A Pending JPH10244163A (en) 1997-03-04 1997-03-04 Photocatalyst having catalytic activity in visible light range

Country Status (1)

Country Link
JP (1) JPH10244163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP2010207769A (en) * 2009-03-12 2010-09-24 Aomori Prefectural Industrial Technology Research Center Photocatalyst for making hydrogen
CN106268813A (en) * 2016-09-20 2017-01-04 天津城建大学 A kind of CuFeO for photoelectrocatalysis2the preparation method of nano material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP2010207769A (en) * 2009-03-12 2010-09-24 Aomori Prefectural Industrial Technology Research Center Photocatalyst for making hydrogen
CN106268813A (en) * 2016-09-20 2017-01-04 天津城建大学 A kind of CuFeO for photoelectrocatalysis2the preparation method of nano material

Similar Documents

Publication Publication Date Title
JP2009078211A (en) Photocatalyst
JP3890414B2 (en) Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JP3742873B2 (en) Photocatalyst, method for producing hydrogen using the same, and method for decomposing toxic substances
CN111482168A (en) Visible light catalyst for efficiently degrading phenol and preparation method thereof
Zou et al. Photocatalytic behavior of a new series of In0. 8M0. 2TaO4 (M= Ni, Cu, Fe) photocatalysts in aqueous solutions
JP4997627B2 (en) Visible light responsive photocatalyst
KR20030046950A (en) A method for preparaing ZnO nanopowder
JPH10244165A (en) Photocatalyst having catalytic activity in visible light range
JP2006088019A (en) Photocatalyst having iridium oxide-based cocatalyst deposited in oxidizing atmosphere in presence of nitrate ion, and method for producing the same
JPH09248465A (en) Photocatalyst having catalytic activity in visible light region
JPH0889804A (en) Photocatalyst
JPH10244163A (en) Photocatalyst having catalytic activity in visible light range
JP2730111B2 (en) New water photolysis catalyst
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JP3870267B2 (en) Bismuth complex oxide visible light responsive photocatalyst of alkali metal and Ag and method for decomposing and removing harmful chemicals using the same
JPS6274452A (en) Photolytic catalyst of water
JPH0889800A (en) Photocatalyst
JP3735711B2 (en) Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JP3718710B2 (en) Visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JPH0889799A (en) Photocatalyst
JPH11216364A (en) Photocatalyst
JPH11216366A (en) Photocatalyst
JPH10244164A (en) Photocatalyst having catalytic activity in visible light range
JPH0970533A (en) Photocatalyst
JP2004066028A (en) Visible light-responsive indium-barium compound oxide photocatalyst, method of producing hydrogen using the photocatalyst, and method for decomposing harmful chemical substance using photocatalyst