JPH1024017A - Method and device for measuring asthenopia - Google Patents

Method and device for measuring asthenopia

Info

Publication number
JPH1024017A
JPH1024017A JP8180829A JP18082996A JPH1024017A JP H1024017 A JPH1024017 A JP H1024017A JP 8180829 A JP8180829 A JP 8180829A JP 18082996 A JP18082996 A JP 18082996A JP H1024017 A JPH1024017 A JP H1024017A
Authority
JP
Japan
Prior art keywords
measuring
time
frequency
target
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8180829A
Other languages
Japanese (ja)
Inventor
Haruo Isono
春雄 磯野
Kazuaki Komine
一晃 小峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP8180829A priority Critical patent/JPH1024017A/en
Publication of JPH1024017A publication Critical patent/JPH1024017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure asthenopia objectively, accurately, and quantitatively in a short time by measuring the time frequency characteristic of a visual system during observation of a display, and measuring the amount of fluctuation of the threshold level of that time frequency response. SOLUTION: For measurements, a peripheral visual field S and a target T for examination are made to emit light at predetermined average brightness, and a measuring frequency is set by a computer and input to a set frequency input part 14. Thereby a current that is made to flow through the target T for examination is controlled by an examination target emission control part 13 so that at a specified time the brightness of the target increases directly with the elapse of time. Under these conditions, an examinee observes the target T, and presses a reaction switch 4 when perceiving flickering of the target T or when the flickering disappears. A current value corresponding to a brightness level at that point is measured by a current value measuring part 16 and output to a computer, and thereafter a frequency at which the target T is measured is varied to measure the time frequency characteristic of a visual system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は人間の眼精疲労(視
覚負担)の測定装置に係り、特にコンピュータ用ディス
プレイやテレビジョン、立体ディスプレイなどの観察に
伴う視覚疲労の測定方法および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring human eye fatigue (visual load), and more particularly to a method and apparatus for measuring visual fatigue associated with observation of a computer display, a television, a three-dimensional display, and the like.

【0002】[発明の概要]本発明は、コンピュータ用
ディスプレイやテレビジョン、立体ディスプレイなどを
長時間使用した場合に生じる眼精疲労(視覚負担)を客
観的かつ定量的に測定するための測定方法および測定装
置に関するもので、これらのディスプレイ観察時におけ
る人間の視覚系の時間周波数特性を測定し、その時間周
波数応答の閾値変動(感度変化)を測定することによ
り、視覚系を中心とした負担状態(眼精疲労)を短時間
に精度よく測定できるようにしたものである。
SUMMARY OF THE INVENTION The present invention relates to a method for objectively and quantitatively measuring eye strain (visual load) caused when a computer display, a television, a stereoscopic display, etc. are used for a long time. And the measurement device, which measures the time-frequency characteristics of the human visual system when observing these displays, and measures the threshold fluctuation (sensitivity change) of the time-frequency response, so that the burden state centering on the visual system is measured. (Eye strain) can be accurately measured in a short time.

【0003】[0003]

【従来の技術】過度な刺激やそれに伴う応答動作が負荷
となって、生体機能や作業効率などの一過性の低下を引
き起こす生体の負担状態は「疲労」と呼ばれる。このう
ち特に、視覚系を中心とした負担状態は「眼精疲労」と
呼ばれる。この眼精疲労は筋肉系の疲労とは異なり、発
生部位の確定が困難であるため、その測定は、情報受容
・処理・応答などの複合的な機能変動を測度として行わ
れている。
2. Description of the Related Art A state of burden on a living body, which is caused by excessive stimulation and a response operation resulting therefrom, causing a temporary decrease in biological functions and work efficiency, is called "fatigue". Of these, the burden state focusing on the visual system is called "eye strain". Unlike the fatigue of the muscular system, it is difficult to determine the site of occurrence of this asthenopia, so its measurement is performed using a complex functional change such as information reception, processing, and response as a measure.

【0004】従来利用されている代表的な眼精疲労の測
定法としては、例えば大山・今井・和気編:「新編 感
覚知覚心理学ハンドブック」(誠心書房、1994年、
pp.904−pp.906)に記載されているよう
に、チラツキ光の臨界融合周波数変化を調べる方法
(臨界融合周波数法)、視認可能な調節近点距離を測
定する方法、焦点調節の時間応答能力を調べる方法、
眼球運動の変化を調べる方法、等がある。
[0004] As a typical method of measuring eye strain used in the past, for example, Oyama, Imai, Waki, eds., "New Edition Handbook of Sensory Perception Psychology" (Seishin Shobo, 1994,
pp. 904-pp. 906), a method for examining a critical fusion frequency change of flicker light (critical fusion frequency method), a method for measuring a visible adjustment near-point distance, a method for examining the time response capability of focus adjustment,
There is a method of examining changes in eye movement, and the like.

【0005】[0005]

【発明が解決しようとする課題】例えば、従来利用され
ている代表的な眼精疲労の測定法である上述の「臨界融
合周波数、CFF :Critical Fusion Frequency 」法で
は、測定時の刺激条件(チラツキ視標は大きさ視角0.
5度、輝度120cd/m2 の赤色光で、その周囲視野
10度に25cd/m2 の白色光を提示、30cmの視
距離で観察する)を固定し、視標の臨界融合周波数(C
FF)を測定する。
For example, in the above-mentioned “critical fusion frequency, CFF: Critical Fusion Frequency” method, which is a typical measurement method of eye strain conventionally used, stimulation conditions (flicker) at the time of measurement are considered. The target has a size visual angle of 0.
5 degrees, with the red light of intensity 120 cd / m 2, the present white light of 25 cd / m 2 around the visual field of 10 degrees, is observed at a viewing distance of 30 cm) to secure the critical fusion frequency of the target (C
FF) is measured.

【0006】すなわち、被験者にある平均輝度を有する
チラツキ光の視標を提示し、そのチラツキ光の周波数を
低周波から高周波へと変化させたとき、チラツキが知覚
されなくなって定常光として知覚される臨界周波数を測
定する。このときの周波数を臨界融合周波数(CFF)
と呼ぶ。このような測定法を上昇系列による測定とい
う。これとは逆に、初めは視標が定常光として知覚され
るような高周波で動作させておき、次第に高周波から低
周波へと周波数を変化させ、チラツキが初めて知覚され
る臨界周波数を測定することもある。これを下降系列に
よる測定という。通常、上昇系列または下降系列のどち
らか一方の測定を数回繰り返して行い、その平均値を求
めるのが一般的である。ただし、上昇系列と下降系列で
測定した臨界融合周波数は同一にはならないので、上昇
系列と下降系列で測定した周波数の平均値をもって、臨
界融合周波数(CFF)とすることもある。
That is, when a subject is presented with an optotype of flicker light having a certain average luminance and the frequency of the flicker light is changed from a low frequency to a high frequency, the flicker is not perceived but is perceived as stationary light. Measure the critical frequency. The frequency at this time is defined as the critical fusion frequency (CFF)
Call. Such a measuring method is referred to as a measurement using an ascending series. Conversely, at first, the target is operated at a high frequency at which the target is perceived as stationary light, and the frequency is gradually changed from the high frequency to the low frequency to measure the critical frequency at which flicker is perceived for the first time. There is also. This is called a descending series measurement. In general, it is common practice to repeat measurement of either the ascending series or the descending series several times and determine the average value. However, since the critical fusion frequencies measured in the ascending sequence and the descending sequence do not become the same, an average value of the frequencies measured in the ascending sequence and the descending sequence may be used as the critical fusion frequency (CFF).

【0007】臨界融合周波数(CFF)は、平常時には
35〜40Hzの値を示すが、5%以上の変動が生じる
と、平常時より負担や緊張などがあると推定される。た
だし、この臨界融合周波数(CFF)法では、変動が少
ない上、年令差や個人差があるため、被験者の平常時の
CFF値を確度良く求めておく必要がある。
[0007] The critical fusion frequency (CFF) shows a value of 35 to 40 Hz in normal times, but it is presumed that when a change of 5% or more occurs, the load and tension are higher than in normal times. However, in the critical fusion frequency (CFF) method, since there is little variation and there are age differences and individual differences, it is necessary to accurately obtain the CFF value in the normal state of the subject.

【0008】一般に眼精疲労だけを定量的かつ客観的に
測定することは難しく、また主観的疲労感と必ずしも対
応しないため、いくつかの測定法と心理学的な評価法な
どを複合的に用いて視機能の変動を測定しているのが現
状である。
[0008] In general, it is difficult to quantitatively and objectively measure only eye strain, and it does not always correspond to subjective fatigue. Therefore, several measuring methods and psychological evaluation methods are used in combination. At present, fluctuations in visual function are measured.

【0009】本発明は上記の事情に鑑みてなされたもの
であり、その目的は、簡単な構成により眼精疲労を短時
間で精度良く定量的に測定することのできる眼精疲労測
定方法および眼精疲労測定装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an eye strain measurement method and an eye strain measurement method capable of quantitatively measuring eye strain with high accuracy in a short time with a simple configuration. An object of the present invention is to provide a vital fatigue measuring device.

【0010】[0010]

【課題を解決するための手段】初めに、本発明の原理を
説明する。本発明の原理は、疲労を「感覚・知覚系、筋
肉系、神経系など生体系における閾値レベルの時間的変
動」であるという基本概念に基づく。この基本概念に基
づいて、本発明ではディスプレイ観察時における視覚系
の時間周波数特性を測定し、その時間周波数応答の閾値
レベルの変動(感度変化)量を測定することにより、視
覚系を中心とした負担状態(眼精疲労)を定量的に求め
るものである。従来のCFF測定法が、視標のチラツキ
光の臨界融合周波数の変動に着目して疲労を定量化する
考え方とは根本的に異なる。
First, the principle of the present invention will be described. The principle of the present invention is based on the basic concept that fatigue is "a temporal change of a threshold level in a biological system such as a sensory / perceptual system, a muscular system, and a nervous system". Based on this basic concept, the present invention measures the time-frequency characteristics of the visual system during display observation, and measures the amount of change (sensitivity change) in the threshold level of the time-frequency response, thereby focusing on the visual system. The purpose is to quantitatively determine the burden state (eye strain). The conventional CFF measurement method is fundamentally different from the idea of quantifying fatigue by focusing on the fluctuation of the critical fusion frequency of the flicker light of the target.

【0011】本発明において測定しようとする「視覚系
の時間周波数特性」について説明する。図1(A)に示
すように、刺激パターンの輝度レベルを時間とともに正
弦波状に変調させた時、そのチラツキが知覚されるため
に必要な最小の振幅ΔBをチラツキ閾と呼ぶ。いま刺激
パターンの輝度変化をφ(t)とすれば、次の(1)式
が成立する。
The "time-frequency characteristics of the visual system" to be measured in the present invention will be described. As shown in FIG. 1A, when the luminance level of the stimulus pattern is modulated in a sinusoidal manner with time, the minimum amplitude ΔB required for the flicker to be perceived is called a flicker threshold. Assuming now that the luminance change of the stimulus pattern is φ (t), the following equation (1) holds.

【0012】[0012]

【数1】 φ(t)=B+ΔB・sin2πft …(1) ここで、Bは視標の平均輝度である。また、fは時間周
波数であり単位はヘルツ(Hz)である。また、m=Δ
B/Bを閾値変調度、この逆数1/mをチラツキ感度と
呼ぶ。この時間周波数fと、チラツキ閾値(又はチラツ
キ感度)との関係を「視覚の時間周波数特性」と呼び、
図2のような帯域通過型(バンドパス・フィルタ型)の
特性を示す。
## EQU1 ## where φ (t) = B + ΔB · sin2πft (1) where B is the average luminance of the target. Further, f is a time frequency and a unit is hertz (Hz). Also, m = Δ
B / B is called a threshold modulation degree, and the reciprocal 1 / m is called a flicker sensitivity. The relationship between this time frequency f and the flicker threshold (or flicker sensitivity) is called “visual time-frequency characteristics”,
The characteristics of a band-pass type (band-pass filter type) as shown in FIG. 2 are shown.

【0013】一般には図1(A)に示すような時間とと
もに正弦波状に輝度変化する刺激パターンを用いて測定
されるが、図1(B)に示すように方形波状に輝度変化
する刺激パターンを用いて測定しても良い。方形波パタ
ーンによる刺激の場合には、図2の点線に示すように低
周波域のチラツキ感度が上昇し、低域通過型(ローパス
・フィルタ型)の特性を示す。
In general, measurement is performed using a stimulus pattern whose luminance changes sinusoidally with time as shown in FIG. 1A, but a stimulus pattern whose luminance changes like a square wave as shown in FIG. It may be used for measurement. In the case of the stimulation by the square wave pattern, the flicker sensitivity in the low frequency region increases as shown by the dotted line in FIG. 2, and exhibits a low-pass (low-pass filter) characteristic.

【0014】本発明においては、このような正弦波ある
いは方形波状に輝度変化する刺激パターンのチラツキ閾
値(又はチラツキ感度)を刺激パターンの時間周波数を
変化させながら測定し、そのチラツキ閾値(又はチラツ
キ感度)を測定し、ディスプレイの観察前後におけるこ
れらの閾値変動を求めて疲労を推定するものである。
In the present invention, the flicker threshold (or flicker sensitivity) of such a stimulus pattern whose luminance changes in a sine wave or a square wave is measured while changing the time frequency of the stimulus pattern, and the flicker threshold (or flicker sensitivity) is measured. ) Is measured, and these threshold fluctuations before and after observation of the display are obtained to estimate fatigue.

【0015】以上の原理に基づく本発明は、請求項1で
は、ディスプレイ観察時における視覚系の時間周波数特
性を測定し、その時間周波数応答の閾値レベルの変動量
を測定することにより眼精疲労を客観的に測定評価する
ことを特徴とするものである。
According to the present invention based on the above principle, according to the first aspect, eye fatigue is measured by measuring a time-frequency characteristic of a visual system at the time of display observation, and measuring a fluctuation amount of a threshold level of the time-frequency response. It is characterized by objective measurement and evaluation.

【0016】請求項2では、周辺視野と、この周辺視野
の中央部に配置された検査用視標とから成る眼精疲労測
定用視標部と、前記検査用視標の輝度を正弦波状もしく
は方形波状に輝度変調する手段と、前記検査用視標にお
ける検査用視標光の時間周波数を任意に設定すると共
に、可変する検査用視標光制御手段と、この検査用視標
光制御手段により設定された時間周波数におけるチラツ
キ光の閾値レベルを被験者が応答するための反応スイッ
チと、この反応スイッチからのスイッチ信号に基づいて
眼精疲労を測定する測定手段と、を具備することを特徴
とするものである。
According to a second aspect of the present invention, an eye fatigue measurement target unit including a peripheral visual field and a test target arranged at the center of the peripheral visual field, and the luminance of the test target is sinusoidal or A means for modulating the luminance in a square wave shape, a time frequency of the test target light in the test target arbitrarily set, and a variable test target light control means, and the test target light control means. A reaction switch for the subject to respond to the threshold level of the flicker light at the set time frequency, and measuring means for measuring eyestrain based on a switch signal from the reaction switch are provided. Things.

【0017】また、請求項3では、請求項2記載の眼精
疲労測定装置において、前記測定手段は、視覚の時間周
波数特性における感度の高い時間周波数帯におけるチラ
ツキ光の閾値変動を測定することを特徴とするものであ
る。
According to a third aspect of the present invention, in the eye strain measuring apparatus according to the second aspect, the measuring means measures a fluctuation of a threshold value of flicker light in a time frequency band having high sensitivity in a time frequency characteristic of vision. It is a feature.

【0018】請求項4では、請求項2または3記載の眼
精疲労測定装置において、前記眼精疲労測定用視標部
は、臨界融合周波数(CFF)法で使用されるものと同
一形状を有し、視覚の時間周波数特性と臨界融合周波数
特性とを同一条件で測定可能な構成としたことを特徴と
するものである。
According to a fourth aspect of the present invention, in the eye strain measuring apparatus according to the second or third aspect, the eye fatigue measuring target has the same shape as that used in the critical fusion frequency (CFF) method. The visual frequency characteristic and the critical fusion frequency characteristic can be measured under the same conditions.

【0019】[0019]

【発明の実施の形態】本発明における視覚の時間周波数
特性の測定方法について説明する。図3は、本発明にお
ける測定に使用される刺激光の提示例を示している。同
図に示すように、円形の周辺視野S(視角10度)の中
央部に検査用視標T(視角2度)を同心円状に配置した
ものである。従来のCFF測定法との互換性および比較
検討ができるように考慮して、周辺視野および検査用視
標の輝度をそれぞれ25cd/m2 および120cd/
2 とし、眼より光源までの距離を30cm、波長70
0nmの赤色LED(発光ダイオード)を検査用視標T
に使用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for measuring visual time-frequency characteristics according to the present invention will be described. FIG. 3 shows an example of presentation of stimulation light used for measurement in the present invention. As shown in the figure, a test target T (viewing angle 2 degrees) is arranged concentrically at the center of a circular peripheral visual field S (viewing angle 10 degrees). In consideration of the compatibility with the conventional CFF measurement method and the comparative study, the luminance of the peripheral visual field and the luminance of the test target are set to 25 cd / m 2 and 120 cd / m2, respectively.
m 2 , the distance from the eye to the light source is 30 cm, and the wavelength is 70
0 nm red LED (light emitting diode) is used as a test target T
Used for

【0020】また同図に示すように、周辺視野の平均輝
度レベルをBとし、検査用視標Tのチラツキ光の輝度レ
ベルをB±ΔBとすると、
As shown in the figure, if the average luminance level of the peripheral visual field is B and the luminance level of the flicker light of the test target T is B ± ΔB,

【数2】 チラツキ閾変調度m=(Bmax −Bmin )/(Bmax +Bmin ) =ΔB/B 但し、ΔB=(Bmax −Bmin )/2 となる。[Number 2] flicker閾変Furnishing m = (B max -B min) / (B max + B min) = ΔB / B where, .DELTA.B = a (B max -B min) / 2 .

【0021】図4は、上述した測定方法を実現するため
の本発明に係る眼精疲労測定装置の実施の一形態を示し
ている。
FIG. 4 shows an embodiment of an eye strain measuring apparatus according to the present invention for realizing the above-described measuring method.

【0022】この眼精疲労測定装置は、被験者Pに対し
て測定用のチラツキ光を提示するチラツキ光提示装置1
と、インタフェースボード2と、このインタフェースボ
ード2を介してチラツキ光提示装置1と接続され、チラ
ツキ光提示装置1に対して検査用視標Tのチラツキ周波
数を設定すると共に、チラツキ光提示装置1から出力さ
れるデータに基づいて眼精疲労を定量的に測定する制御
用およびデータ処理用のコンピュータ3と、被験者Pが
検査時に操作する反応スイッチ4とを備えている。
This eye strain measuring apparatus is a flickering light presenting apparatus 1 for presenting a flickering light for measurement to a subject P.
The interface board 2 is connected to the flickering light presenting apparatus 1 via the interface board 2 to set the flickering frequency of the test target T for the flickering light presenting apparatus 1 and to set the flickering light presenting apparatus 1 from the flickering light presenting apparatus 1. The system includes a computer 3 for control and data processing for quantitatively measuring eye strain based on output data, and a reaction switch 4 operated by the subject P during an examination.

【0023】図5は前記チラツキ光提示装置1の構成を
示しており、このチラツキ光提示装置1は、図3に示し
た周辺視野Sと検査用視標T(発光ダイオード等から成
る)とから構成された眼精疲労測定用視標部11と、周
辺視野Sの輝度を調整制御する周辺視野発光制御部12
と、検査用視標Tの輝度を正弦波状もしくは方形波状に
輝度変調すると共に、検査用視標Tにおける検査用視標
光の時間周波数を任意に設定、可変する検査用視標発光
制御部13と、この検査用視標発光制御部13に対する
設定周波数を入力する設定周波数入力部14と、反応ス
イッチ4のスイッチ信号を入力してその時点における検
査用視標Tに流れる電流値を計測する電流値計測部16
と、計測された電流値をインタフェースボード2を介し
てコンピュータ3に出力する電流値出力部17とを備え
ている。
FIG. 5 shows the structure of the flickering light presenting device 1. The flickering light presenting device 1 is composed of the peripheral visual field S and the test target T (comprising a light emitting diode or the like) shown in FIG. The configured eye fatigue measurement target 11 and the peripheral visual field emission controller 12 for adjusting and controlling the luminance of the peripheral visual field S
In addition, the luminance of the test target T is modulated in a sinusoidal or square-wave form, and the time frequency of the test target light in the test target T is set and changed arbitrarily. A set frequency input unit 14 for inputting a set frequency to the test target light emission control unit 13; and a current for inputting a switch signal of the reaction switch 4 and measuring a current value flowing through the test target T at that time. Value measurement unit 16
And a current value output unit 17 that outputs the measured current value to the computer 3 via the interface board 2.

【0024】次に、図4、図5に示した眼精疲労測定装
置において視覚の時間周波数特性を測定する手順につい
て説明する。
Next, a procedure for measuring the visual time-frequency characteristic in the eye strain measuring apparatus shown in FIGS. 4 and 5 will be described.

【0025】チラツキ光提示装置1の電源をONにする
と、図3に示した周辺視野Sおよび検査用視標Tはそれ
ぞれ所定の平均輝度で発光する。刺激光のチラツキ閾値
を測定するには、先ず、コンピュータ3から測定周波数
fを設定する。その設定周波数fはインタフェースボー
ド2を介して設定周波数入力部14に入力される。
When the power of the flickering light presenting device 1 is turned on, the peripheral visual field S and the test target T shown in FIG. 3 emit light at a predetermined average luminance. In order to measure the flicker threshold of the stimulating light, first, the computer 3 sets the measurement frequency f. The set frequency f is input to the set frequency input unit 14 via the interface board 2.

【0026】検査用視標発光制御部13は、図6(A)
に示すように、規定した時間T1 で時間の経過とともに
視標輝度が直線的に増大するように検査用視標Tに流す
電流を制御する。電流値は、例えば、図6(B)に示す
ように、変化時間T1 の1/200を1ステップとして
変化させる。1ステップ毎に変化させる電流値をID
示す。
The test target light emission control unit 13 is shown in FIG.
As shown in ( 1) , the current flowing through the test target T is controlled so that the target brightness increases linearly with the lapse of time at the specified time T1. Current value, for example, as shown in FIG. 6 (B), changing the 1/200 change time T 1 as a single step. The current value changed for each step is indicated by ID .

【0027】この状態で被験者Pは検査用視標Tを観察
し、検査用視標Tのチラツキを知覚した時点又は、チラ
ツキが見えなくなった時点で反応スイッチ4を押す。電
流値計測部16では、この時点での輝度レベルに対応し
た電流値が計測され、電流値出力部17でAD変換され
た後、ディジタルデータとしてコンピュータ3に取り込
まれる。なお、測定は上昇系列、下降系列のいずれも可
能である。また、検査用視標Tの輝度変化は正弦波およ
び方形波状のいずれも切換部15を操作することにより
選択可能である。以下、同様の手順により、検査用視標
Tの測定周波数fを順次変化させて視覚系の時間周波数
特性を測定する。
In this state, the subject P observes the test target T and presses the reaction switch 4 when the flicker of the test target T is perceived or when the flicker disappears. The current value measuring section 16 measures a current value corresponding to the luminance level at this time, and performs an A / D conversion on the current value output section 17, and then takes the digital data into the computer 3. It should be noted that the measurement can be performed in either an ascending series or a descending series. The change in the brightness of the test target T can be selected by operating the switching unit 15 for both the sine wave and the square wave. Hereinafter, the time frequency characteristic of the visual system is measured by sequentially changing the measurement frequency f of the test target T by the same procedure.

【0028】なお試作したチラツキ光提示装置1では時
間周波数0.1Hz〜50Hzまで1Hz単位で設定可
能であった。輝度レベルの測定精度は0.5%である。
In the flickering light presenting device 1 as a prototype, the time frequency can be set in units of 1 Hz from 0.1 Hz to 50 Hz. The measurement accuracy of the luminance level is 0.5%.

【0029】<効果の説明>上述した実施の形態の効果
について視覚の時間周波数特性の実測例に基づいて説明
する。図7、図8は、図4に示した眼精疲労測定装置で
測定された視覚の時間周波数特性の測定例である。これ
らは眼精疲労を著しく伴う立体ディスプレイを観察した
前後における視覚の時間周波数特性の変化を測定した例
であり、被験者P(評価者)を変えて測定したものであ
る。
<Description of Effects> The effects of the above-described embodiment will be described based on an actual measurement example of visual time-frequency characteristics. FIGS. 7 and 8 are measurement examples of visual time-frequency characteristics measured by the eye strain measuring apparatus shown in FIG. These are examples in which the change of visual time-frequency characteristics before and after observing a stereoscopic display with remarkable eye strain was measured by changing the subject P (evaluator).

【0030】図7、図8から明らかなように、疲労の伴
う立体ディスプレイを観察した後では、視覚の時間周波
数特性の中域の周波数、とりわけ10Hz付近のチラツ
キ感度が大幅に低下(38%〜56%)しているのが確
認された。ちなみに、同一条件において従来のCFF値
の変動を測定したところ、その変動は6%程度であっ
た。
As is clear from FIGS. 7 and 8, after observing a three-dimensional display accompanied by fatigue, the flicker sensitivity in the middle frequency range of the visual time-frequency characteristic, particularly around 10 Hz, is greatly reduced (from 38% to 30%). 56%). Incidentally, when the variation of the conventional CFF value was measured under the same conditions, the variation was about 6%.

【0031】このようにこの実施の形態によれば従来の
測定法に比べて、ディスプレイの観察に伴う眼精疲労を
精度良く、定量的に測定することができる。
As described above, according to this embodiment, compared with the conventional measuring method, it is possible to accurately and quantitatively measure eyestrain associated with the observation of the display.

【0032】また、簡便な測定方法として視覚の時間周
波数特性の全体を測定する代わりに、人間にとってチラ
ツキ感度の高い時間周波数(中域付近)に限定して、そ
の時間周波数に対するチラツキ光の閾値変動を測定する
ことにより、眼精疲労を短時間に測定することができ
る。
In addition, instead of measuring the entire visual time-frequency characteristic as a simple measurement method, the threshold fluctuation of the flicker light with respect to the time frequency is limited to a time frequency (near the middle range) where flicker sensitivity is high for humans. By measuring, eye fatigue can be measured in a short time.

【0033】<他の実施の形態>なお、上述した実施の
形態では、視覚の時間周波数特性の測定における検査用
視標TとしてLEDを用いたが、他に、CRT、液晶、
PDP、ELなどの各種表示デバイスや通常のテレビジ
ョンを用いても構成できる。
<Other Embodiments> In the above-described embodiment, the LED is used as the test target T for measuring the visual time-frequency characteristic.
It can also be configured using various display devices such as PDP and EL, and a normal television.

【0034】また、本発明の他の実施の形態として、視
覚の時間周波数特性のうち人間にとってチラツキ感度が
高い中域の時間周波数(例えば、10Hz付近)を対象
にチラツキ閾値(感度)を測定することも有効である。
これによって、疲労の測定時間の短縮と被験者への負担
が軽減できる。
Further, as another embodiment of the present invention, a flicker threshold (sensitivity) is measured for a mid-range time frequency (for example, around 10 Hz) which has a high flicker sensitivity for humans among visual time-frequency characteristics. It is also effective.
Thereby, the measurement time of fatigue can be reduced and the burden on the subject can be reduced.

【0035】[0035]

【発明の効果】以上説明したように請求項1乃至3の発
明によれば、簡単な構成により眼精疲労を短時間で精度
良く定量的に測定することが可能となる。
As described above, according to the first to third aspects of the present invention, eyestrain can be measured quantitatively in a short time with high accuracy with a simple structure.

【0036】また、請求項4の発明によれば、眼精疲労
測定用視標部は、臨界融合周波数(CFF)法で使用さ
れるものと同一形状を有し、視覚の時間周波数特性と臨
界融合周波数特性とを同一条件で測定可能な構成とした
ので、一台の装置で視覚の時間周波数特性と臨界融合周
波数特性とを比較して測定することが可能となり、測定
の利便性が向上する。
According to the fourth aspect of the present invention, the target for eye strain measurement has the same shape as that used in the critical fusion frequency (CFF) method, and the visual time-frequency characteristic and the critical frequency Since the fusion frequency characteristic can be measured under the same conditions, it is possible to compare and measure the visual time frequency characteristic and the critical fusion frequency characteristic with one device, and the convenience of measurement is improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における視覚の時間周波数特性の測定に
用いる刺激パターンの種類を示す説明図である。
FIG. 1 is an explanatory diagram showing types of stimulus patterns used for measurement of visual time-frequency characteristics in the present invention.

【図2】本発明における視覚の時間周波数特性の代表的
な測定例を示す説明図である。
FIG. 2 is an explanatory diagram showing a typical measurement example of visual time-frequency characteristics in the present invention.

【図3】本発明における測定に使用される刺激光の提示
例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of presentation of stimulation light used for measurement in the present invention.

【図4】本発明に係る眼精疲労測定装置の実施の一形態
を示す構成図である。
FIG. 4 is a configuration diagram showing an embodiment of an eye strain measuring apparatus according to the present invention.

【図5】本発明に係る眼精疲労測定装置を構成するチラ
ツキ光提示装置の構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of a flickering light presenting device constituting the eye fatigue measuring device according to the present invention.

【図6】本発明における刺激光のチラツキ閾値の測定説
明図である。
FIG. 6 is an explanatory diagram of measurement of a flicker threshold of stimulation light in the present invention.

【図7】本発明における眼精疲労を伴う立体ディスプレ
イの観察前後における視覚の時間周波数特性の測定例を
示す説明図である。
FIG. 7 is an explanatory diagram showing a measurement example of visual time-frequency characteristics before and after observing a stereoscopic display with eye strain according to the present invention.

【図8】本発明における眼精疲労を伴う立体ディスプレ
イの観察前後における視覚の時間周波数特性の測定例を
示す説明図である。
FIG. 8 is an explanatory diagram showing an example of measurement of visual time-frequency characteristics before and after observation of a stereoscopic display with eye strain according to the present invention.

【符号の説明】[Explanation of symbols]

1 チラツキ光提示装置 2 インタフェースボード 3 コンピュータ 4 反応スイッチ 11 眼精疲労測定用視標部 12 周辺視野発光制御部 13 検査用視標発光制御部 14 設定周波数入力部 15 切換部 16 電流値計測部 17 電流値出力部 P 被験者 S 周辺視野 T 検査用視標 DESCRIPTION OF SYMBOLS 1 Flicker light presentation device 2 Interface board 3 Computer 4 Reaction switch 11 Eye fatigue measurement target unit 12 Peripheral visual field emission control unit 13 Test target emission control unit 14 Setting frequency input unit 15 Switching unit 16 Current value measurement unit 17 Current value output part P Subject S Peripheral visual field T Target for examination

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ディスプレイ観察時における視覚系の時
間周波数特性を測定し、その時間周波数応答の閾値レベ
ルの変動量を測定することにより眼精疲労を客観的に測
定評価することを特徴とする眼精疲労測定方法。
1. An eye which objectively measures and evaluates eye fatigue by measuring a time-frequency characteristic of a visual system at the time of display observation and measuring a variation amount of a threshold level of the time-frequency response. Method of measuring fatigue.
【請求項2】 周辺視野と、この周辺視野の中央部に配
置された検査用視標とから成る眼精疲労測定用視標部
と、 前記検査用視標の輝度を正弦波状もしくは方形波状に輝
度変調する手段と、 前記検査用視標における検査用視標光の時間周波数を任
意に設定すると共に、可変する検査用視標光制御手段
と、 この検査用視標光制御手段により設定された時間周波数
におけるチラツキ光の閾値レベルを被験者が応答するた
めの反応スイッチと、 この反応スイッチからのスイッチ信号に基づいて眼精疲
労を測定する測定手段と、 を具備することを特徴とする眼精疲労測定装置。
2. An eye fatigue measurement target unit comprising a peripheral visual field, and a test target arranged at the center of the peripheral visual field, and a luminance of the test target is sinusoidal or square. Means for performing luminance modulation, arbitrarily setting and changing the time frequency of the test optotype light in the test optotype, and changing the test optotype light control means; Eye fatigue, comprising: a reaction switch for allowing a subject to respond to a threshold level of flicker light at a time frequency; and measuring means for measuring eye fatigue based on a switch signal from the reaction switch. measuring device.
【請求項3】 請求項2記載の眼精疲労測定装置におい
て、 前記測定手段は、視覚の時間周波数特性における感度の
高い時間周波数帯におけるチラツキ光の閾値変動を測定
することを特徴とする眼精疲労測定装置。
3. The eye strain measuring apparatus according to claim 2, wherein said measuring means measures a threshold fluctuation of flicker light in a time frequency band having high sensitivity in a time frequency characteristic of vision. Fatigue measuring device.
【請求項4】 請求項2または3記載の眼精疲労測定装
置において、 前記眼精疲労測定用視標部は、臨界融合周波数(CF
F)法で使用されるものと同一形状を有し、視覚の時間
周波数特性と臨界融合周波数特性とを同一条件で測定可
能な構成としたことを特徴とする眼精疲労測定装置。
4. The eye strain measuring apparatus according to claim 2, wherein the eye strain measuring target is a critical fusion frequency (CF).
An eye strain measurement apparatus having the same shape as that used in the method F), and having a configuration capable of measuring the visual time-frequency characteristic and the critical fusion frequency characteristic under the same conditions.
JP8180829A 1996-07-10 1996-07-10 Method and device for measuring asthenopia Pending JPH1024017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8180829A JPH1024017A (en) 1996-07-10 1996-07-10 Method and device for measuring asthenopia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8180829A JPH1024017A (en) 1996-07-10 1996-07-10 Method and device for measuring asthenopia

Publications (1)

Publication Number Publication Date
JPH1024017A true JPH1024017A (en) 1998-01-27

Family

ID=16090093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8180829A Pending JPH1024017A (en) 1996-07-10 1996-07-10 Method and device for measuring asthenopia

Country Status (1)

Country Link
JP (1) JPH1024017A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020180A1 (en) * 1997-10-16 1999-04-29 Jun Fukuhara Method of measuring flicker sensitivity distribution, apparatus for the method, and computer-readable recording medium recording flicker sensitivity distribution measurement program
JP2001299700A (en) * 2000-04-18 2001-10-30 Interzeag Ag Stimulus and method for measuring visual field of human eye
JP2008110009A (en) * 2006-10-30 2008-05-15 Univ Of Tokyo Eye movement test chart display device, eye movement test equipment, and eye movement inspection measure
JP2012187181A (en) * 2011-03-09 2012-10-04 National Institute Of Advanced Industrial Science & Technology Measuring device, measuring method, and measuring program for flicker perception threshold
JP2014004120A (en) * 2012-06-22 2014-01-16 Daiichi Shokai Co Ltd Game machine
JP2014042133A (en) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp Stereoscopic video display system, stereoscopic video display device, and frame rate control method
WO2018066205A1 (en) 2016-10-06 2018-04-12 ソニー株式会社 Information processing device and information processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020180A1 (en) * 1997-10-16 1999-04-29 Jun Fukuhara Method of measuring flicker sensitivity distribution, apparatus for the method, and computer-readable recording medium recording flicker sensitivity distribution measurement program
US6606577B1 (en) 1997-10-16 2003-08-12 Jun Fukuhara Method and system for measuring flicker sensitivity distribution, and computer-readable recording medium storing flicker sensitivity distribution measuring program
JP2001299700A (en) * 2000-04-18 2001-10-30 Interzeag Ag Stimulus and method for measuring visual field of human eye
JP2008110009A (en) * 2006-10-30 2008-05-15 Univ Of Tokyo Eye movement test chart display device, eye movement test equipment, and eye movement inspection measure
JP2012187181A (en) * 2011-03-09 2012-10-04 National Institute Of Advanced Industrial Science & Technology Measuring device, measuring method, and measuring program for flicker perception threshold
JP2014004120A (en) * 2012-06-22 2014-01-16 Daiichi Shokai Co Ltd Game machine
JP2014042133A (en) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp Stereoscopic video display system, stereoscopic video display device, and frame rate control method
WO2018066205A1 (en) 2016-10-06 2018-04-12 ソニー株式会社 Information processing device and information processing method

Similar Documents

Publication Publication Date Title
Barbur et al. Pupillary responses to stimulus structure, colour and movement
US8210681B2 (en) Method and device for assessing the field of vision
Lei et al. Using two preferred retinal loci for different lighting conditions in patients with central scotomas.
US20100085539A1 (en) Mental fatigue detecting method and device
US6113537A (en) Optical method and device for determining blood glucose levels
US8967809B2 (en) Methods and systems for intelligent visual function assessments
JP6573831B2 (en) Visual electrophysiology device
US4012128A (en) Method and apparatus for determining visual latency
TW201416060A (en) Stimuli generating methods, devices and control systems to induce visual evoked potentials using imperceptible flickering multi-color lights
KR20020013547A (en) Visual test utilizing color frequency doubling
CN110420009B (en) Visual target testing system aiming at different photoreceptor cell dynamic visual stimulation
JPH1024017A (en) Method and device for measuring asthenopia
JP7039602B2 (en) Methods and equipment for visual acuity test
US6129436A (en) Method and device for visual examination
JP2000504258A (en) Method and apparatus for determining the topography of an eye response signal
JP6614552B2 (en) Visual diagnostic equipment
WO1999020180A1 (en) Method of measuring flicker sensitivity distribution, apparatus for the method, and computer-readable recording medium recording flicker sensitivity distribution measurement program
JP2007533352A (en) Method and apparatus for measuring retinal stray light
JP4859043B2 (en) Isoluminance measuring apparatus, isoluminance measuring method, display apparatus, and computer graphics processing apparatus
Logothetis et al. The minimum motion technique applied to determine isoluminance in psychophysical experiments with monkeys
JP2019017853A (en) Visual function evaluation apparatus
JP2009050399A (en) System and method for measuring spectral luminous efficiency
Robson et al. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways
JP6919141B2 (en) Visual dynamic range measuring device and method
Shickman Visual masking by low-frequency sinusoidally modulated light