JPH10241147A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH10241147A
JPH10241147A JP4176297A JP4176297A JPH10241147A JP H10241147 A JPH10241147 A JP H10241147A JP 4176297 A JP4176297 A JP 4176297A JP 4176297 A JP4176297 A JP 4176297A JP H10241147 A JPH10241147 A JP H10241147A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
film
less
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4176297A
Other languages
Japanese (ja)
Inventor
Shinichi Matsumura
伸一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4176297A priority Critical patent/JPH10241147A/en
Publication of JPH10241147A publication Critical patent/JPH10241147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To control deformation of a magnetic recording medium to reduce erroneous tracking and error rate by smoothing a difference between the maximum and minimum values of double-refractive index in the full direction within the surface so that it becomes less than the particular value, using a biaxial orientation ethylenetelephthalate film as the non-magnetic carrier on which the magnetic layer is coated. SOLUTION: Unextended polyethylenetelephtalate film is heated higher than the glass transition point for extension up to 2 to 5 times in the vertical and horizontal direction to realize biaxial orientation. It is then thermally fixed by the stentering method to make smooth the surface roughness to 1 to 7nm. Thereby, a non-magnetic carrier is formed and a difference between the maximum and minimum values of double-refractive index in the full direction within the surface thereof is set to 12×10<-3> or less. Here, when the surface roughness becomes 7nm or more, it gives influence on the roughness of magnetic layer provided on the carrier. Thereby, spacing loss become large and electro-magnetic conversion characteristic is lowered to increase the error rate. Moreover, when roughness is 1nm or less, a trouble may occur in the winding or carrying by rolls in the coating process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体に関
し、特にカール等の変形を抑制して、ヘッドとの接触変
動を回避し、さらに多数回での使用を可能とするディス
ク状磁気記録媒体に関する。さらに詳しくは、高いトラ
ック密度での記録が可能な線記録密度の高い、主として
フレキシブルディスクからなる磁気記録媒体に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly, to a disk-shaped magnetic recording medium that suppresses deformation such as curling, avoids fluctuations in contact with a head, and can be used many times. . More specifically, the present invention relates to a magnetic recording medium mainly composed of a flexible disk having a high linear recording density capable of recording at a high track density.

【0002】[0002]

【従来の技術】磁気記録ディスク装置は、線記録密度を
高めるために、ヘッドとディスクの間隔を小さくするよ
うに、またトラック幅はできる限り狭くするように開発
が進められている。磁気ディスクは、樹脂材料からなる
非磁性支持体(ベースフィルム)上に、高分子材料と強
磁性粉末との混合物からなる磁性層を形成したものであ
る。
2. Description of the Related Art In order to increase the linear recording density, magnetic recording disk devices have been developed to reduce the distance between the head and the disk and to reduce the track width as much as possible. The magnetic disk is obtained by forming a magnetic layer made of a mixture of a polymer material and ferromagnetic powder on a non-magnetic support (base film) made of a resin material.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
磁気ディスク装置において、前述のように線記録密度を
高めるための開発を進める上で、磁気ディスクの変形が
大きな問題となっていた。即ち、磁気ディスクが変形す
ると、トラッキングミスを起こしやすくなりエラーレー
トが増大する。また、ヘッドとの接触が不均一になり、
多数回使用した場合に、磁性層の摩耗が激しくなり、磁
気ディスクが円滑に回転しなくなる等の問題が発生して
いた。このような問題に対処するため、従来、ベースフ
ィルムの熱膨張率を考慮して、熱による変形を抑えるこ
とにより磁気ディスクの変形防止を図ることが提案され
ていた。しかしながら、このような従来の変形防止のた
めの試みでは十分な効果が得られなかった。
However, in the conventional magnetic disk drive, the deformation of the magnetic disk has been a serious problem in the development for increasing the linear recording density as described above. That is, when the magnetic disk is deformed, tracking errors are likely to occur, and the error rate increases. Also, the contact with the head becomes uneven,
When the magnetic disk is used many times, the magnetic layer becomes severely worn, and the magnetic disk does not rotate smoothly. In order to cope with such a problem, it has been conventionally proposed to prevent deformation of the magnetic disk by suppressing deformation due to heat in consideration of the coefficient of thermal expansion of the base film. However, a sufficient effect has not been obtained by such conventional attempts to prevent deformation.

【0004】本発明は上記従来技術の問題点に対処して
なされたものであって、磁気ディスクの変形を最小限に
抑制して多数回の使用に耐え、円滑な回転を維持してヘ
ッドとの接触を安定して均一に保ち、線記録密度の高い
磁気記録媒体(磁気ディスク)の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and suppresses the deformation of a magnetic disk to a minimum, withstands a number of uses, and maintains the smooth rotation of a head. The object of the present invention is to provide a magnetic recording medium (magnetic disk) having a high linear recording density while maintaining stable and uniform contact.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、非磁性支持体上に、強磁性粉末と高分
子材料との組成物からなる磁性層を設けた磁気記録媒体
において、前記非磁性支持体は、その面内のあらゆる方
向における複屈折率の最大値と最小値との差Δnが、Δ
n=12×10-3以下であるポリエチレンテレフタレー
トの二軸配向フィルムからなることを特徴とする磁気記
録媒体を提供する。
According to the present invention, there is provided a magnetic recording medium having a magnetic layer comprising a composition of a ferromagnetic powder and a polymer material on a non-magnetic support. The nonmagnetic support has a difference Δn between the maximum value and the minimum value of the birefringence in all directions in the plane, Δn
Provided is a magnetic recording medium comprising a biaxially oriented film of polyethylene terephthalate having n = 12 × 10 −3 or less.

【0006】即ち、本発明は、非磁性支持体上に磁性層
を塗設し、この磁性層を平滑処理により平滑化させた磁
気記録媒体において、非磁性支持体の面内のあらゆる方
向における複屈折率の最大値と最小値の差Δが12×1
-3以下である二軸配向ポリエチレンテレフタレートフ
ィルムからなることを特徴とするものである。
That is, the present invention relates to a magnetic recording medium in which a magnetic layer is coated on a non-magnetic support, and the magnetic layer is smoothed by a smoothing process. The difference Δ between the maximum value and the minimum value of the refractive index is 12 × 1
0 -3 and is characterized in that comprising a biaxially oriented polyethylene terephthalate film or less.

【0007】このように非磁性支持体の複屈折率を規制
することにより、分子配向が小さくなって均一化し方向
性が減少するため、特定方向に対する変形を小さくし
て、磁気記録媒体の変形を発生しにくくすることがで
き、ヘッドとの接触変動が少なく多数回の使用が可能な
磁気記録媒体を得ることができる。
[0007] By regulating the birefringence of the non-magnetic support in this manner, the molecular orientation becomes smaller and uniform, and the directionality decreases. Therefore, the deformation in a specific direction is reduced, and the deformation of the magnetic recording medium is reduced. It is possible to obtain a magnetic recording medium that can be hardly generated, has little contact fluctuation with the head, and can be used many times.

【0008】[0008]

【発明の実施の形態】本発明におけるポリエチレンテレ
フタレートとは、分子構成の90モル以上がエチレンテ
レフタレート単位からなる重合体、共重合体あるいは混
合体であり、該ポリマーの融点は250℃以上、好まし
くは255℃以上のものが望ましい。またポリマーの好
ましい固有粘度は0.4〜1.0であり、さらに好まし
くは、0.55〜0.8である。
BEST MODE FOR CARRYING OUT THE INVENTION The polyethylene terephthalate in the present invention is a polymer, a copolymer or a mixture in which 90 mol or more of the molecular constitution consists of ethylene terephthalate units, and the melting point of the polymer is 250 ° C. or more, preferably Those having a temperature of 255 ° C. or higher are desirable. The intrinsic viscosity of the polymer is preferably from 0.4 to 1.0, more preferably from 0.55 to 0.8.

【0009】本発明の二軸配向ポリエチレンテレフタレ
ートフィルムとは、上記ポリエチレンテレフタレートを
溶融押出しし、これを二軸方向に延伸して配向させたも
のである。ポリエチレンテレフタレートフィルムを二軸
配向させる方法は、例えば未延伸状態のフィルムを機械
方向(縦方向)および幅方向(横方向)に2〜5倍程
度、好ましくは3〜4.5倍の範囲で延伸し、延伸面積
倍率を4〜25倍、好ましくは9〜20倍程度にする。
この二軸延伸には公知の延伸装置を用い、未延伸状態の
フィルムをそのガラス転移点以上の温度域(通常90〜
120℃程度)に加熱して、縦方向および横方向に伸張
させるものである。この延伸法として、同時二軸延伸法
や逐次二軸延伸法を用いてもよく、また、二軸2段階の
延伸法の他に、延伸の段数が3以上のものであってもよ
い。
The biaxially oriented polyethylene terephthalate film of the present invention is obtained by melt-extruding the above polyethylene terephthalate and stretching it biaxially to orient it. As a method of biaxially orienting a polyethylene terephthalate film, for example, an unstretched film is stretched in a machine direction (longitudinal direction) and a width direction (lateral direction) by about 2 to 5 times, preferably 3 to 4.5 times. Then, the stretching area ratio is set to about 4 to 25 times, preferably about 9 to 20 times.
For the biaxial stretching, a known stretching apparatus is used to convert the unstretched film into a temperature range equal to or higher than its glass transition point (usually 90 to 90 ° C.).
(Approximately 120 ° C.) to expand in the vertical and horizontal directions. As the stretching method, a simultaneous biaxial stretching method or a sequential biaxial stretching method may be used. In addition to the two-axis two-stage stretching method, a stretching method having three or more stretching steps may be used.

【0010】ポリエチレンテレフタレートの熱固定方法
としては、公知のステンターや加熱ロールを用いる手段
が利用できる。これ以外にも緊張または弛緩状態でフィ
ルムの四方を把持して熱処理を行なってもよいが、工業
上ステンター法が有利である。
As a method for heat-setting polyethylene terephthalate, known means using a stenter or a heating roll can be used. Alternatively, the heat treatment may be carried out while holding the film in four sides in a tensioned or relaxed state, but the stenter method is advantageous from an industrial point of view.

【0011】本発明のポリエチレンテレフタレートフィ
ルムの表面粗さとしては、7nm以下が必要であり、好
ましくは1〜5nmの範囲である。フィルムの表面粗さ
が7nmを越えると、磁性層の粗さに影響し、スペーシ
ングロスが大きくなり電磁変換特性を低下させ、エラー
レートが増大する。また、フィルムの粗さが1nm以下
であると、ロールへの巻取りや塗膜工程でフィルムをロ
ール状で搬送すること等のフィルムの取扱いが困難にな
る。このポリエチレンテレフタレートフィルムの表面粗
さを調整する方法としては、不活性固体微粒子をポリマ
ー中に含有させてもよく、また不活性固体微粒子を分散
させた塗膜を形成する等の他の表面加工処理を施すこと
によってもよい。
The surface roughness of the polyethylene terephthalate film of the present invention is required to be 7 nm or less, preferably in the range of 1 to 5 nm. If the surface roughness of the film exceeds 7 nm, it affects the roughness of the magnetic layer, increases the spacing loss, lowers the electromagnetic conversion characteristics, and increases the error rate. Further, when the film has a roughness of 1 nm or less, it becomes difficult to handle the film such as winding the film on a roll or transporting the film in a roll in a coating process. As a method for adjusting the surface roughness of the polyethylene terephthalate film, inert solid fine particles may be contained in a polymer, or other surface processing treatments such as forming a coating film in which the inert solid fine particles are dispersed. May be applied.

【0012】上記不活性固体微粒子としては、好ましく
は、二酸化ケイ素(水和物、ケイ藻土、ケイ砂、石英等
を含む);アルミナ;SiO2 分を30重量%以上含有
するケイ酸塩(例えば非結晶質あるいは結晶質の粘土鉱
物、アルミノシリケート(焼成物や水和物を含む)、温
石綿、ジルコン、フライアッシュ等);Mg,Zn,Z
rの酸化物;CaまたはBaの硫酸塩;Li,Naまた
はCaのリン酸塩(1水素塩や2水素塩を含む);L
i,NaまたはKの安息香酸塩;Ca,Ba,Zn,ま
たはMnのテレフタル塩;Mg,Ca,Ba,Zn,C
d,Pb,Sr,Mn,Fe,CoまたはNiのチタン
酸塩;BaまたはPbのクロム酸塩;炭素(例えばカー
ボンブラック、グラファイト等);CaまたはMgの炭
酸塩;ホタル石;およびZnSが例示される。
As the inert solid fine particles, preferably, silicon dioxide (including hydrate, diatomaceous earth, silica sand, quartz, etc.); alumina; silicate containing at least 30% by weight of SiO 2 ( For example, amorphous or crystalline clay minerals, aluminosilicates (including calcined products and hydrates), hot asbestos, zircon, fly ash, etc.); Mg, Zn, Z
oxide of r; sulfate of Ca or Ba; phosphate of Li, Na or Ca (including monohydrogen and dihydrogen salts); L
benzoate of i, Na or K; terephthalate of Ca, Ba, Zn, or Mn; Mg, Ca, Ba, Zn, C
titanates of d, Pb, Sr, Mn, Fe, Co or Ni; chromates of Ba or Pb; carbons (eg, carbon black, graphite, etc.); carbonates of Ca or Mg; fluorite; Is done.

【0013】上記不活性固体微粒子としてさらに好まし
くは、無水ケイ酸、含水ケイ酸、酸化アルミニウム、ケ
イ酸アルミニウム(焼成物、水和物を含む)、燐酸1リ
チウム、燐酸3リチウム、燐酸ナトリウム、燐酸カルシ
ウム、硫酸バリウム、酸化チタン、安息香酸リチウム、
これらの化合物の複塩(水和物を含む)、粘土(カオリ
ン、ベントナイト、白土等を含む)、タルク、ケイ藻
土、炭酸カルシウム等が例示される。
More preferably, the inert solid fine particles are silicic anhydride, hydrous silicic acid, aluminum oxide, aluminum silicate (including calcined products and hydrates), monolithium phosphate, trilithium phosphate, sodium phosphate, and phosphoric acid. Calcium, barium sulfate, titanium oxide, lithium benzoate,
Examples thereof include double salts of these compounds (including hydrates), clays (including kaolin, bentonite, clay, etc.), talc, diatomaceous earth, calcium carbonate and the like.

【0014】これらの不活性固体微粒子は、その平均粒
径が0.05〜0.7μmが好ましく、さらに0.08
〜0.4μmであればなお好ましい。また、その添加量
は、0.01〜1.5重量%が好ましく、さらに0.0
2〜1.0重量%であればなお好ましい。
These inert solid fine particles preferably have an average particle size of 0.05 to 0.7 μm, more preferably 0.08 to 0.7 μm.
It is even more preferable that the thickness be 0.4 μm. Further, the addition amount is preferably 0.01 to 1.5% by weight, and more preferably 0.0 to 1.5% by weight.
More preferably, it is 2 to 1.0% by weight.

【0015】本発明における磁性層の厚さは2.0μm
以下、好ましくは1.5μm以下である。強磁性粉末と
しては、例えば、γ−Fe23 、Co含有のγ−Fe2
3、Fe34、Co含有のγ−Fe34、CrO2
Co−Ni−P合金、Co−Ni−Fe合金、Co−C
r合金、Co−Ni合金、バリウムフェライト等の強磁
性体が例示できる。
In the present invention, the thickness of the magnetic layer is 2.0 μm.
Or less, preferably 1.5 μm or less. Examples of the ferromagnetic powder include γ-Fe 2 O 3 and Co-containing γ-Fe 2
O 3 , Fe 3 O 4 , Co-containing γ-Fe 3 O 4 , CrO 2 ,
Co-Ni-P alloy, Co-Ni-Fe alloy, Co-C
Ferromagnetic materials such as r alloy, Co—Ni alloy, and barium ferrite can be exemplified.

【0016】本発明で強磁性粉末とともに使用される高
分子材料としては、熱可塑性樹脂、熱硬化性樹脂、反応
型樹脂、またはこれらの混合物があげられる。例えば、
エポキシ/エステル系、エポキシ/アミン系、エポキシ
/ポリアミド系、ビニル系、フェノリック系、ウレタン
系等またはこれらの混合物の重合体があげられる。
The polymer material used with the ferromagnetic powder in the present invention includes a thermoplastic resin, a thermosetting resin, a reactive resin, or a mixture thereof. For example,
Epoxy / ester type, epoxy / amine type, epoxy / polyamide type, vinyl type, phenolic type, urethane type and the like or a polymer of a mixture thereof are mentioned.

【0017】本発明の非磁性支持体は、あらゆる方向で
の80℃の熱収縮率が0.1〜0.5%であることが望
ましい。この範囲において、磁気ディスクのアニール工
程でその変形を除去し磁気記録媒体の変形をさらに有効
に抑制することができる。
The nonmagnetic support of the present invention preferably has a heat shrinkage at 80 ° C. in any direction of 0.1 to 0.5%. Within this range, the deformation of the magnetic recording medium can be more effectively suppressed by removing the deformation in the annealing step of the magnetic disk.

【0018】また、本発明の非磁性支持体の表面粗さを
前述のように7nm以下、好ましくは5nm以下とする
ことにより、磁性層の厚さを2μm以下にしてもスペー
シングロスの問題を起こさず多数回使用可能な線記録密
度の高い磁気記録媒体が実現可能になる。即ち、本発明
により十分な変形防止が図られているため、高密度記録
のためにヘッドとの間隔を小さくしても変形が抑えら
れ、表面粗さを7nm以下として高い線記録密度の磁気
記録媒体が得られる。また、磁性層の厚さを2μm以下
にして高密度記録に適した磁気記録媒体が得られる。
Further, by setting the surface roughness of the non-magnetic support of the present invention to 7 nm or less, preferably 5 nm or less as described above, even if the thickness of the magnetic layer is 2 μm or less, the problem of spacing loss can be solved. A magnetic recording medium with a high linear recording density that can be used many times without causing a rise can be realized. That is, since sufficient deformation is prevented by the present invention, deformation is suppressed even if the distance from the head is reduced for high-density recording, and magnetic recording of high linear recording density with a surface roughness of 7 nm or less is achieved. A medium is obtained. Further, a magnetic recording medium suitable for high-density recording can be obtained by setting the thickness of the magnetic layer to 2 μm or less.

【0019】[0019]

【実施例】以下、実施例に基づいて本発明を説明する。
なお、本発明における種々の物性値および特性は以下の
ように測定されたものであり、また以下のように定義さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
In addition, various physical property values and characteristics in the present invention were measured as follows, and are defined as follows.

【0020】(1)屈折率 ナトリウムD線(589nm)を光源として、アッベ屈
折率計を用いて測定した。マウント液にはヨウ化メチレ
ンを用い、25℃、65%RHで測定した。
(1) Refractive index Measured using an Abbe refractometer with sodium D line (589 nm) as a light source. The measurement was performed at 25 ° C. and 65% RH using methylene iodide as the mounting solution.

【0021】(2)屈折率の差Δn 分子配向計MOA−5001A(新王子製紙(株)製)
を用いて、フィルムの配向方向を求め、その方向の屈折
率とその方向と90度ずらせた方向の屈折率の差を求め
てΔnとした。
(2) Refractive index difference Δn Molecular orientation meter MOA-5001A (manufactured by Shin-Oji Paper Co., Ltd.)
Was used to determine the orientation direction of the film, and the difference between the refractive index in that direction and the refractive index in a direction shifted by 90 degrees from that direction was determined as Δn.

【0022】(3)表面粗さ(Ra) JIS−B−0601に規定された方法にしたがって、
触針式表面粗さ計を用いて測定した。なお、カットオフ
0.25mm、測定長1mmとした。
(3) Surface roughness (Ra) According to the method specified in JIS-B-0601,
It measured using the stylus type surface roughness meter. The cutoff was 0.25 mm and the measurement length was 1 mm.

【0023】(4)熱収縮率 分子配向計で求めた配向方向と90度ずれた方向に10
mmの幅で長さ200mmに切抜き、評点距離を100
mmとして印を付け、10gの荷重をかけてこれをデジ
タル精密測定器(フリー社製)を用いて1/1000m
mまで読み取り、このフィルム片を80℃で1時間熱処
理した後、再びデジタル精密測定器で熱処理後の評点距
離を1/1000mmまで読み取り、熱処理前後の寸法
変化による収縮率を求めた。
(4) Thermal shrinkage rate: 10 degrees in a direction shifted by 90 degrees from the orientation direction obtained by the molecular orientation meter.
Cut out to a length of 200 mm with a width of mm and a rating distance of 100
mm, a load of 10 g was applied thereto, and this was 1/1000 m using a digital precision measuring instrument (manufactured by Free Corporation).
m, and the film piece was heat-treated at 80 ° C. for 1 hour. Then, the rating distance after the heat treatment was read again to 1/1000 mm with a digital precision measuring instrument, and the shrinkage ratio due to dimensional change before and after the heat treatment was determined.

【0024】(5)変形量 直径3.5インチのディスク形状に打抜き加工し、これ
を回転させながら最外周の振れ量を読み取り、変形の程
度とした。
(5) Deformation A disk was punched into a disk having a diameter of 3.5 inches, and the outermost runout was read while rotating the disk to determine the degree of deformation.

【0025】(6)繰り返し使用回数 磁気ディスクの記録再生装置として、ZIPドライブ
(セイコーエプソン社製)を用い、最外周から最内周ま
での読み取りを繰り返し行ない、初期出力の半分の出力
になるまでの使用回数を求めた。
(6) Number of Repetitive Uses Using a ZIP drive (manufactured by Seiko Epson Corporation) as a recording / reproducing apparatus for the magnetic disk, reading from the outermost periphery to the innermost periphery is repeated until the output becomes half of the initial output. Was used.

【0026】実施例1〜2および比較例1:平均粒径
0.3μmのシリカを0.2%含有するポリマーのペレ
ットを180℃で3時間乾燥した。このポリマーのペレ
ットを常法にしたがって、ダイで溶融押出しし、未延伸
フィルムを作成して、縦方向に100℃で4倍、横方向
に110℃で4倍、逐次二次延伸を施し、更に200℃
で熱固定を行ない、表面粗さ5nmで厚さ60μmでか
つ5m幅のフィルムを作成した。このフィルムの幅方向
のセンター部、センター部より1m外れたミドル部、お
よび2m外れたエッジ部について、Δn、表面粗さ及び
熱収縮率の測定を行なった。この結果を表1に示す。こ
のようにして得られたフィルムのセンター部、ミドル
部、およびエッジ部を300mm幅のフィルミにスリッ
トし、次に示す組成の磁性層を1.5μmの厚さに形成
した。
Examples 1-2 and Comparative Example 1: Polymer pellets containing 0.2% silica having an average particle size of 0.3 μm were dried at 180 ° C. for 3 hours. The polymer pellets are melt-extruded with a die according to a conventional method to prepare an unstretched film, and sequentially secondary stretched at 100 ° C. in the longitudinal direction and 4 × at 110 ° C. in the transverse direction. 200 ° C
To form a film having a surface roughness of 5 nm, a thickness of 60 μm and a width of 5 m. The Δn, the surface roughness, and the heat shrinkage were measured for the center part in the width direction of the film, the middle part deviated by 1 m from the center part, and the edge part deviated by 2 m from the center part. Table 1 shows the results. The center, middle, and edge of the film thus obtained were slit into a film having a width of 300 mm, and a magnetic layer having the following composition was formed to a thickness of 1.5 μm.

【0027】 磁性塗布液: Fe 100重量部 平均粒径サイズ0.3μm 塩化ビニル−酢酸ビニル共重合樹脂(UCC製VAGH) 5重量部 ポリウレタン(日本ポリウレタン工業製) 20重量部 ニトロセルロース樹脂 5重量部 イソシアネート化合物(日本ポリウレタン工業製コロネートHL) 20重量部 カーボン(平均粒径0.5μm) 5重量部 トルエン 100重量部 メチルエチルケトン 100重量部 シクロヘキサン 100重量部 上記塗料を十分に混合攪拌してフィルムの両面に塗布処
理を施した。次いで磁性層表面にカレンダーロール処理
を施した。その後、70℃で24時間熱処理(アニール
処理)を施し、3.5インチのディスク形状に打抜い
た。これら磁気ディスクの変形の程度、繰り返し使用回
数を表1に示した。
Magnetic coating liquid: Fe 100 parts by weight Average particle size 0.3 μm Vinyl chloride-vinyl acetate copolymer resin (VAGH manufactured by UCC) 5 parts by weight Polyurethane (manufactured by Nippon Polyurethane Industry) 20 parts by weight Nitrocellulose resin 5 parts by weight Isocyanate compound (Coronate HL manufactured by Nippon Polyurethane Industry) 20 parts by weight Carbon (average particle diameter 0.5 μm) 5 parts by weight Toluene 100 parts by weight 100 parts by weight methyl ethyl ketone 100 parts by weight cyclohexane 100 parts by weight A coating process was performed. Subsequently, the surface of the magnetic layer was subjected to calender roll treatment. Thereafter, a heat treatment (annealing treatment) was performed at 70 ° C. for 24 hours, and punched into a 3.5-inch disk shape. Table 1 shows the degree of deformation of these magnetic disks and the number of times of repeated use.

【0028】比較例2〜4:実施例1において、ポリマ
ー中に添加するシリカの量を0.4重量%としてフィル
ムを作成し、以下実施例1と同様にしてディスク状のサ
ンプルを得た。このサンプルのセンター部、ミドル部、
エッジ部のフィルムのΔn、表面粗さ、熱収縮率を測定
し、その結果を表1に示す。また、これらを使用して作
成した磁気ディスクの変形の程度、繰り返し使用回数を
測定し、その結果を表1に示す。
Comparative Examples 2 to 4: A film was prepared in the same manner as in Example 1 except that the amount of silica added to the polymer was 0.4% by weight, and a disk-shaped sample was obtained in the same manner as in Example 1. The center part, middle part,
The Δn, surface roughness, and heat shrinkage of the film at the edge were measured, and the results are shown in Table 1. Further, the degree of deformation and the number of times of repeated use of the magnetic disk prepared by using these were measured, and the results are shown in Table 1.

【0029】比較例5〜7:実施例1において、フィル
ム作成時の熱固定温度を215℃として、以下実施例1
と同様にしてディスク状のサンプルを得た。このサンプ
ルのセンター部、ミドル部、エッジ部のフィルムのΔ
n、表面粗さ、熱収縮率を測定し、その結果を表1に示
す。また、これらを使用して作成した磁気ディスクの変
形の程度、繰り返し使用回数を測定し、その結果を表1
に示す。
Comparative Examples 5 to 7: In Example 1, the heat setting temperature at the time of film production was 215 ° C.
A disk-shaped sample was obtained in the same manner as described above. Δ of the film at the center, middle and edge of this sample
n, surface roughness, and heat shrinkage were measured, and the results are shown in Table 1. Also, the degree of deformation and the number of times of repeated use of the magnetic disk created using these were measured, and the results were shown in Table 1.
Shown in

【0030】[0030]

【表1】 [Table 1]

【0031】表1から分かるように、Δnが12×10
-3 以下で、表面粗さが5nm以下でかつ熱収縮率が
0.1〜0.5%の範囲内となっている実施例1および
2は、変形量が小さく繰り返し回数が500回以上とな
って、出力低下の小さい高特性の磁気ディスクが実現可
能になる。
As can be seen from Table 1, Δn is 12 × 10
-3 or less, the surface roughness is 5 nm or less, and the heat shrinkage ratio is in the range of 0.1 to 0.5%. In Examples 1 and 2, the deformation amount is small and the number of repetitions is 500 or more. As a result, a high-performance magnetic disk with small output reduction can be realized.

【0032】[0032]

【発明の効果】以上説明したように、本発明において
は、2軸配向のポリエチレンテレフタレートからなるベ
ースフィルムの複屈折率を所定の範囲内に設定すること
により、磁気記録媒体の変形を抑制することが可能にな
り、特に熱収縮率を0.1〜0.5%の範囲内に設定す
ることにより顕著な変形防止効果が得られる。これによ
り、トラッキングミスが減少しエラーレートが少なくな
って信頼性の高い記録再生動作が達成される。また、ヘ
ッドとの接触状態が均一化するため多数回使用しても磁
性層の摩耗が少なくなって、ディスクの回転が円滑にな
るとともに、出力低下が抑制され高品質で繰り返し使用
回数が大きく寿命の長い磁気記録媒体が得られる。
As described above, in the present invention, the deformation of the magnetic recording medium is suppressed by setting the birefringence of the base film made of biaxially oriented polyethylene terephthalate within a predetermined range. In particular, by setting the heat shrinkage in the range of 0.1 to 0.5%, a remarkable deformation preventing effect can be obtained. As a result, tracking errors are reduced, the error rate is reduced, and a highly reliable recording / reproducing operation is achieved. In addition, since the contact state with the head is uniform, the wear of the magnetic layer is reduced even when used many times, the rotation of the disk becomes smooth, the output is suppressed, the output is suppressed and the quality is high, the number of times of repeated use is large, and the life is long Is obtained.

【0033】また、このような変形防止効果により、非
磁性支持体の表面粗さを小さくして磁性層表面での突起
を小さくし、ヘッドとの間隔を小さくして高密度記録を
図ることができる。さらに、磁性層の厚さを所定範囲内
で薄くして記録密度をさらに高めることも可能になる。
Further, by such a deformation preventing effect, it is possible to reduce the surface roughness of the non-magnetic support, reduce the protrusions on the surface of the magnetic layer, and reduce the distance from the head to achieve high-density recording. it can. Further, it is possible to further increase the recording density by reducing the thickness of the magnetic layer within a predetermined range.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非磁性支持体上に、強磁性粉末と高分子材
料との組成物からなる磁性層を設けた磁気記録媒体にお
いて、 前記非磁性支持体は、その面内のあらゆる方向における
複屈折率の最大値と最小値との差Δnが、Δn=12×
10-3以下であるポリエチレンテレフタレートの二軸配
向フィルムからなることを特徴とする磁気記録媒体。
1. A magnetic recording medium having a magnetic layer comprising a composition of a ferromagnetic powder and a polymer material provided on a non-magnetic support, wherein the non-magnetic support has multiple layers in all directions in the plane. The difference Δn between the maximum value and the minimum value of the refractive index is Δn = 12 ×
A magnetic recording medium comprising a biaxially oriented film of polyethylene terephthalate of 10 -3 or less.
【請求項2】前記非磁性支持体の面内のあらゆる方向の
80℃の熱収縮率が0.1〜0.5%であることを特徴
とする請求項1に記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the heat shrinkage at 80 ° C. in all directions in the plane of the nonmagnetic support is 0.1 to 0.5%.
【請求項3】前記非磁性支持体の両面の表面粗さRaが
約1〜7nmであることを特徴とする請求項1または2
に記載の磁気記録媒体。
3. The non-magnetic support according to claim 1, wherein both surfaces have a surface roughness Ra of about 1 to 7 nm.
3. The magnetic recording medium according to claim 1.
【請求項4】前記磁性層の厚さが2.0μm以下である
ことを特徴とする請求項3に記載の磁気記録媒体。
4. The magnetic recording medium according to claim 3, wherein the thickness of the magnetic layer is 2.0 μm or less.
JP4176297A 1997-02-26 1997-02-26 Magnetic recording medium Pending JPH10241147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4176297A JPH10241147A (en) 1997-02-26 1997-02-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4176297A JPH10241147A (en) 1997-02-26 1997-02-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH10241147A true JPH10241147A (en) 1998-09-11

Family

ID=12617425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4176297A Pending JPH10241147A (en) 1997-02-26 1997-02-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH10241147A (en)

Similar Documents

Publication Publication Date Title
EP0199244B1 (en) Polyester base film for magnetic recording media
KR100227401B1 (en) Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
CN111512368A (en) Servo pattern recording method, servo pattern recording apparatus, method for manufacturing tape-shaped magnetic recording medium, and tape-shaped magnetic recording medium
EP0593773B1 (en) Biaxially oriented base film and floppy disk for high-density magnetic recording made therefrom
US5494739A (en) Polyethylene-2,6-naphthalenedicarboxylate film
EP0532172B1 (en) Magnetic hape from a biaxially oriented,unidirectionally long polythylene-2,6-naphthalate film
JPH0152818B2 (en)
JPH10241147A (en) Magnetic recording medium
US5582897A (en) Magnetic recording medium
JPH0697500B2 (en) High density magnetic recording medium
US5591502A (en) Magnetic recording medium
JPH0624061B2 (en) Micro floppy disk
JP2001134919A (en) Magnetic recording medium
JPH09270116A (en) Magnetic recording medium
JP3350077B2 (en) floppy disk
JPS6251026A (en) Magnetic powder for high-density magnetic recording and magnetic recording medium using said powder
JPS6381623A (en) Disk medium
JPH10134343A (en) Magnetic tape for recording computer data
JPH0822931B2 (en) Film for magnetic recording media
JPH1196545A (en) Magnetic tape for computer data recording
JPH06195679A (en) Magnetic recording medium and its production
JPH1021539A (en) Producing device for magnetic recording medium, production of magnetic recording medium, and magnetic recording medium
JPS6284424A (en) Magnetic recording flexible disk
JPH11120539A (en) Production of support with back coating layer and magnetic recording medium
JPH05298671A (en) Laminated polyester film for magnetic recording medium