JP3599522B2 - Damage detection method for piles and underground piles that can detect damage - Google Patents

Damage detection method for piles and underground piles that can detect damage Download PDF

Info

Publication number
JP3599522B2
JP3599522B2 JP4205397A JP4205397A JP3599522B2 JP 3599522 B2 JP3599522 B2 JP 3599522B2 JP 4205397 A JP4205397 A JP 4205397A JP 4205397 A JP4205397 A JP 4205397A JP 3599522 B2 JP3599522 B2 JP 3599522B2
Authority
JP
Japan
Prior art keywords
wire
pile
damage
signal
damaged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4205397A
Other languages
Japanese (ja)
Other versions
JPH10239262A (en
Inventor
カルキー・マダン
章 福嶋
友昭 境
Original Assignee
株式会社ジオトップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジオトップ filed Critical 株式会社ジオトップ
Priority to JP4205397A priority Critical patent/JP3599522B2/en
Publication of JPH10239262A publication Critical patent/JPH10239262A/en
Application granted granted Critical
Publication of JP3599522B2 publication Critical patent/JP3599522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、地盤中に埋設した状態で破損の有無および破損位置検知可能な地中杭の破損診断方法に関するものである。
【0002】
【従来の技術】
既成コンクリート杭等の地中杭が地震等により地盤中で破損したとしても、地上からは目視できないため、その確認が難しい。
【0003】
すなわち、例えば上部構造物を支持する地中杭について、破損が生じていないかどうか、また破損が生じている場合においてその破損位置を調べる必要が生じた場合、従来は図8に示すように地面を掘り返し、直接目視によって確認することしかできなかった。図中、11は既成コンクリート杭、12はフーチング、13,14が損傷部、15が掘返し部を示す(hは掘返し深さ)。
【0004】
【発明が解決しようとする課題】
しかし、既存の構造物の下を掘り返すというのは、実際にはその準備が大がかりとなり、工期も長く、コストが大となる。
【0005】
また、長い杭の深い位置についての確認が困難である上、破損がないことが確認された場合には、掘り返し作業等が全て無駄になる。
【0006】
本願発明は、このような問題点の解決を図ったものであり、地盤の掘り返しを必要としない経済的で効率の良い地中杭の破損診断方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本願請求項1に係る地中杭の破損診断方法では、導体のワイヤーを杭体の両端間に杭体を構成するコンクリートで絶縁した状態で埋設し、このワイヤーを系外と電気接続するための接続部を杭体の一端に設ける。
【0008】
ワイヤーの先端は、非接地とする場合と接地とする場合の2ケースが考えられる。請求項2は接地(アース)状態とするため、ワイヤーの先端を杭体の前記接続部と反対側の端部に設けた金具に接続してある場合を限定したものである。
【0009】
このような杭を用いた地中杭の破損診断方法として、杭体の前記接続部を設けた側の端部を上にして地中に埋設し、系外と電気接続したワイヤーに、ファンクションジェネレータ(以下、FGと呼ぶ)等により所定の入力(電気)信号を印加し、オシロスコープ(以下、OSCと呼ぶ)等により入力信号と反射信号の和として観測される観測信号(電圧)から杭体の破損の有無を検知することができる。
【0010】
杭体に破損がない場合には、入力信号はワイヤーの先端位置で反射され、OSC等による観測信号において入力信号と反射信号が足し合わされて増幅するか(非接地の場合)または互いに打ち消し合う(接地の場合)ことが確認され、それによって杭体に破損がないことが分かる。
【0011】
また、杭体に破損がある場合には、入力信号は破損位置で反射され、観測信号においてずれが確認され、それによって杭体に破損があることが分かる。
【0012】
なお、先端が非接地の場合は反射位置までの距離分の位相遅れを有しかつ反転された波形の反射信号となるのに対し、先端が接地の場合には反転されずに反射位置までの距離分の位相遅れを有する波形の反射信号となる。
【0013】
また、杭体に破損がある場合には、ワイヤーが杭体とともに断線したかしないかにかかわらず、その部分が実質的に接地状態となるため、破損位置までの位相遅れを伴った波形(反転なし)の反射信号が現れる。
【0014】
願発明は、杭体の破損の有無を検知するだけでなく、さらにその破損位置まで検知するようにしたものである。
【0015】
すなわち、破損がない場合を想定して入力された入力信号において、ずれが確認された場合に、入力信号の周波数を徐々に高くして行くことにより、杭体に破損がある状態での破損位置までのワイヤーの長さに対応する周波数を求め、この周波数より杭体の破損位置を推定するものである。
【0016】
杭体に破損がある場合には、破損位置から反射信号が発せられるため、往復で考えると杭体の先端から破損位置までの長さの2倍に対応して波長が短くなり、すなわち周波数が高くなり、電気信号の速度cと周波数との関係から破損位置が分かる(対応する波長の1/2から、例えばFG−端子間の導線の長さを引いた長さが杭体の破損位置となる)。
【0017】
ワイヤーは破損を検知する杭ごと少なくとも1本埋設し、必要に応じ複数本埋設する。
【0018】
また、破損の有無の検知や破損位置の推定は、OSC等を利用した目視に限らず、コンピュータによる解析や演算回路等を利用することも可能である。
【0019】
ワイヤーの杭体への埋め込みは、既成杭の場合は工場製作時に現場打ちの場合のような面倒な作業なしで行うことができる。例えば、先端が接地の場合にはワイヤーの先端を端板等に接続しておいたり、また非接地の場合も何らかの留付け部材に接続しておくことで杭体内でのワイヤーのずれ等を容易になくすことができ、精度の高い製品が得られる。その他、もちろん現場打ちの杭にも適用可能である。
【0020】
なお、本願発明において使用するワイヤーとしては、例えば銅線等が利用され、杭体の破損とともに断線する場合や杭体が破損しても断線しない場合が考えられる。通常の場合は、杭体が破損することでその部分に地下水等の浸透もあり接地状態となるため、杭体の破損とともにワイヤーが断線することは必ずしも要求されないが、積極的に断線させる方法としては、例えば焼結金属製のワイヤーや、セラミック内に細径の銅線を埋め込んだもの等を用いることも考えられる。
【0021】
【実施の形態】
図1は本願発明の地中杭の破損診断方法の一実施形態における装置配置を概略的に示したものである。
【0022】
図に示すように、既成コンクリート杭1等の杭体中に、銅線等の導体からなるワイヤー2を埋設しておく。
【0023】
地中に埋設した状態におけるワイヤー2の上端側は杭頭付近に設けた端子3に接続してあり、先端2aはコンクリート中に埋設したままの絶縁(非接地)状態とするか、あるいは杭先端の金属製の端板4に接続してアース(接地)状態とする2通りが考えられる。なお、端子3には、常時は防水用のキャップ等が取り付けてある。
【0024】
地震等の要因で、杭1の破損の有無を調べる必要が生じたときには、端子3のキャップを取り外し、FG(関数発生器)5とOSC6を端子3に接続し、矩形波をワイヤー2に入力する。
【0025】
(1) ワイヤー2の先端が非接地の場合
図2はワイヤー2の先端を非接地とした場合において、地中杭1に破損がない場合のワイヤー2への入力(電気)信号、出力信号、観測信号の関係の一例を示したものである。
【0026】
FG5から杭1先端部に埋め込まれているワイヤー2の先端までの距離(杭長あるいはワイヤー2の長さ+端子3からFG5までの導線の長さ)をLとする。
【0027】
1波長が2Lとなる入力信号を印可した場合、ワイヤー2先端での反射信号は、入力波形に対し距離Lに対応する位相遅れを有しかつ反転した波形となる。OSC6で観測される波形はこれら入力波形と反射波形を足し合わせたものであり、杭体に破損がなければ入力信号に対し2倍の電圧の観測信号が観測される。
【0028】
なお、仮にFG5からワイヤー2の先端までを10m、FG5から端子3までを1m、杭長9mと仮定すると、1波長=2L=20mとなり、その場合の周波数は15MHzとなる。
【0029】
図3はワイヤー2の先端を非接地とした場合において、地中杭1に破損がある場合のワイヤー2への入力信号、出力信号、観測信号の関係の一例を示したものである。
【0030】
この場合の位相遅れは、FG5から破損位置までの距離L’(<L)に対応する位相遅れであり、また破損により破損位置でワイヤー2が接地状態となるため、反転のない反射波形となる。図の例はL’=L/2としているが、一般的にはより複雑な波形となる。
【0031】
OSC6によって図3のような観測信号が観測されることにより、杭体に破損があることが分かる。
【0032】
また、この場合、入力信号の波長を2Lから徐々に短くして行き(すなわち周波数を徐々に高くして行き)、入力信号の波長が2L’になると、図4に示すように入力信号と反射信号が互いに打ち消し合う周波数に達し、従ってFG5から杭体の破損位置までの距離(導線の長さを含む)が分かる。
【0033】
(2) ワイヤー2の先端が接地の場合
図5はワイヤー2の先端を接地(先端2aを端板4に接続)した場合において、地中杭1に破損がない場合のワイヤー2への入力(電気)信号、出力信号、観測信号の関係の一例を示したものである。
【0034】
この場合、1波長が2Lとなる入力信号を印可すると、ワイヤー2先端での反射信号は、入力波形に対し反転せずに距離Lに対応する位相遅れを有する波形となる。OSC6で観測される波形はこれら入力波形と反射波形を足し合わせたものであり、結果として入力信号と反射信号が互いに打ち消しあった観測信号が観測され、これによって破損のないことが確認される。
【0035】
図6はワイヤー2の先端を接地とした場合において、地中杭1に破損がある場合のワイヤー2への入力信号、出力信号、観測信号の関係の一例を示したものである。
【0036】
この場合は、図3の場合と全く同じ状況にあり、観測信号によって杭体に破損があることが分かる。また、(1) のワイヤー2の先端が非接地の場合と同様、入力信号の波長を2Lから徐々に短くして行き、入力信号の波長が2L’になると、図4に示すように入力信号と反射信号が互いに打ち消し合う周波数に達し、FG5から杭体の破損位置までの距離(導線の長さを含む)が分かる。
【0037】
なお、杭1を多数管理する場合や、単数であっても杭頭に接近することが困難であると予想される場合には、図7に示すように、一度配線を地上のスイッチボックス7に集め、一括して測定を行うことも可能である。また、これらの測定はOSCの目視に限らず、コンピュータや演算回路などの利用で自動的に行うこともできる。
【0038】
【発明の効果】
▲1▼地中杭を掘り出すことなく、地上で随時、杭の破損の有無や破損位置を確認することができる。また、深い位置で杭が破損していたとしても容易に診断することができる。
【0039】
▲2▼常時は杭頭の端子等の接続部への接続がなく、接続部位置まで掘り出す場合でも、その掘出し深さは浅く、大がかりな工事は不要である。
【0040】
▲3▼製造から設置まで杭の健全性が確認できる。
【0041】
▲4▼スイッチボックスを設ける等して、多数の杭を1箇所で集中して管理することも可能である。
【図面の簡単な説明】
【図1】本願発明の地中杭の破損診断方法の一実施形態における装置配置の概要図である。
【図2】ワイヤーの先端を非接地とした場合において、地中杭に破損がない場合のワイヤーへの入力信号、出力信号、観測信号の関係の一例を示したグラフである。
【図3】ワイヤーの先端を非接地とした場合において、地中杭に破損がある場合のワイヤーへの入力信号、出力信号、観測信号の関係の一例を示したグラフである。
【図4】地中杭に破損がある場合に入力信号の周波数を上げて行き、破損位置までのワイヤーの長さに対応する周波数を求めたときのワイヤーへの入力信号、出力信号、観測信号の関係の一例を示したグラフである。
【図5】ワイヤーの先端を接地とした場合において、地中杭に破損がない場合のワイヤーへの入力信号、出力信号、観測信号の関係の一例を示したグラフである。
【図6】ワイヤーの先端を接地とした場合において、地中杭に破損がある場合のワイヤーへの入力信号、出力信号、観測信号の関係の一例を示したグラフである。
【図7】多数本の杭を同時に管理する場合の配置例を示す鉛直断面図である。
【図8】従来の掘返しによる方法の説明図(鉛直断面図)である。
【符号の説明】
1…既成コンクリート杭、2…ワイヤー、3…端子、4…端板、5…ファンクションジョネレータ、6…オシロスコープ、7…スイッチボックス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of diagnosing damage to an underground pile capable of detecting the presence or absence of a damage and the position of the damage while being buried in the ground .
[0002]
[Prior art]
Even if underground piles such as precast concrete piles are damaged in the ground due to an earthquake or the like, it is difficult to confirm because they cannot be seen from the ground.
[0003]
That is, for example, if it is necessary to check whether an underground pile supporting an upper structure is damaged or not, and if it is necessary to check the position of the damage when the damage has occurred, conventionally, as shown in FIG. I was able to dig up and see it directly. In the figure, 11 is an existing concrete pile, 12 is footing, 13 and 14 are damaged portions, and 15 is a dug portion (h is a dug depth).
[0004]
[Problems to be solved by the invention]
However, digging under existing structures actually requires a lot of preparation, a long construction period, and high costs.
[0005]
In addition, it is difficult to confirm the deep position of the long pile, and if it is confirmed that there is no damage, all of the excavation work is wasted.
[0006]
The present invention has tried to solve such problems, and aims to provide the required non economical damage diagnosis method in have good land of efficiency stakes dig the ground.
[0007]
[Means for Solving the Problems]
In the method for diagnosing damage to an underground pile according to claim 1 of the present application, a conductor wire is buried between both ends of the pile in a state insulated by concrete constituting the pile, and the wire is electrically connected to outside the system. Ru provided for connection at one end of the pile body.
[0008]
There are two cases where the tip of the wire is ungrounded and grounded. Claim 2 limits the case where the tip of the wire is connected to a metal fitting provided at the end of the pile opposite to the connection portion in order to be in a ground (earth) state.
[0009]
As a method of diagnosing damage to an underground pile using such a pile, a pile which is buried in the ground with the end on the side provided with the connection portion facing upward and electrically connected to the outside of the system, is provided with a function generator. (Hereinafter referred to as FG) and the like, a predetermined input (electric) signal is applied, and an oscilloscope (hereinafter referred to as OSC) or the like is used to detect the sum of the input signal and the reflected signal from the observation signal (voltage) to obtain the pile body. The presence or absence of breakage can be detected .
[0010]
If there is no damage to the pile body, the input signal is reflected at the tip position of the wire, or amplified summed input signal and the reflected signal Te observed signal smell by OSC such (for ungrounded) or cancel each other It is confirmed that they match (in the case of grounding), which indicates that the pile body is not damaged.
[0011]
If the pile is damaged, the input signal is reflected at the damaged position, and a shift is observed in the observation signal, indicating that the pile is damaged.
[0012]
When the tip is ungrounded, it has a phase delay corresponding to the distance to the reflection position and has a reflected signal of an inverted waveform, whereas when the tip is grounded, it is not inverted and reaches the reflection position. The reflected signal has a waveform having a phase delay of the distance.
[0013]
In addition, if the pile body is damaged, the wire is substantially grounded regardless of whether the wire is broken along with the pile body, and the waveform with phase delay up to the breakage position (inversion None) reflected signal appears.
[0014]
The present gun invention not only detects the presence or absence of breakage of the pile body, is obtained so as to detect further to its failure position.
[0015]
In other words, if a shift is confirmed in an input signal that is input assuming no damage, the frequency of the input signal is gradually increased, so that the damage position in a state where the pile body is damaged seeking frequency corresponding to the length of the wire to, and estimates the damage position of Kuitai than frequency of this.
[0016]
If there is damage to the pile body, the reflected signal is emitted from a damaged position, the wave length becomes shorter from the tip of Kuitai corresponds to twice the length to failure position considering round trip, Sunawa Chi frequency is high, a half of the wavelength of breakage position from the relationship between the velocity c and frequency of the electrical signals is found that (corresponding, for example, FG- length minus the length of the conductors between the terminals Kuitai Is the damaged position).
[0017]
At least one wire shall be buried for each pile for which breakage is detected, and a plurality of wires shall be buried if necessary.
[0018]
Further, the detection of the presence / absence of damage and the estimation of the damage position are not limited to visual observation using OSC or the like, and analysis using a computer or an arithmetic circuit can be used.
[0019]
The embedding of the wire in the pile body can be performed in the case of a prefabricated pile without troublesome work such as in the case of casting in the factory at the time of manufacturing. For example, when the tip is grounded, the tip of the wire is connected to the end plate, etc., and when the tip is not grounded, it is connected to some fastening member to easily shift the wire inside the pile. And a highly accurate product can be obtained. In addition, it is of course applicable to piles cast in place.
[0020]
In addition, as a wire used in the present invention, for example, a copper wire or the like is used, and it is conceivable that the wire is broken along with the breakage of the pile, or the wire is not broken even if the pile is broken. In the normal case, since the pile body breaks and groundwater etc. penetrates to that part and it is in a grounded state, it is not necessarily required that the wire breaks with the pile body breakage, but as a method of actively breaking the wire It is also conceivable to use, for example, a wire made of a sintered metal or a wire in which a small-diameter copper wire is embedded in a ceramic.
[0021]
Embodiment
Figure 1 shows schematically a device arrangement in an embodiment of the earth in damage diagnosis method piles of the present invention.
[0022]
As shown in the figure, a wire 2 made of a conductor such as a copper wire is buried in a pile body such as an existing concrete pile 1.
[0023]
The upper end side of the wire 2 buried in the ground is connected to a terminal 3 provided near the pile head, and the tip 2a is insulated (non-grounded) while buried in concrete, or There are two ways of connecting to the end plate 4 made of metal to make a ground (ground) state. The terminal 3 is always provided with a waterproof cap or the like.
[0024]
If it becomes necessary to check the pile 1 for damage due to an earthquake or the like, remove the cap of the terminal 3, connect the FG (function generator) 5 and the OSC 6 to the terminal 3, and input a square wave to the wire 2. I do.
[0025]
(1) When the tip of the wire 2 is not grounded FIG. 2 shows the case where the tip of the wire 2 is not grounded, and the input (electric) signal, output signal, It shows an example of the relationship between observation signals.
[0026]
Let L be the distance from the FG 5 to the tip of the wire 2 embedded in the tip of the pile 1 (pile length or length of the wire 2 + length of the conducting wire from the terminal 3 to the FG 5).
[0027]
When an input signal having one wavelength of 2L is applied, the reflected signal at the end of the wire 2 has a phase lag corresponding to the distance L with respect to the input waveform and has an inverted waveform. The waveform observed by the OSC 6 is the sum of the input waveform and the reflected waveform. If the pile is not damaged, an observation signal having a voltage twice as high as the input signal is observed.
[0028]
Assuming that the distance from the FG 5 to the tip of the wire 2 is 10 m, the distance from the FG 5 to the terminal 3 is 1 m, and the pile length is 9 m, one wavelength = 2L = 20 m, and the frequency in that case is 15 MHz.
[0029]
FIG. 3 shows an example of a relationship among an input signal, an output signal, and an observation signal to the wire 2 when the underground pile 1 is damaged when the tip of the wire 2 is not grounded.
[0030]
The phase lag in this case is a phase lag corresponding to the distance L ′ (<L) from the FG 5 to the breakage position, and the wire 2 is grounded at the breakage position due to breakage, resulting in a reflection waveform without inversion. . Although L ′ = L / 2 in the example in the figure, the waveform is generally more complicated.
[0031]
Observation signals as shown in FIG. 3 are observed by the OSC 6, which indicates that the pile body is damaged.
[0032]
Further, in this case, the wavelength of the input signal is gradually shortened from 2L (that is, the frequency is gradually increased), and when the wavelength of the input signal becomes 2L ', as shown in FIG. signal reaches intends frequency case cancel each other out, hence (including the length of the wire) distance to breakage position of the pile body from FG5 be seen.
[0033]
(2) When the tip of the wire 2 is grounded FIG. 5 shows an input to the wire 2 when the tip of the wire 2 is grounded (the tip 2a is connected to the end plate 4) and the underground pile 1 is not damaged ( It shows an example of the relationship among an electrical) signal, an output signal, and an observation signal.
[0034]
In this case, when an input signal having one wavelength of 2L is applied, the reflected signal at the tip of the wire 2 becomes a waveform having a phase delay corresponding to the distance L without being inverted with respect to the input waveform. The waveform observed by the OSC 6 is the sum of the input waveform and the reflected waveform. As a result, an observed signal in which the input signal and the reflected signal cancel each other is observed, and it is confirmed that there is no damage.
[0035]
FIG. 6 shows an example of a relationship among an input signal, an output signal, and an observation signal to the wire 2 when the underground pile 1 is damaged when the tip of the wire 2 is grounded.
[0036]
In this case, the situation is exactly the same as the case of FIG. 3, and it can be seen from the observation signal that the pile is damaged. Similarly to the case (1) where the tip of the wire 2 is not grounded, the wavelength of the input signal is gradually reduced from 2L, and when the wavelength of the input signal becomes 2L ', as shown in FIG. and the reflection signal reached intends frequency case cancel each other out, (including the length of the wire) distance to breakage position of the pile body from FG5 be seen.
[0037]
When managing a large number of piles 1 or when it is expected that it is difficult to access the pile head even with a single pile, as shown in FIG. It is also possible to collect and collectively measure. Further, these measurements are not limited to the visual observation of the OSC, but can be automatically performed by using a computer, an arithmetic circuit, or the like.
[0038]
【The invention's effect】
(1) It is possible to check whether or not the pile is damaged and the location of the damage at any time on the ground without excavating the underground pile. Further, even if the pile is damaged at a deep position, it can be easily diagnosed.
[0039]
(2) There is no connection to the connection part such as the terminal of the pile head at all times, and even when excavating to the position of the connection part, the excavation depth is shallow and large-scale construction is unnecessary.
[0040]
(3) The soundness of the pile can be confirmed from production to installation.
[0041]
(4) It is also possible to centrally manage many piles at one place by providing a switch box or the like.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus arrangement in an embodiment of a method for diagnosing damage to an underground pile according to the present invention.
FIG. 2 is a graph showing an example of a relationship among an input signal, an output signal, and an observation signal to the wire when the tip of the wire is not grounded and the underground pile is not damaged.
FIG. 3 is a graph showing an example of a relationship among an input signal, an output signal, and an observation signal to the wire when the underground pile is damaged when the tip of the wire is not grounded.
[4] gradually increase the frequency of the input signal when there is a break in the ground piles, the input signal to the wire when seeking to frequency corresponding to the length of the wire to failure position, the output signal, observed 5 is a graph illustrating an example of a relationship between signals.
FIG. 5 is a graph showing an example of a relationship among an input signal, an output signal, and an observation signal to the wire when the underground pile is not damaged when the tip of the wire is grounded.
FIG. 6 is a graph showing an example of a relationship between an input signal, an output signal, and an observation signal to the wire when the underground pile is damaged when the tip of the wire is grounded.
FIG. 7 is a vertical cross-sectional view showing an example of arrangement in the case of managing a large number of piles simultaneously.
FIG. 8 is an explanatory view (vertical cross-sectional view) of a conventional method using back-turning.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Precast concrete pile, 2 ... Wire, 3 ... Terminal, 4 ... End plate, 5 ... Function oscillator, 6 ... Oscilloscope, 7 ... Switch box

Claims (2)

導体のワイヤーを杭体の両端間に該杭体を構成するコンクリートで絶縁した状態で埋設し、前記ワイヤーを系外と電気接続するための接続部を前記杭体の一端に設けてある杭を、前記接続部を設けた側の端部を上にして地中に埋設し、前記ワイヤーに所定の入力電気信号を印加し、前記ワイヤーの先端位置または杭体に破損がある場合には破損位置より反射される反射信号と前記入力電気信号の和として観測される観測信号により、前記杭体の破損の有無を検知するとともに、杭体に破損がある場合には前記入力電気信号の周波数を徐々に高くして行き、破損位置までのワイヤーの長さに対応して前記入力電気信号と破損位置で反射される反射信号とが互い打ち消し合う周波数を求め、周波数より杭体の破損位置を推定することを特徴とする地中杭の破損診断方法。 A pile in which a conductor wire is buried between both ends of the pile body while being insulated by concrete forming the pile body, and a connection portion for electrically connecting the wire to the outside of the system is provided at one end of the pile body. Buried in the ground with the end on the side where the connection portion is provided facing up, applying a predetermined input electric signal to the wire, and breaking the tip position of the wire or the break position if the pile is damaged. Based on the observation signal observed as the sum of the reflected signal and the input electric signal, the presence or absence of damage to the pile body is detected, and if the pile body is damaged, the frequency of the input electric signal is gradually increased. continue to increase to, corresponding to the length of the wire to failure position calculated frequencies and reflected signals cancel each other to be reflected by the damaged position and the input electrical signal, estimating damage position of Kuitai than the frequency Characterized by Damage diagnostic method of underground pile. 前記ワイヤーの先端を前記杭体の前記接続部と反対側の端部に設けた金具に接続してある請求項1記載の地中杭の破損診断方法。 The method for diagnosing damage to an underground pile according to claim 1, wherein a tip of the wire is connected to a metal fitting provided at an end of the pile body opposite to the connection portion .
JP4205397A 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage Expired - Fee Related JP3599522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205397A JP3599522B2 (en) 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205397A JP3599522B2 (en) 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage

Publications (2)

Publication Number Publication Date
JPH10239262A JPH10239262A (en) 1998-09-11
JP3599522B2 true JP3599522B2 (en) 2004-12-08

Family

ID=12625379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205397A Expired - Fee Related JP3599522B2 (en) 1997-02-26 1997-02-26 Damage detection method for piles and underground piles that can detect damage

Country Status (1)

Country Link
JP (1) JP3599522B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102577C1 (en) * 2001-01-20 2002-06-20 Univ Braunschweig Tech Condition detection method for electrically-conductive elongate tensioning elements uses evaluation of reflection spectrum for variable frequency electromagnetic measuring signal
CN103362151B (en) * 2013-07-30 2015-02-18 中国化学工程第一岩土工程有限公司 Method for detecting prestress concrete pipe pile horizontal stress
CN105887940A (en) * 2014-11-13 2016-08-24 中国建筑科学研究院 Double-speed low-strain method for detecting integrity of existing pile foundation by adopting excitation in pile body
CN104763000A (en) * 2015-04-02 2015-07-08 福建省建筑工程质量检测中心有限公司 Detection method for completeness of foundation pile
CN105064423B (en) * 2015-08-12 2017-06-16 邓业灿 Existing building foundation pile projects detection method
CN106836316B (en) * 2017-01-13 2018-11-09 同济大学建筑设计研究院(集团)有限公司 A kind of Oversea wind power generation tower single-pile foundation rigidity method for testing vibration
CN111287226B (en) * 2020-02-24 2021-09-10 四川道诚建设工程检测有限责任公司 A quick interfacing apparatus that is used for pile foundation quality detection pipe of large-scale bridge engineering
JP7422692B2 (en) * 2021-01-25 2024-01-26 大成建設株式会社 Foundation pile damage determination system

Also Published As

Publication number Publication date
JPH10239262A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP3599522B2 (en) Damage detection method for piles and underground piles that can detect damage
US5999107A (en) Remote cathodic protection monitoring system
CN102472826B (en) Proximity detection method and system for detecting conductive, embedded structure
EP0243258B1 (en) Method and apparatus for investigating a borehole using an array of elements
US9970841B2 (en) Method and system for monitoring a civil engineering construction
CN106638729B (en) A kind of Novel steel sheet pile inclinometer pipe protection device for installing
EP0539240A2 (en) Measurement-while-drilling system
JP2011191208A (en) Soil moisture measuring method and soil moisture measuring device
EP2947456B1 (en) Method for positioning a sensor for concrete monitoring
JP3641771B2 (en) Method for detecting damage of foundation pile from ground surface and apparatus used for the method
JP4636217B2 (en) Landslide detection system
US20120147511A1 (en) Smart ground bonding method for facilities
JP3041426B1 (en) Fill dam management system by resistivity tomography and its management method
JP4112871B2 (en) Lightning strength diagnosis method
CN108387817B (en) Grounding grid fault diagnosis method and device based on current injection type multi-field coupling
JPH07294233A (en) Preventive monitoring method of damage on buried pipe
JPH1078463A (en) Method for measuring ground resistance of mesh grounding electrode
JP4195761B2 (en) Ground fault accident judgment reference electrode construction method and ground fault accident judgment reference electrode
JPH0796770B2 (en) Landslide observation method and its equipment
JP3699708B2 (en) Water leak occurrence position detection method
JPH10183658A (en) System and method for evaluating soundness of pile
JP3063878B2 (en) Buried pipe damage monitoring device
CN218380958U (en) Subway station high side wall stability monitoring devices
CN203812345U (en) Transformer anti-theft detection device
JPH0942912A (en) Monitoring device for wall surface supporting member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees