JPH10241906A - Positive temperature coefficient thermistor heat generating body - Google Patents

Positive temperature coefficient thermistor heat generating body

Info

Publication number
JPH10241906A
JPH10241906A JP4320697A JP4320697A JPH10241906A JP H10241906 A JPH10241906 A JP H10241906A JP 4320697 A JP4320697 A JP 4320697A JP 4320697 A JP4320697 A JP 4320697A JP H10241906 A JPH10241906 A JP H10241906A
Authority
JP
Japan
Prior art keywords
thermistors
temperature coefficient
positive temperature
heat generating
generating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4320697A
Other languages
Japanese (ja)
Inventor
Eisuke Kurokawa
英輔 黒川
Kazuhiko Kubo
和彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4320697A priority Critical patent/JPH10241906A/en
Publication of JPH10241906A publication Critical patent/JPH10241906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the maximum current of a positive temperature coefficient thermistor heat generating body, by constituting the heat generating body by combining a plurality of positive temperature coefficient thermistors having different Curie temperatures. SOLUTION: A metallic heat radiating body 2 is composed of a thin corrugated aluminum plate having vent holes and sticking aluminum terminals 3 and 4 to both surfaces of the body 2 by brazing. Positive temperature coefficient thermistors 1a-1c arranged in a straight line are stuck to the heat radiating body 2 by press-contacting the thermistors 1a-1c with the body 2 with a resin in between the heating the resin to cure. The thermistors 1a, 1b, and 1c respectively have Curies temperatures of 170 deg.C, 220 deg.C, and 270 deg.C and resistance values of 153Ω, 149Ω, and 155Ω. Since the thermistors have different Curie points, time lags occurs among the moments the current values of the thermistors become the maximum. Therefore, the maximum current value of a positive temperature coefficient heat generating body can be lowered, because the moments when the current values of the thermistors reach the maximum values are different from each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正特性サーミスタ
からの熱を金属放熱体を用いて温風として取り出し、温
風ヒータとして使用する正特性サーミスタ発熱体に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor heating element for extracting heat from a positive temperature coefficient thermistor as hot air using a metal radiator and using it as a hot air heater.

【0002】[0002]

【従来の技術】正特性サーミスタは、ある温度(キュリ
ー温度)以上で急激にその抵抗値が上昇する性質を持っ
た半導体セラミックであり、従って正特性サーミスタの
両電極に電圧を印加すると自己発熱し、正特性サーミス
タの自己制御作用により一定の温度を保つ。従って、赤
熱等の過熱が起こらない安全性の高い発熱体として広く
応用されている。また従来から、発熱量(電力)を大き
くするために正特性サーミスタを直線状に複数個配置
し、電気的には複数個を並列接続した構造としている。
2. Description of the Related Art A positive temperature coefficient thermistor is a semiconductor ceramic having a property that its resistance value rapidly rises above a certain temperature (Curie temperature). Therefore, when a voltage is applied to both electrodes of the positive temperature coefficient thermistor, self-heating occurs. The constant temperature is maintained by the self-control action of the positive temperature coefficient thermistor. Therefore, it is widely applied as a highly safe heating element that does not cause overheating such as red heat. Conventionally, a plurality of PTC thermistors are arranged linearly in order to increase the amount of heat (power), and a plurality of PTC thermistors are electrically connected in parallel.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の構成において電力を増大させるために複数の正特性
サーミスタを電気的に並列接続すると初期の抵抗値が小
さくなり、電圧印加時の最大電流値が大きくなるため機
器に使用するヒューズ容量を大きくする必要があり、ま
た家庭で使用中にブレーカが遮断する等の課題から最大
電流の低減化の要求があった。
However, when a plurality of positive temperature coefficient thermistors are electrically connected in parallel to increase the power in the above-mentioned conventional configuration, the initial resistance value becomes small, and the maximum current value when a voltage is applied becomes small. As the size of the fuse increases, it is necessary to increase the fuse capacity used in the equipment, and there has been a demand for a reduction in the maximum current due to problems such as the breaker breaking during use at home.

【0004】本発明は、最大電流を低減した正特性サー
ミスタ発熱体を提供することを目的とするものである。
An object of the present invention is to provide a PTC thermistor having a reduced maximum current.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明はキュリー温度の異なる正特性サーミスタを
複数個組み合せるものである。
In order to achieve the above object, the present invention combines a plurality of PTC thermistors having different Curie temperatures.

【0006】[0006]

【発明の実施の形態】本発明の請求項1の発明は、正特
性サーミスタのキュリー温度の差を設けているので、電
圧を印加した時、電流値が最大になる時間に差が生じ
る。すなわち、キュリー温度の低い正特性サーミスタは
最大電流値になる時間が短く、キュリー温度の高い正特
性サーミスタは最大電流値になる時間が長くなる。従っ
て、これらの正特性サーミスタを金属放熱体に組み合せ
て定電圧をを印加した場合、それぞれの正特性サーミス
タの最大電流値に達する時間が異なるため、同じキュリ
ー温度の正特性サーミスタを使用した場合と比較して最
大電流値を低下させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the first aspect of the present invention, since a difference in the Curie temperatures of the positive temperature coefficient thermistors is provided, there is a difference in the time when the current value becomes maximum when a voltage is applied. That is, a positive temperature coefficient thermistor having a low Curie temperature has a short time to reach a maximum current value, and a positive temperature coefficient thermistor having a high Curie temperature has a long time to reach a maximum current value. Therefore, when these positive temperature coefficient thermistors are combined with a metal radiator and a constant voltage is applied, the time to reach the maximum current value of each positive temperature coefficient thermistor is different, so that the case where a positive temperature coefficient thermistor with the same Curie temperature is used is used. The maximum current value can be reduced by comparison.

【0007】以下、本発明の実施形態について説明す
る。 (実施形態1)金属放熱体2は、2.2mmピッチで波
形に折り曲げた通風口を有する薄いアルミニウムよりな
り、この金属放熱体2の両面にアルミニウムの端子3,
4をブレージング工法により溶着している。この金属放
熱体2に、直線状に配置した正特性サーミスタ1a〜1
cを樹脂で加圧接着し、加熱して硬化固着した。なおこ
の正特性サーミスタの1aはキュリー温度が170℃抵
抗値153Ω、1bのキュリー温度は220℃抵抗値1
49Ω、1cのキュリー温度は270℃抵抗値155Ω
である。これらの正特性サーミスタ1a〜1cのそれぞ
れについて電圧100Vを印加した時の電流−時間特性
を図3に示す。この図よりキュリー温度の差によって、
最大電流値に到達する時間がそれぞれ異なり、キュリー
温度の低いものは時間が短く、キュリー温度の高いもの
ほど時間が長い。これらの正特性サーミスタを図1の如
く直線状に組み合せ、この両端子間に100V印加した
時の電流−時間特性は図3の破線で示した曲線となり、
この時の最大電流値は4.6Aであった。一方、従来例
による正特性サーミスタのキュリー温度220℃の正特
性サーミスタのみ3枚用いて同様の方法で100Vの電
圧を印加した時の最大電流値は図4の如く6.6Aであ
った。
Hereinafter, an embodiment of the present invention will be described. (Embodiment 1) The metal radiator 2 is made of thin aluminum having ventilation holes bent in a waveform at a pitch of 2.2 mm.
4 is welded by a brazing method. Positive thermistors 1 a to 1 arranged linearly on this metal heat radiator 2.
c was pressure-bonded with a resin, and then cured and fixed by heating. The positive characteristic thermistor 1a has a Curie temperature of 170 ° C and a resistance value of 153Ω, and the Curie temperature of 1b has a Curie temperature of 220 ° C and a resistance value of 1
Curie temperature of 49Ω, 1c is 270 ° C, resistance value is 155Ω
It is. FIG. 3 shows current-time characteristics when a voltage of 100 V is applied to each of the positive characteristic thermistors 1a to 1c. From this figure, depending on the difference in Curie temperature,
The time to reach the maximum current value differs from one another, and the lower the Curie temperature, the shorter the time, and the higher the Curie temperature, the longer the time. These positive temperature coefficient thermistors are combined linearly as shown in FIG. 1, and the current-time characteristic when 100 V is applied between these terminals is a curve shown by a broken line in FIG.
The maximum current value at this time was 4.6A. On the other hand, the maximum current value when a voltage of 100 V was applied in the same manner using only three positive temperature coefficient thermistors having a Curie temperature of 220 ° C. in the conventional positive temperature coefficient thermistor was 6.6 A as shown in FIG.

【0008】(実施形態2)図2は実施形態1により作
成した発熱体を2段に積み重ね接着したものである。実
施形態1と同様な方法で電圧を100V印加した時、上
部端子4と中央の端子4間では最大電流で4.6A、上
下の端子4,4間での最大電流値は9.2Aであった。
一方、従来例による方法での最大電流値は、それぞれ
6.6Aと13.2Aであった。これらの結果を(表
1)に記載した。
(Embodiment 2) FIG. 2 shows a structure in which the heating elements prepared according to Embodiment 1 are stacked and bonded in two stages. When a voltage of 100 V was applied in the same manner as in the first embodiment, the maximum current between the upper terminal 4 and the center terminal 4 was 4.6 A, and the maximum current between the upper and lower terminals 4 and 4 was 9.2 A. Was.
On the other hand, the maximum current values in the method according to the conventional example were 6.6 A and 13.2 A, respectively. These results are shown in (Table 1).

【0009】[0009]

【表1】 [Table 1]

【0010】尚、上記実施形態1,2においては、正特
性サーミスタのキュリー温度をそれぞれ170℃,22
0℃,270℃に設定し、素子枚数の3枚で実施した
が、これらはいずれも目的に応じて変えることができ、
それによって最大電流値、消費電力を調整することが出
来る。この結果より、従来例の最大電流値を低下させる
ことができ、実用上効果がある。
In the first and second embodiments, the Curie temperatures of the positive temperature coefficient thermistors are 170 ° C. and 22 ° C., respectively.
The temperature was set at 0 ° C. and 270 ° C., and the measurement was performed with three elements, but any of these could be changed according to the purpose.
Thereby, the maximum current value and the power consumption can be adjusted. As a result, the maximum current value of the conventional example can be reduced, which is practically effective.

【0011】[0011]

【発明の効果】以上のように本発明は、最大電流が低減
されるので、より安価な材料、圧着等の簡単な端子接続
法が可能となり、産業上大きな効果をもたらす正特性サ
ーミスタ発熱体を提供することができる。
As described above, according to the present invention, since the maximum current is reduced, a less expensive material, a simple terminal connection method such as crimping can be performed, and a positive-characteristic thermistor heating element having a great industrial effect can be provided. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1による正特性サーミスタ発
熱体の斜視図
FIG. 1 is a perspective view of a PTC thermistor heating element according to Embodiment 1 of the present invention.

【図2】本発明の実施形態2による正特性サーミスタ発
熱体の斜視図
FIG. 2 is a perspective view of a PTC thermistor heating element according to Embodiment 2 of the present invention.

【図3】本発明の実施形態1における正特性サーミスタ
の電流−時間特性図
FIG. 3 is a current-time characteristic diagram of a positive temperature coefficient thermistor according to Embodiment 1 of the present invention.

【図4】従来例による正特性サーミスタの電流−時間特
性図
FIG. 4 is a current-time characteristic diagram of a positive temperature coefficient thermistor according to a conventional example.

【符号の説明】[Explanation of symbols]

1a〜1c 正特性サーミスタ 2 金属放熱体 3,4 端子 1a-1c Positive Characteristic Thermistor 2 Metal Heat Dissipator 3, 4 Terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 両面に電極を施した複数の正特性サーミ
スタの直線状配置体の両側に、薄い金属板を波状に折り
曲げてなる金属放熱体を固着した正特性サーミスタ発熱
体において、上記直線状配置体は、キュリー温度の異な
る正特性サーミスタを組み合せて構成された正特性サー
ミスタ発熱体。
1. A positive-characteristic thermistor heating element in which a metal heat radiator formed by bending a thin metal plate in a wave shape is fixed to both sides of a linear arrangement of a plurality of positive-characteristic thermistors provided with electrodes on both sides. The arrangement body is a PTC thermistor heating element configured by combining PTC thermistors with different Curie temperatures.
JP4320697A 1997-02-27 1997-02-27 Positive temperature coefficient thermistor heat generating body Pending JPH10241906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4320697A JPH10241906A (en) 1997-02-27 1997-02-27 Positive temperature coefficient thermistor heat generating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4320697A JPH10241906A (en) 1997-02-27 1997-02-27 Positive temperature coefficient thermistor heat generating body

Publications (1)

Publication Number Publication Date
JPH10241906A true JPH10241906A (en) 1998-09-11

Family

ID=12657457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4320697A Pending JPH10241906A (en) 1997-02-27 1997-02-27 Positive temperature coefficient thermistor heat generating body

Country Status (1)

Country Link
JP (1) JPH10241906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099992A (en) * 2007-10-16 2009-05-07 Liebherr-Aerospace Lindenberg Gmbh Apparatus having at least one ptc resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099992A (en) * 2007-10-16 2009-05-07 Liebherr-Aerospace Lindenberg Gmbh Apparatus having at least one ptc resistor

Similar Documents

Publication Publication Date Title
US20110220638A1 (en) Finned ceramic heater
US7495195B2 (en) Electric heating device
TWI277115B (en) Temperature protection device
JP3198101U (en) PTC ceramic heater
JPH10241906A (en) Positive temperature coefficient thermistor heat generating body
HUT54005A (en) Self-control electric heating apparatus with ptc heating elements
JPH04365303A (en) Heating element of positive resistance-temperature coefficient and manufacture thereof
JP2827460B2 (en) Method for manufacturing positive temperature coefficient thermistor heating element
CN211641768U (en) Automatic temperature control heating device
JPH09293581A (en) Positive thermistor heating element
JP6898015B1 (en) PTC heater unit and its manufacturing method
CN210091843U (en) PTC thermistor for high voltage and assembly thereof
EP3073801A1 (en) Integrally formed heater
JP3111784B2 (en) Positive characteristic thermistor heating element
JP2702612B2 (en) Variable output positive temperature coefficient thermistor heater
JPH10214704A (en) Polymer ptc thermistor and manufacturing method thereof
JPH05315053A (en) Ptc thermistor heating device
JPH0613164A (en) Heater structure
JP2500281Y2 (en) Fin heater
JP2021072304A (en) Joining method of ptc thermistor
JPH10172736A (en) Positive temperature coefficient thermistor constant temperature heating element
JPH028608Y2 (en)
JP3257746B2 (en) Inrush current suppression type PTC heating device
JPH1070002A (en) Ptc ceramic thermistor
JPH10223354A (en) Heat adjusting method of positive characteristics thermistor heater element