JPH10239262A - Method for diagnosing damage of pile and underground pile whose damage can be detected - Google Patents

Method for diagnosing damage of pile and underground pile whose damage can be detected

Info

Publication number
JPH10239262A
JPH10239262A JP4205397A JP4205397A JPH10239262A JP H10239262 A JPH10239262 A JP H10239262A JP 4205397 A JP4205397 A JP 4205397A JP 4205397 A JP4205397 A JP 4205397A JP H10239262 A JPH10239262 A JP H10239262A
Authority
JP
Japan
Prior art keywords
pile
wire
damage
signal
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4205397A
Other languages
Japanese (ja)
Other versions
JP3599522B2 (en
Inventor
Madan Kalki
カルキー・マダン
Akira Fukushima
章 福嶋
Tomoaki Sakai
友昭 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIO TOP KK
Original Assignee
GIO TOP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIO TOP KK filed Critical GIO TOP KK
Priority to JP4205397A priority Critical patent/JP3599522B2/en
Publication of JPH10239262A publication Critical patent/JPH10239262A/en
Application granted granted Critical
Publication of JP3599522B2 publication Critical patent/JP3599522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an economical and efficient method for diagnosing the damage of an underground pile that does not require any digging of ground. SOLUTION: A conductor wire 2 is buried into the pile body of an existing concrete pile 1 in insulated state, and a terminal 3 for electrically connecting the wire 2 to the outside of a system is provided at one edge of the pile body. The tip of the wire 2 is buried into the concrete and is not grounded in some cases, while it is connected to a metal terminal plate 4 of the pile edge and is grounded in other cases. The pile body is buried underground with the side of the terminal 3 facing upward and is connected to a function generator 5, a specific input electrical signal is applied from the function generator 5, and the presence or absence of the pile body and further a damage position are detected from an observation signal obtained from an oscilloscope 6. When the pile body is not damaged, the presence or absence of the damage is determined according to the presence or absence of resonance between input and output signals. Also, when the pile body is damaged and the signals do not resonate, the frequency of the input signal is increased and a resonance frequency is found, thus estimating a damage position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、地盤中に埋設し
た状態で破損の有無あるいは破損位置が検知可能な杭お
よびその破損診断方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pile capable of detecting the presence or absence of a break or the position of a break when the pile is buried in the ground, and a method of diagnosing the break.

【0002】[0002]

【従来の技術】既成コンクリート杭等の地中杭が地震等
により地盤中で破損したとしても、地上からは目視でき
ないため、その確認が難しい。
2. Description of the Related Art Even if an underground pile, such as an existing concrete pile, is damaged in the ground due to an earthquake or the like, it is difficult to confirm it because it cannot be visually observed from the ground.

【0003】すなわち、例えば上部構造物を支持する地
中杭について、破損が生じていないかどうか、また破損
が生じている場合においてその破損位置を調べる必要が
生じた場合、従来は図8に示すように地面を掘り返し、
直接目視によって確認することしかできなかった。図
中、11は既成コンクリート杭、12はフーチング、1
3,14が損傷部、15が掘返し部を示す(hは掘返し
深さ)。
That is, for example, if it is necessary to check whether an underground pile supporting an upper structure has been damaged or not and if it is necessary to check the location of the damage, conventionally, the structure is shown in FIG. Dig the ground like
It could only be confirmed directly by visual observation. In the figure, 11 is an existing concrete pile, 12 is footing, 1
Reference numerals 3 and 14 denote damaged portions and 15 denotes a dug portion (h denotes a dug depth).

【0004】[0004]

【発明が解決しようとする課題】しかし、既存の構造物
の下を掘り返すというのは、実際にはその準備が大がか
りとなり、工期も長く、コストが大となる。
However, excavating under an existing structure actually requires a large amount of preparation, a long construction period, and a large cost.

【0005】また、長い杭の深い位置についての確認が
困難である上、破損がないことが確認された場合には、
掘り返し作業等が全て無駄になる。
In addition, it is difficult to confirm the deep position of the long pile, and if it is confirmed that there is no breakage,
All digging work is wasted.

【0006】本願発明は、このような問題点の解決を図
ったものであり、地盤の掘り返しを必要としない経済的
で効率の良い破損検知可能な杭および地中杭の破損診断
方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and provides an economical and efficient pile capable of detecting breakage, which does not require excavation of the ground, and a method of diagnosing breakage of an underground pile. It is intended to be.

【0007】[0007]

【課題を解決するための手段】本願請求項1に係る破損
検知可能な杭は、導体のワイヤーを杭体の両端間に絶縁
状態に埋設し、このワイヤーを系外と電気接続するため
の接続部を杭体の一端に設けたものである。
According to a first aspect of the present invention, there is provided a pile capable of detecting a breakage, wherein a conductor wire is buried in an insulated state between both ends of a pile body, and a connection for electrically connecting the wire to outside the system is provided. The part is provided at one end of the pile body.

【0008】ワイヤーの先端は、非接地とする場合と接
地とする場合の2ケースが考えられる。請求項2は接地
(アース)状態とするため、ワイヤーの先端を杭体の前
記接続部と反対側の端部に設けた金具に接続してある場
合を限定したものである。
There are two cases where the tip of the wire is ungrounded and grounded. Claim 2 limits the case where the tip of the wire is connected to a metal fitting provided at the end of the pile body opposite to the connection portion in order to be in the ground (earth) state.

【0009】本願請求項3に係る発明は、上記請求項1
または2記載の破損検知可能な杭を用いた地中杭の破損
診断方法であり、杭体の前記接続部を設けた側の端部を
上にして地中に埋設し、系外と電気接続したワイヤー
に、ファンクションジェネレータ(以下、FGと呼ぶ)
等により所定の入力(電気)信号を印加し、オシロスコ
ープ(以下、OSCと呼ぶ)等により入力信号と反射信
号の和として観測される観測信号(電圧)から杭体の破
損の有無を検知するものである。
The invention according to claim 3 of the present application is directed to the above-described claim 1.
Or a method of diagnosing damage to an underground pile using the damage detectable pile according to 2 above, wherein the pile is buried in the ground with the end on the side where the connection portion is provided up, and electrically connected to outside the system Function generator (hereinafter referred to as FG)
A method of applying a predetermined input (electric) signal according to the method described above, and detecting the presence or absence of breakage of a pile from an observation signal (voltage) observed as a sum of an input signal and a reflected signal by an oscilloscope (hereinafter referred to as OSC) or the like. It is.

【0010】杭体に破損がない場合には、入力信号はワ
イヤーの先端位置で反射され、OSC等による観測信号
において共振(入力信号と反射信号が互いに打ち消し合
う場合を含む)が確認され、それによって杭体に破損が
ないことが分かる。
If the pile is not damaged, the input signal is reflected at the position of the tip of the wire, and resonance (including the case where the input signal and the reflected signal cancel each other) is observed in the observation signal by OSC or the like. This shows that the pile is not damaged.

【0011】また、杭体に破損がある場合には、入力信
号は破損位置で反射され、観測信号において非共振が確
認され、それによって杭体に破損があることが分かる。
If the pile is damaged, the input signal is reflected at the damaged position, and non-resonance is confirmed in the observation signal, indicating that the pile is damaged.

【0012】なお、先端が非接地の場合は反射位置まで
の距離分の位相遅れを有しかつ反転された波形の反射信
号となるのに対し、先端が接地の場合には反転されずに
反射位置までの距離分の位相遅れを有する波形の反射信
号となる。
When the tip is not grounded, the reflected signal has a phase delay corresponding to the distance to the reflection position and has an inverted waveform. On the other hand, when the tip is grounded, the reflected signal is not inverted. The reflected signal has a waveform having a phase delay corresponding to the distance to the position.

【0013】また、杭体に破損がある場合には、ワイヤ
ーが杭体とともに断線したかしないかにかかわらず、そ
の部分が実質的に接地状態となるため、破損位置までの
位相遅れを伴った波形(反転なし)の反射信号が現れ
る。
Further, when the pile body is damaged, regardless of whether or not the wire is broken together with the pile body, the portion is substantially in the ground state, so that there is a phase delay to the broken position. A reflected signal with a waveform (no inversion) appears.

【0014】本願請求項4に係る発明は、請求項3では
杭体の破損の有無を検知するのに対し、さらにその破損
位置まで検知するようにしたものである。
In the invention according to claim 4 of the present application, while the presence or absence of breakage of the pile body is detected in claim 3, it is further detected up to the breakage position.

【0015】すなわち、破損がない場合を想定して入力
された入力信号において、非共振が確認された場合に、
入力信号の周波数を変化させることにより、杭体に破損
がある状態での共振周波数を求め、この共振周波数より
杭体の破損位置を推定するものである。
That is, when non-resonance is confirmed in an input signal input on the assumption that there is no damage,
By changing the frequency of the input signal, a resonance frequency in a state where the pile body is damaged is obtained, and a broken position of the pile body is estimated from the resonance frequency.

【0016】杭体に破損がある場合には、破損位置から
反射信号が発せられるため、往復で考えると杭体の先端
から破損位置までの長さの2倍に対応して共振波長が短
くなり、すなわち共振周波数が高くなり、電気信号の速
度cと周波数との関係から破損位置が分かる(共振波長
の1/2から、例えばFG−端子間の導線の長さを引い
た長さが杭体の破損位置となる)。
If the pile is damaged, a reflected signal is emitted from the damaged position. Therefore, when the pile is reciprocated, the resonance wavelength becomes shorter corresponding to twice the length from the tip of the pile to the damaged position. That is, the resonance frequency increases, and the position of the damage can be determined from the relationship between the speed c and the frequency of the electric signal (the length obtained by subtracting the length of the conducting wire between the FG and the terminal from 1/2 of the resonance wavelength is the pile Is the damaged position).

【0017】ワイヤーは破損を検知する杭ごと少なくと
も1本埋設し、必要に応じ複数本埋設する。
At least one wire is buried for each pile whose breakage is to be detected, and a plurality of wires are buried if necessary.

【0018】また、破損の有無の検知や破損位置の推定
は、OSC等を利用した目視に限らず、コンピュータに
よる解析や演算回路等を利用することも可能である。
Further, the detection of the presence or absence of damage and the estimation of the position of the damage are not limited to visual observation using OSC or the like, but may be performed by computer analysis or arithmetic circuits.

【0019】ワイヤーの杭体への埋め込みは、既成杭の
場合は工場製作時に現場打ちの場合のような面倒な作業
なしで行うことができる。例えば、先端が接地の場合に
はワイヤーの先端を端板等に接続しておいたり、また非
接地の場合も何らかの留付け部材に接続しておくことで
杭体内でのワイヤーのずれ等を容易になくすことがで
き、精度の高い製品が得られる。その他、もちろん現場
打ちの杭にも適用可能である。
The embedding of the wire into the pile body can be performed in the case of a prefabricated pile without any troublesome work as in the case of cast-in-place at the time of manufacturing a factory. For example, when the tip is grounded, the tip of the wire is connected to the end plate, etc., and when the tip is not grounded, it is connected to some fastening member to easily shift the wire inside the pile. And a highly accurate product can be obtained. In addition, it is of course applicable to piles cast in place.

【0020】なお、本願発明において使用するワイヤー
としては、例えば銅線等が利用され、杭体の破損ととも
に断線する場合や杭体が破損しても断線しない場合が考
えられる。通常の場合は、杭体が破損することでその部
分に地下水等の浸透もあり接地状態となるため、杭体の
破損とともにワイヤーが断線することは必ずしも要求さ
れないが、積極的に断線させる方法としては、例えば焼
結金属製のワイヤーや、セラミック内に細径の銅線を埋
め込んだもの等を用いることも考えられる。
As the wire used in the present invention, for example, a copper wire or the like is used, and it is conceivable that the wire is broken when the pile is damaged or that the wire is not broken even if the pile is damaged. In the normal case, breakage of the pile causes groundwater to infiltrate into the area and the ground is established, so it is not always required that the wire breaks with the breakage of the pile, but as a method of positively breaking the wire It is also conceivable to use, for example, a wire made of a sintered metal or a wire in which a small-diameter copper wire is embedded in a ceramic.

【0021】[0021]

【実施の形態】図1は本願発明の破損検知可能な杭およ
び地中杭の破損診断方法の一実施形態における装置配置
を概略的に示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows the arrangement of devices in one embodiment of a method for diagnosing damage to a pile capable of detecting damage and an underground pile according to the present invention.

【0022】図に示すように、既成コンクリート杭1等
の杭体中に、銅線等の導体からなるワイヤー2を埋設し
ておく。
As shown in the figure, a wire 2 made of a conductor such as a copper wire is buried in a pile body such as an existing concrete pile 1.

【0023】地中に埋設した状態におけるワイヤー2の
上端側は杭頭付近に設けた端子3に接続してあり、先端
2aはコンクリート中に埋設したままの絶縁(非接地)
状態とするか、あるいは杭先端の金属製の端板4に接続
してアース(接地)状態とする2通りが考えられる。な
お、端子3には、常時は防水用のキャップ等が取り付け
てある。
The upper end of the wire 2 buried in the ground is connected to a terminal 3 provided near the pile head, and the tip 2a is insulated (not grounded) while buried in concrete.
There are two ways of setting the state, or connecting to the metal end plate 4 at the tip of the pile to set the earth (ground) state. Note that a waterproof cap or the like is always attached to the terminal 3.

【0024】地震等の要因で、杭1の破損の有無を調べ
る必要が生じたときには、端子3のキャップを取り外
し、FG(関数発生器)5とOSC6を端子3に接続
し、矩形波をワイヤー2に入力する。
When it is necessary to check the pile 1 for damage due to an earthquake or the like, the cap of the terminal 3 is removed, the FG (function generator) 5 and the OSC 6 are connected to the terminal 3, and the rectangular wave is wired. Enter 2

【0025】(1) ワイヤー2の先端が非接地の場合 図2はワイヤー2の先端を非接地とした場合において、
地中杭1に破損がない場合のワイヤー2への入力(電
気)信号、出力信号、観測信号の関係の一例を示したも
のである。
(1) When the tip of the wire 2 is not grounded FIG. 2 shows the case where the tip of the wire 2 is not grounded
FIG. 3 shows an example of a relationship among an input (electric) signal, an output signal, and an observation signal to the wire 2 when the underground pile 1 is not damaged.

【0026】FG5から杭1先端部に埋め込まれている
ワイヤー2の先端までの距離(杭長あるいはワイヤー2
の長さ+端子3からFG5までの導線の長さ)をLとす
る。
The distance from the FG 5 to the tip of the wire 2 embedded in the tip of the pile 1 (pile length or wire 2
L + length of the conductor from terminal 3 to FG5).

【0027】1波長が2Lとなる入力信号を印可した場
合、ワイヤー2先端での反射信号は、入力波形に対し距
離Lに対応する位相遅れを有しかつ反転した波形とな
る。OSC6で観測される波形はこれら入力波形と反射
波形を足し合わせたものであり、杭体に破損がなければ
入力信号に対し2倍の電圧の観測信号が観測される。
When an input signal whose wavelength is 2L is applied, the reflected signal at the tip of the wire 2 has a phase lag corresponding to the distance L to the input waveform and is an inverted waveform. The waveform observed by the OSC 6 is the sum of the input waveform and the reflected waveform. If the pile is not damaged, an observation signal having a voltage twice that of the input signal is observed.

【0028】なお、仮にFG5からワイヤー2の先端ま
でを10m、FG5から端子3までを1m、杭長9mと
仮定すると、1波長=2L=20mとなり、その場合の
周波数は15MHzとなる。
Assuming that the distance from the FG 5 to the tip of the wire 2 is 10 m, the distance from the FG 5 to the terminal 3 is 1 m, and the pile length is 9 m, one wavelength = 2 L = 20 m, and the frequency in that case is 15 MHz.

【0029】図3はワイヤー2の先端を非接地とした場
合において、地中杭1に破損がある場合のワイヤー2へ
の入力信号、出力信号、観測信号の関係の一例を示した
ものである。
FIG. 3 shows an example of a relationship among an input signal, an output signal, and an observation signal to the wire 2 when the underground pile 1 is damaged when the tip of the wire 2 is not grounded. .

【0030】この場合の位相遅れは、FG5から破損位
置までの距離L’(<L)に対応する位相遅れであり、
また破損により破損位置でワイヤー2が接地状態となる
ため、反転のない反射波形となる。図の例はL’=L/
2としているが、一般的にはより複雑な波形となる。
The phase delay in this case is a phase delay corresponding to the distance L '(<L) from the FG 5 to the broken position.
Further, since the wire 2 is grounded at the broken position due to breakage, a reflection waveform without inversion is obtained. The example in the figure is L '= L /
Although it is set to 2, it generally has a more complicated waveform.

【0031】OSC6によって図3のような観測信号が
観測されることにより、杭体に破損があることが分か
る。
Observation signals as shown in FIG. 3 by the OSC 6 indicate that the pile is damaged.

【0032】また、この場合、入力信号の波長を2Lか
ら徐々に短くして行き(すなわち周波数を徐々に高くし
て行き)、入力信号の波長が2L’になると、図4に示
すように入力信号と反射信号が互いに打ち消し合う共振
周波数に達し、従ってFG5から杭体の破損位置までの
距離(導線の長さを含む)が分かる。
Further, in this case, the wavelength of the input signal is gradually shortened from 2L (ie, the frequency is gradually increased), and when the wavelength of the input signal becomes 2L ', as shown in FIG. The signal and the reflected signal reach a resonance frequency at which they cancel each other, and thus the distance (including the length of the conductor) from the FG 5 to the breakage position of the pile is known.

【0033】(2) ワイヤー2の先端が接地の場合 図5はワイヤー2の先端を接地(先端2aを端板4に接
続)した場合において、地中杭1に破損がない場合のワ
イヤー2への入力(電気)信号、出力信号、観測信号の
関係の一例を示したものである。
(2) When the tip of the wire 2 is grounded FIG. 5 shows a case where the tip of the wire 2 is grounded (the tip 2a is connected to the end plate 4) and the underground pile 1 is not damaged. 1 shows an example of a relationship among an input (electric) signal, an output signal, and an observation signal.

【0034】この場合、1波長が2Lとなる入力信号を
印可すると、ワイヤー2先端での反射信号は、入力波形
に対し反転せずに距離Lに対応する位相遅れを有する波
形となる。OSC6で観測される波形はこれら入力波形
と反射波形を足し合わせたものであり、結果として入力
信号と反射信号が互いに打ち消しあった観測信号が観測
され、これによって破損のないことが確認される。
In this case, when an input signal having one wavelength of 2L is applied, the reflected signal at the tip of the wire 2 has a waveform having a phase delay corresponding to the distance L without being inverted with respect to the input waveform. The waveform observed by the OSC 6 is a sum of the input waveform and the reflected waveform. As a result, an observed signal in which the input signal and the reflected signal cancel each other is observed, and it is confirmed that there is no damage.

【0035】図6はワイヤー2の先端を接地とした場合
において、地中杭1に破損がある場合のワイヤー2への
入力信号、出力信号、観測信号の関係の一例を示したも
のである。
FIG. 6 shows an example of the relationship among the input signal, output signal, and observation signal to the wire 2 when the underground pile 1 is damaged when the tip of the wire 2 is grounded.

【0036】この場合は、図3の場合と全く同じ状況に
あり、観測信号によって杭体に破損があることが分か
る。また、(1) のワイヤー2の先端が非接地の場合と同
様、入力信号の波長を2Lから徐々に短くして行き、入
力信号の波長が2L’になると、図4に示すように入力
信号と反射信号が互いに打ち消し合う共振周波数に達
し、FG5から杭体の破損位置までの距離(導線の長さ
を含む)が分かる。
In this case, the situation is exactly the same as that of FIG. 3, and it can be seen from the observation signal that the pile is damaged. Also, as in the case (1) where the tip of the wire 2 is ungrounded, the wavelength of the input signal is gradually reduced from 2L, and when the wavelength of the input signal becomes 2L ', as shown in FIG. And the reflected signal reach a resonance frequency at which the signals cancel each other, and the distance (including the length of the conducting wire) from the FG 5 to the breakage position of the pile body can be determined.

【0037】なお、杭1を多数管理する場合や、単数で
あっても杭頭に接近することが困難であると予想される
場合には、図7に示すように、一度配線を地上のスイッ
チボックス7に集め、一括して測定を行うことも可能で
ある。また、これらの測定はOSCの目視に限らず、コ
ンピュータや演算回路などの利用で自動的に行うことも
できる。
When managing a large number of piles 1 or when it is expected that it is difficult to approach the pile head even if it is a single pile, as shown in FIG. It is also possible to collect in the box 7 and perform the measurement collectively. Further, these measurements are not limited to the visual observation of the OSC, but can be automatically performed by using a computer, an arithmetic circuit, or the like.

【0038】[0038]

【発明の効果】 地中杭を掘り出すことなく、地上で随時、杭の破損の
有無や破損位置を確認することができる。また、深い位
置で杭が破損していたとしても容易に診断することがで
きる。
According to the present invention, it is possible to check the presence or absence of a breakage of the pile and the location of the damage at any time on the ground without excavating the underground pile. Further, even if the pile is damaged at a deep position, it can be easily diagnosed.

【0039】常時は杭頭の端子等の接続部への接続が
なく、接続部位置まで掘り出す場合でも、その掘出し深
さは浅く、大がかりな工事は不要である。
In the case where there is no connection to the connection part such as the terminal of the pile head at all times, even when excavating to the position of the connection part, the excavation depth is shallow and large-scale construction is unnecessary.

【0040】製造から設置まで杭の健全性が確認でき
る。
The soundness of the pile from production to installation can be confirmed.

【0041】スイッチボックスを設ける等して、多数
の杭を1箇所で集中して管理することも可能である。
By providing a switch box or the like, a large number of piles can be centrally managed at one place.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の地中杭の破損診断方法の一実施形態
における装置配置の概要図である。
FIG. 1 is a schematic view of an apparatus arrangement in an embodiment of a method for diagnosing damage to an underground pile according to the present invention.

【図2】ワイヤーの先端を非接地とした場合において、
地中杭に破損がない場合のワイヤーへの入力信号、出力
信号、観測信号の関係の一例を示したグラフである。
FIG. 2 shows a case where the tip of a wire is not grounded.
It is the graph which showed an example of the relationship between the input signal to a wire, an output signal, and an observation signal in case there is no break in an underground pile.

【図3】ワイヤーの先端を非接地とした場合において、
地中杭に破損がある場合のワイヤーへの入力信号、出力
信号、観測信号の関係の一例を示したグラフである。
FIG. 3 shows a case where the tip of the wire is not grounded.
It is the graph which showed an example of the relation between the input signal to a wire, an output signal, and an observation signal when there is breakage in an underground pile.

【図4】地中杭に破損がある場合に入力信号の周波数を
上げて行き、共振周波数を求めたときのワイヤーへの入
力信号、出力信号、観測信号の関係の一例を示したグラ
フである。
FIG. 4 is a graph showing an example of a relationship among an input signal, an output signal, and an observation signal to a wire when a resonance frequency is obtained by increasing a frequency of an input signal when the underground pile is damaged. .

【図5】ワイヤーの先端を接地とした場合において、地
中杭に破損がない場合のワイヤーへの入力信号、出力信
号、観測信号の関係の一例を示したグラフである。
FIG. 5 is a graph showing an example of a relationship among an input signal, an output signal, and an observation signal to the wire when the tip of the wire is grounded and the underground pile is not damaged.

【図6】ワイヤーの先端を接地とした場合において、地
中杭に破損がある場合のワイヤーへの入力信号、出力信
号、観測信号の関係の一例を示したグラフである。
FIG. 6 is a graph showing an example of a relationship among an input signal, an output signal, and an observation signal to the wire when the underground pile is damaged when the tip of the wire is grounded.

【図7】多数本の杭を同時に管理する場合の配置例を示
す鉛直断面図である。
FIG. 7 is a vertical cross-sectional view showing an example of arrangement in a case where a large number of piles are managed simultaneously.

【図8】従来の掘返しによる方法の説明図(鉛直断面
図)である。
FIG. 8 is an explanatory view (vertical cross-sectional view) of a conventional method using back-turning.

【符号の説明】[Explanation of symbols]

1…既成コンクリート杭、2…ワイヤー、3…端子、4
…端板、5…ファンクションジョネレータ、6…オシロ
スコープ、7…スイッチボックス
1 ... precast concrete pile, 2 ... wire, 3 ... terminal, 4
... End plate, 5 ... Function generator, 6 ... Oscilloscope, 7 ... Switch box

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導体のワイヤーを杭体の両端間に絶縁状
態に埋設し、前記ワイヤーを系外と電気接続するための
接続部を前記杭体の一端に設けてあることを特徴とする
破損検知可能な杭。
1. A breakage characterized in that a conductor wire is buried in an insulated state between both ends of a pile, and a connection portion for electrically connecting the wire to the outside of the system is provided at one end of the pile. Detectable pile.
【請求項2】 前記ワイヤーの先端を前記杭体の前記接
続部と反対側の端部に設けた金具に接続してある請求項
1記載の破損検知可能な杭。
2. The damage detectable pile according to claim 1, wherein a tip of the wire is connected to a metal fitting provided at an end of the pile body opposite to the connection portion.
【請求項3】 前記請求項1または2記載の破損検知可
能な杭を、前記接続部を設けた側の端部を上にして地中
に埋設し、前記ワイヤーに所定の入力電気信号を印加
し、前記ワイヤーの先端位置または杭体に破損がある場
合には破損位置より反射される反射信号と前記入力電気
信号の和として観測される観測信号により、前記杭体の
破損の有無を検知することを特徴とする地中杭の破損診
断方法。
3. A pile capable of detecting damage according to claim 1 or 2 is buried in the ground with an end on a side provided with the connection portion facing upward, and a predetermined input electric signal is applied to the wire. Then, if there is a break in the tip position of the wire or the pile, the presence or absence of breakage of the pile is detected by an observation signal observed as a sum of a reflected signal reflected from the broken position and the input electric signal. A method for diagnosing damage to an underground pile.
【請求項4】 前記請求項1または2記載の破損検知可
能な杭を、前記接続部を設けた側の端部を上にして地中
に埋設し、前記ワイヤーに所定の入力電気信号を印加
し、前記ワイヤーの先端位置または杭体に破損がある場
合には破損位置より反射される反射信号と前記入力電気
信号の和として観測される観測信号により、前記杭体の
破損の有無を検知するとともに、杭体に破損がある場合
には前記入力電気信号の周波数を変化させて共振周波数
を求め、前記共振周波数より杭体の破損位置を推定する
ことを特徴とする地中杭の破損診断方法。
4. A pile capable of detecting damage according to claim 1 or 2 is buried in the ground with an end on a side provided with the connection portion facing upward, and a predetermined input electric signal is applied to the wire. Then, if there is a break in the tip position of the wire or the pile, the presence or absence of breakage of the pile is detected by an observation signal observed as a sum of a reflected signal reflected from the broken position and the input electric signal. And a method of diagnosing the damage of the underground pile, wherein, if the pile is damaged, the resonance frequency is obtained by changing the frequency of the input electric signal, and the position of the pile is estimated from the resonance frequency. .
JP4205397A 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage Expired - Fee Related JP3599522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205397A JP3599522B2 (en) 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205397A JP3599522B2 (en) 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage

Publications (2)

Publication Number Publication Date
JPH10239262A true JPH10239262A (en) 1998-09-11
JP3599522B2 JP3599522B2 (en) 2004-12-08

Family

ID=12625379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205397A Expired - Fee Related JP3599522B2 (en) 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage

Country Status (1)

Country Link
JP (1) JP3599522B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057729A1 (en) * 2001-01-20 2002-07-25 Technische Universität Braunschweig State identification of electrically conductive oblong tensioning elements using resonance frequencies and a computer program
CN103362151A (en) * 2013-07-30 2013-10-23 中国化学工程第一岩土工程有限公司 Method for detecting prestress concrete pipe pile horizontal stress
CN104763000A (en) * 2015-04-02 2015-07-08 福建省建筑工程质量检测中心有限公司 Detection method for completeness of foundation pile
CN105064423A (en) * 2015-08-12 2015-11-18 邓业灿 Existing building foundation pile projection detection method
CN105887940A (en) * 2014-11-13 2016-08-24 中国建筑科学研究院 Double-speed low-strain method for detecting integrity of existing pile foundation by adopting excitation in pile body
CN106836316A (en) * 2017-01-13 2017-06-13 同济大学建筑设计研究院(集团)有限公司 A kind of Oversea wind power generation tower single-pile foundation rigidity method for testing vibration
CN111287226A (en) * 2020-02-24 2020-06-16 四川道诚建设工程检测有限责任公司 A quick interfacing apparatus that is used for pile foundation quality detection pipe of large-scale bridge engineering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057729A1 (en) * 2001-01-20 2002-07-25 Technische Universität Braunschweig State identification of electrically conductive oblong tensioning elements using resonance frequencies and a computer program
CN103362151A (en) * 2013-07-30 2013-10-23 中国化学工程第一岩土工程有限公司 Method for detecting prestress concrete pipe pile horizontal stress
CN105887940A (en) * 2014-11-13 2016-08-24 中国建筑科学研究院 Double-speed low-strain method for detecting integrity of existing pile foundation by adopting excitation in pile body
CN104763000A (en) * 2015-04-02 2015-07-08 福建省建筑工程质量检测中心有限公司 Detection method for completeness of foundation pile
CN105064423A (en) * 2015-08-12 2015-11-18 邓业灿 Existing building foundation pile projection detection method
CN106836316A (en) * 2017-01-13 2017-06-13 同济大学建筑设计研究院(集团)有限公司 A kind of Oversea wind power generation tower single-pile foundation rigidity method for testing vibration
CN111287226A (en) * 2020-02-24 2020-06-16 四川道诚建设工程检测有限责任公司 A quick interfacing apparatus that is used for pile foundation quality detection pipe of large-scale bridge engineering

Also Published As

Publication number Publication date
JP3599522B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
CN102472826B (en) Proximity detection method and system for detecting conductive, embedded structure
US5999107A (en) Remote cathodic protection monitoring system
JPH10510057A (en) Method and apparatus for detecting underground utilities
CN104254788B (en) Buried facility detection
CN106638729B (en) A kind of Novel steel sheet pile inclinometer pipe protection device for installing
JPH10239262A (en) Method for diagnosing damage of pile and underground pile whose damage can be detected
JP2011191208A (en) Soil moisture measuring method and soil moisture measuring device
JPH08199988A (en) Filling method of filler and confirmation device thereof
JPS61137705A (en) Drilling method
RU2733098C1 (en) System for automated monitoring of pile foundations of building structures in permafrost regions
JP4074960B2 (en) Acoustic diagnosis / measurement apparatus using pulsed electromagnetic force, and diagnosis / measurement method thereof
JP4074962B2 (en) Acoustic diagnosis / measurement apparatus using pulsed electromagnetic force and diagnosis / measurement method thereof
JPH07294233A (en) Preventive monitoring method of damage on buried pipe
JP3237055B2 (en) Measurement method of grounding resistance of mesh grounding pole
CN116446468A (en) Visual monitoring system for soil-stone mixture slope stability
JPH10267707A (en) Optical fiber sensor for detecting topographic displacement and laying method for the same and topographic displacement detecting device using the same
JP5300303B2 (en) Damage detection system and tilt detection device
JP4195761B2 (en) Ground fault accident judgment reference electrode construction method and ground fault accident judgment reference electrode
JPH0196584A (en) Method for surveying position of piping buried under ground
JP2000178955A (en) Method and device for investigating underground structure
JPH10260264A (en) Specific resistance electric searching method
JPH0762640A (en) Landslide measurement method and device thereof
CN219137789U (en) Survey line arrangement structure based on by-pass transmission method high accuracy surveys pile foundation length
JPH1138153A (en) Buried object-detecting device
JP2857781B2 (en) Road surface cutter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees