JPH10237184A - Antistatic thermoplastic resin molding and its production - Google Patents

Antistatic thermoplastic resin molding and its production

Info

Publication number
JPH10237184A
JPH10237184A JP9085021A JP8502197A JPH10237184A JP H10237184 A JPH10237184 A JP H10237184A JP 9085021 A JP9085021 A JP 9085021A JP 8502197 A JP8502197 A JP 8502197A JP H10237184 A JPH10237184 A JP H10237184A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
antistatic
conductive
molded article
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9085021A
Other languages
Japanese (ja)
Inventor
Masaki Goto
正樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9085021A priority Critical patent/JPH10237184A/en
Publication of JPH10237184A publication Critical patent/JPH10237184A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a highly antistatic thermoplastic resin molding by forming three-dimensional netty electroconductive layer inside the thermoplastic resin molding, and to provide a method for producing it without deteriorating its antistatic performance by a secondary processing. SOLUTION: This antistatic thermoplastic molding is obtained by forming inside a three-dimensional netty electroconductive layer having sectional diameters of individual domains of 1 to 3mm. The method for producing this molding comprises hot-pressing thermoplastic resin pellets coated with a thin film containing an electroconductive substance, or embedding an electroconductive fiber inside a polymerizable monomer in three-dimensional netty form, and polymerizing the monomer in this state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、帯電防止熱可塑性
樹脂成形体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic thermoplastic resin molded article and a method for producing the same.

【0002】[0002]

【従来の技術】半導体ウェハー保存容器の材料や、電子
部品、半導体等各種の極もしくは超微細加工を要する製
造工場における床材や壁材は、帯電による塵埃の付着、
これら塵埃の落下や再分散による2次汚染等を防止する
目的で、高度に帯電防止された熱可塑性樹脂成形体が使
用される。従来、上記目的に使用される帯電防止熱可塑
性樹脂は、アルミニウム、亜鉛等の金属微粉末、酸化チ
タン、酸化亜鉛、酸化錫等の金属酸化物、導電性カーボ
ン粉末、導電性ポリアニリン粉末等からなる導電性物質
を熱可塑性樹脂プレート等の成型体の表面に薄く均一に
塗布したり、熱可塑性樹脂をシートやプレート等の加工
素材や半導体ウェハー保存容器の如き成型体を成型する
際に、熱可塑性樹脂中に均質に練り込んでおき、これら
の導電性熱可塑性樹脂組成物を押出成型や射出成型によ
って成型して導電性熱可塑性樹脂成形体を製造していた
のである。
2. Description of the Related Art Materials for semiconductor wafer storage containers, floor materials and wall materials in manufacturing plants that require various kinds of ultra- or ultra-fine processing such as electronic components and semiconductors are subject to the adhesion of dust due to electrification.
For the purpose of preventing secondary contamination and the like due to dropping and re-dispersion of the dust, a highly antistatic thermoplastic resin molding is used. Conventionally, the antistatic thermoplastic resin used for the above purpose is composed of fine metal powders such as aluminum and zinc, metal oxides such as titanium oxide, zinc oxide and tin oxide, conductive carbon powder, conductive polyaniline powder and the like. When applying a conductive material thinly and uniformly to the surface of a molded body such as a thermoplastic resin plate, or when molding a thermoplastic resin into a molded material such as a processing material such as a sheet or a plate or a semiconductor wafer storage container, The resin was homogeneously kneaded in the resin, and the conductive thermoplastic resin composition was molded by extrusion molding or injection molding to produce a conductive thermoplastic resin molded article.

【0003】しかし、上記熱可塑性樹脂中に導電性物質
を均質に練り込んでおき、これらの導電性熱可塑性樹脂
組成物を押出成型や射出成型によって成型した成型体
は、光線透過率を高めるために、練り込まれる導電性物
質の粒度を0.2μm以下の微粒子とする等、光学的に
工夫してはいるが、殆どの場合、熱可塑性樹脂中に分散
した導電性物質によって著しく透明性が阻害されるもの
であった。
[0003] However, a molded article obtained by uniformly kneading a conductive substance into the above-mentioned thermoplastic resin and molding the conductive thermoplastic resin composition by extrusion molding or injection molding is intended to increase the light transmittance. Although optically devised, such as making the particle size of the conductive material kneaded into fine particles of 0.2 μm or less, in most cases, the transparency is significantly increased by the conductive material dispersed in the thermoplastic resin. Was inhibited.

【0004】従って、高度に帯電防止され、且つ、透明
性に優れた熱可塑性樹脂成形耐を製造するためには、帯
電防止能を有する部分が表面部分に濃縮された塗布方式
が採用され、上記帯電防止能を有する塗膜が透光性を保
持するため極めて薄い層で形成される。従って、極端な
厚さのバラツキが発生して帯電防止能にバラツキが発生
することのないように塗膜の厚さの精度を高める必要が
あった。
Accordingly, in order to produce a thermoplastic resin having high antistatic properties and excellent transparency, a coating method in which a portion having an antistatic function is concentrated on a surface portion is adopted. A coating film having an antistatic function is formed of an extremely thin layer in order to maintain translucency. Therefore, it is necessary to increase the accuracy of the thickness of the coating film so that the thickness of the coating does not vary due to the extreme thickness variation.

【0005】上記の如き導電性熱可塑性樹脂成形体とそ
の製造方法として、特開平6−263899号公報に、
熱可塑性樹脂と導電性材料とから成る塗料を熱可塑性樹
脂離型フィルムの表面に塗布し硬化させて導電性塗膜を
形成し、次いで、当該離型フィルムを、その塗膜面を熱
可塑性樹脂の基材シートの表面に対面させて当該樹脂基
材シートと熱圧着する導電性樹脂シートの製造方法、上
記導電性材料がポリアニリンである導電性樹脂シートの
製造方法及び上記熱可塑性樹脂と導電性ポリアニリンと
から成る導電性塗膜層が、熱可塑性樹脂基材シートの表
面に、熱圧一体に積層形成されてなる導電性樹脂シート
が開示されている。
[0005] JP-A-6-263899 discloses a conductive thermoplastic resin molded article as described above and a method for producing the same.
A coating composed of a thermoplastic resin and a conductive material is applied to the surface of the thermoplastic resin release film and cured to form a conductive coating film. Then, the release film is coated with a thermoplastic resin. A method for producing a conductive resin sheet which faces the surface of the base material sheet and is thermocompression-bonded to the resin base material sheet, a method for producing a conductive resin sheet in which the conductive material is polyaniline, and a method for preparing the thermoplastic resin and the conductive material A conductive resin sheet is disclosed in which a conductive coating layer made of polyaniline is laminated on a surface of a thermoplastic resin base sheet by heat and pressure.

【0006】しかし、上記特開平6−263899号公
報に開示された導電性樹脂シートの製造方法では、導電
性塗膜層を熱可塑性樹脂基材シートの表面に、熱圧一体
に積層するためには、導電性塗膜層を相当高温に加熱し
なければ熱可塑性樹脂基材シートの表面に密着させるこ
とができず、従って、このような高温に加熱して熱圧す
ると熱可塑性樹脂基材シートが熱変形してしまうという
問題点があった。
However, in the method of manufacturing a conductive resin sheet disclosed in Japanese Patent Application Laid-Open No. Hei 6-263899, it is necessary to laminate the conductive coating layer on the surface of the thermoplastic resin base sheet by heat and pressure. Can not be adhered to the surface of the thermoplastic resin substrate sheet unless the conductive coating layer is heated to a considerably high temperature, and therefore, when heated to such a high temperature and hot pressed, the thermoplastic resin substrate sheet However, there is a problem that the material is thermally deformed.

【0007】更に、上記特開平6−263899号公報
に開示された導電性樹脂シートの如く、帯電防止能を有
する部分が表面部分に濃縮される塗布方式によって製造
された帯電防止熱可塑性樹脂成形体は、図1〜図4に示
す該帯電防止熱可塑性樹脂成形体の2次加工、即ち、図
1の曲げ加工では、矢印で指し示す屈曲部外側の先端の
導電層1が基材の熱可塑性樹脂層2の厚さによって引き
延ばされて薄くなり、該部の帯電防止性能を著しく低下
している。図2の切削加工及び図3の穴開け加工では、
矢印で指し示す切削部分ないし穴開け部分の帯電防止性
能がなくなる。又、図4の真空成形等の導電層が引き延
ばされる成形加工では、図1に示す曲げ加工同様、導電
層が基材の熱可塑性樹脂と共に引き延ばされ全体的に薄
くなって帯電防止性能が低下するという問題点を有す
る。
Further, as in the conductive resin sheet disclosed in the above-mentioned JP-A-6-263899, an antistatic thermoplastic resin molded article produced by a coating method in which a portion having an antistatic function is concentrated on a surface portion. In the secondary processing of the antistatic thermoplastic resin molded body shown in FIGS. 1 to 4, that is, in the bending processing of FIG. 1, the conductive layer 1 at the tip outside the bent portion indicated by the arrow is the thermoplastic resin of the base material. The thickness of the layer 2 is elongated by the thickness of the layer 2, and the antistatic performance of the portion is significantly reduced. In the cutting process of FIG. 2 and the boring process of FIG. 3,
The antistatic performance of the cut or drilled portion indicated by the arrow is lost. Also, in the forming process in which the conductive layer is stretched such as the vacuum forming in FIG. 4, the conductive layer is stretched together with the thermoplastic resin of the base material and becomes thinner as a whole, similarly to the bending process shown in FIG. Is reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明は、叙上の事実
に鑑みなされたものであって、その目的とするところ
は、熱可塑性樹脂成形体の内部に三次元網状に導電層を
形成せしめることによって、2次加工によってその帯電
防止性能が低下するのない高度帯電防止熱可塑性樹脂成
形体及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above facts, and has as its object to form a conductive layer in a three-dimensional network inside a thermoplastic resin molded article. Accordingly, an object of the present invention is to provide a highly antistatic thermoplastic resin molded article whose antistatic performance is not reduced by secondary processing, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
内部に三次元網状導電層が形成されてなることを特徴と
する帯電防止熱可塑性樹脂成形体をその要旨とするもの
である。
According to the first aspect of the present invention,
The gist of the present invention is an antistatic thermoplastic resin molded article having a three-dimensional net-like conductive layer formed therein.

【0010】請求項2記載の発明は、三次元網状導電層
の個々のドメインの断面径が1〜3mmであることを特
徴とする請求項1記載の帯電防止熱可塑性樹脂成形体を
その要旨とするものである。
According to a second aspect of the present invention, there is provided an antistatic thermoplastic resin molded article according to the first aspect, wherein the cross-sectional diameter of each domain of the three-dimensional network conductive layer is 1 to 3 mm. Is what you do.

【0011】請求項3記載の発明は、導電性物質を含む
薄膜で被覆されてなる粒径1〜3mmの熱可塑性樹脂粒
状体を加熱加圧することを特徴とする帯電防止熱可塑性
樹脂成形体の製造方法をその要旨とするものである。
According to a third aspect of the present invention, there is provided an antistatic thermoplastic resin molded article characterized in that a thermoplastic resin granule having a particle diameter of 1 to 3 mm, which is coated with a thin film containing a conductive substance, is heated and pressed. The gist is a manufacturing method.

【0012】請求項4記載の発明は、導電性繊維を重合
性モノマー内部に三次元網状に埋設し、この状態で重合
性モノマーを重合させることを特徴とする帯電防止熱可
塑性樹脂成形体の製造方法をその要旨とするものであ
る。
According to a fourth aspect of the present invention, there is provided a method for producing an antistatic thermoplastic resin molded article, comprising embedding conductive fibers in a three-dimensional network inside a polymerizable monomer, and polymerizing the polymerizable monomer in this state. The gist is a method.

【0013】請求項1記載の発明において三次元網状導
電層は、図5に、帯電防止熱可塑性樹脂成形体の断面の
模式的に示した説明図において、その断面を細かく区画
する黒線3で示したように、文字通り三次元網状に導電
性物質が相互に連通している状態のものであってもよい
が、三次元にランダムに配置され、部分的に断続する状
態のものであってもよく、又、二次元網状体を複数枚積
み重ねて実質的に三次元網状体を構成したものであって
もよい。又、三次元網状導電層の個々のドメインは、図
5において、符号4’を付し、矢印で示した位置の1つ
を黒く塗りつぶして示したが、上記のように網状に配置
された繊維状物質によって熱可塑性樹脂4が区画される
ものであってもよいが、特にその形状が限定されるもの
ではなく、被膜状ないしは被膜の一部が破れて欠けた破
れ被膜状の導電性物質によって熱可塑性樹脂4が部分的
に区画されるものであってもよい。
According to the first aspect of the present invention, the three-dimensional net-like conductive layer is indicated by a black line 3 which divides the cross section finely in the explanatory view schematically showing the cross section of the antistatic thermoplastic resin molded article in FIG. As shown, the conductive substances may be literally in a three-dimensional net-like state in which they are in communication with each other, but may be arranged three-dimensionally at random and partially intermittently. Alternatively, a plurality of two-dimensional nets may be stacked to form a substantially three-dimensional net. Also, in FIG. 5, the individual domains of the three-dimensional net-like conductive layer are denoted by reference numeral 4 ', and one of the positions indicated by the arrows is blacked out, but the fibers arranged in a net-like manner as described above are shown. The thermoplastic resin 4 may be partitioned by the state-like substance, but the shape is not particularly limited, and the film-like or a partly broken and broken film-like conductive substance may be used. The thermoplastic resin 4 may be partially partitioned.

【0014】請求項3記載の発明において用いられる熱
可塑性樹脂粒状体の形状は特に限定されるものではない
が、通常、球形乃至は円柱形のものが大多数であるの
で、球形乃至は円柱形でなくとも、その直径、縦、横及
び長さのうち最も大きい値を『粒径』として取り扱う。
上記熱可塑性樹脂粒状体の粒径は、1mm未満である
と、得られる帯電防止熱可塑性樹脂成形体の強度が低下
し、3mmを超えると得られる帯電防止熱可塑性樹脂成
形体の帯電防止性能が低下するので、1〜3mmに限定
される。
The shape of the thermoplastic resin granules used in the third aspect of the present invention is not particularly limited, but usually, the majority is spherical or cylindrical. However, the largest value among the diameter, length, width, and length is treated as “particle size”.
When the particle size of the thermoplastic resin particles is less than 1 mm, the strength of the obtained antistatic thermoplastic resin molded product is reduced, and when it exceeds 3 mm, the antistatic performance of the obtained antistatic thermoplastic resin molded product is reduced. Because it decreases, it is limited to 1-3 mm.

【0015】上記三次元網状導電層を作製する手段は、
特に限定されるものではないが、例えば、請求項3記載
の発明の帯電防止熱可塑性樹脂成形体の製造方法に示す
ように、直径2〜3mm程度の通常の熱可塑性樹脂成形
用ペレットの表面に、導電性物質を被膜状に形成してお
き、これを圧縮成形等の適宜成形手段によって、加熱加
圧して成形し、熱可塑性樹脂成形体内部に三次元網状導
電層を充満して形成してもよく、又、図6にその工程の
一部を模式的に示した請求項4記載の発明の帯電防止熱
可塑性樹脂成形体の製造方法のように、金属メッキされ
た繊維製ネット5をキャスティング用金型6内に充満す
るように複数枚を重ねて充填し、三次元網状構造体を形
成しておき、該キャスティング金型6内に、重合性モノ
マー7を注入し、上記三次元網状構造体を重合性モノマ
ー7中に埋設した状態で、重合性モノマー7を重合する
ことによって熱可塑性樹脂成形体内部に三次元網状導電
層を充満して形成してもよい。
The means for producing the three-dimensional net-like conductive layer includes:
Although not particularly limited, for example, as shown in the method for producing an antistatic thermoplastic resin molded article of the invention according to claim 3, the surface of a normal thermoplastic resin molding pellet having a diameter of about 2 to 3 mm A conductive material is formed in a film shape, and is formed by heating and pressing by appropriate molding means such as compression molding, and is formed by filling a three-dimensional net-like conductive layer inside a thermoplastic resin molded body. Also, as shown in FIG. 6, a part of the process is schematically shown in FIG. 6, and the metal-plated fiber net 5 is cast as in the method for producing an antistatic thermoplastic resin molded article according to the invention. A plurality of sheets are stacked and filled so as to fill the mold 6 to form a three-dimensional network structure, and a polymerizable monomer 7 is injected into the casting mold 6, and the three-dimensional network structure is formed. Embedded in polymerizable monomer 7 In state, it may be formed by filling a three-dimensional network conductive layer inside the thermoplastic resin molded article by polymerizing a polymerizable monomer 7.

【0016】上記熱可塑性樹脂としては、特に限定され
るものではないが、例えば、塩化ビニル系樹脂、ポリエ
チレン、ポリプロピレン等のポリオレフィン系樹脂、ポ
リスチレン、アクリロニトリル−ブタジエン−スチレン
共重合体等のスチレン系樹脂、アクリル系樹脂、ポリカ
ーボネート樹脂、ポリブチルテレフタレート樹脂、ポリ
フェニレンサルファイド樹脂等が挙げられる。
The thermoplastic resin is not particularly restricted but includes, for example, vinyl chloride resins, polyolefin resins such as polyethylene and polypropylene, and styrene resins such as polystyrene and acrylonitrile-butadiene-styrene copolymer. Acryl resin, polycarbonate resin, polybutyl terephthalate resin, polyphenylene sulfide resin and the like.

【0017】又、上記重合性モノマーとしては、特に限
定されるものではないが、例えば、メチルメタクリレー
ト、エチルメタクリレート、エチルアクリレート等の基
剤となるアルキル(メタ)アクリレート類、(メタ)ア
クリル酸、マレイン酸、フマル酸、イタコン酸等のカル
ボキシル基含有モノマー又はその無水物、(メタ)アク
リロニトリル、N−ビニルピロリドン、N−ビニルカプ
ロラクタム、アクリロイルモルホリン、(メタ)アクリ
ルアミド等の窒素含有モノマー、2−ヒドロキシエチル
(メタ)アクリレート等の水酸基含有モノマー等の少量
の官能基含有モノマー類、エチレングリコールジ(メ
タ)アクリレート、トリメチロールプロパントリ(メ
タ)アクリレート、ペンタエリスリトールテトラ(メ
タ)アクリレート等の(メタ)アクリレート類、ジアリ
ルフタレート、ジアリルマレート、ジアリルフマレー
ト、ジアリルサクシネート、トリアリルイソシアヌレー
ト等のアリル化合物、ジビニルベンゼン等のジビニル化
合物等の多官能モノマー類からなる重合性モノマーに、
重合触媒として、例えば、アゾイソブチロニトリルや4
−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキ
シ−2−プロピル)ケトン(チバガイギー社製、商品名
「ダロキュア2959」)等のケトン系;α−ヒドロキ
シ−α,α’−ジメチル−アセトフェノン(チバガイギ
ー社製、商品名「ダロキュア1173」)、メトキシア
セトフェノン、2,2−ジメトキシ−2−フェニルアセ
トフェノン(チバガイギー社製、商品名「イルガキュア
651」)、2−ヒドロキシ−2−シクロヘキシルアセ
トフェノン(チバガイギー社製、商品名「イルガキュア
184」)等のアセトフェノン系;ベンジルジメチルケ
タール等のケタール系等を挙げることができる。上記重
合触媒の含有量は、上記(メタ)アクリル酸エステルモ
ノマー等の重合性モノマー100重量部に対し、0.0
1〜5重量部、好ましくは0.05〜3重量部である。
Examples of the polymerizable monomer include, but are not particularly limited to, alkyl (meth) acrylates serving as bases such as methyl methacrylate, ethyl methacrylate, and ethyl acrylate; (meth) acrylic acid; Carboxyl group-containing monomers such as maleic acid, fumaric acid and itaconic acid or anhydrides thereof, (meth) acrylonitrile, N-vinylpyrrolidone, N-vinylcaprolactam, acryloylmorpholine, nitrogen-containing monomers such as (meth) acrylamide, 2-hydroxy Small amounts of functional group-containing monomers such as hydroxyl group-containing monomers such as ethyl (meth) acrylate, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate Data) acrylates, diallyl phthalate, diallyl maleate, diallyl fumarate, diallyl succinate, allyl compounds such as triallyl isocyanurate, a polymerizable monomer consisting of polyfunctional monomers divinyl compounds such as divinylbenzene,
As a polymerization catalyst, for example, azoisobutyronitrile and 4
Ketones such as-(2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone (trade name “Darocure 2959”, manufactured by Ciba Geigy); α-hydroxy-α, α′-dimethyl-acetophenone (Ciba Geigy) (Trade name "Darocure 1173"), methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone (Circa Geigy, trade name "Irgacure 651"), 2-hydroxy-2-cyclohexyl acetophenone (Ciba Geigy, product) Acetophenones such as "IRGACURE 184"); ketals such as benzyldimethyl ketal; The content of the polymerization catalyst is 0.0% with respect to 100 parts by weight of a polymerizable monomer such as the (meth) acrylate monomer.
It is 1 to 5 parts by weight, preferably 0.05 to 3 parts by weight.

【0018】又、導電性物質としては、特に限定される
ものではないが、例えば、銀ペースト、銅ペースト等の
導電性ペースト類、アルミニウム、亜鉛等の金属微粉末
類、酸化チタン、酸化亜鉛、酸化錫等の金属酸化物微粉
末類、導電性カーボン粉末、導電性ポリアニリン粉末等
の有機導電性物質等が挙げられる。尚、導電性物質とし
て金属微粉末類、金属酸化物微粉末類もしくは有機導電
性物質を用いる場合、熱可塑性樹脂成形用ペレットもし
くは繊維状物質ないしは繊維状物質からなる三次元網状
構造体表面への付着性を高めるため、使用される熱可塑
性樹脂と同種の熱可塑性樹脂等をバインダーとして用い
ることが好ましい。
Examples of the conductive substance include, but are not limited to, conductive pastes such as silver paste and copper paste, fine metal powders such as aluminum and zinc, titanium oxide, zinc oxide, and the like. Examples thereof include metal oxide fine powders such as tin oxide, and organic conductive substances such as conductive carbon powder and conductive polyaniline powder. When a metal fine powder, a metal oxide fine powder, or an organic conductive material is used as the conductive material, a pellet for thermoplastic resin molding or a fibrous material or a three-dimensional network structure made of a fibrous material is used. In order to enhance the adhesion, it is preferable to use a thermoplastic resin or the like of the same type as the thermoplastic resin used as the binder.

【0019】又、導電性繊維としては、特に限定される
ものではないが、例えば、各種断面形状の天然繊維や合
成繊維、中空合成繊維等の表面に、前記する導電性物質
もしくはこれらの導電性物質を含む被膜を形成した繊
維、上記繊維を銀、銅、錫、ニッケル、亜鉛、アルミニ
ウム等の金属をメッキした繊維等が挙げられる。
The conductive fiber is not particularly limited. For example, the surface of a natural fiber, a synthetic fiber, a hollow synthetic fiber or the like having various cross-sectional shapes may be coated on the conductive material or the conductive material described above. Fibers having a coating containing a substance formed thereon, and fibers obtained by plating the above fibers with a metal such as silver, copper, tin, nickel, zinc, and aluminum are exemplified.

【0020】上記表面に前記する導電性物質を含む被膜
を形成するための塗料として、例えば、2−ヒドロキシ
プロピルアクリレート10モル%/塩化ビニル90モル
%からなる共重合体等の被膜形成能を有する合成樹脂を
バインダーとして用い、該バインダーに前記する導電性
物質、例えば、酸化錫粉末5〜30重量%を添加しこれ
らを、例えば、メチルエチルケトン:シクロヘキサン=
1:5(重量比)混合溶剤等の溶剤に溶解した溶剤型導
電性塗料が挙げられる。上記溶剤型導電性塗料を用いて
得られる導電性繊維の表面固有抵抗は、103〜1010
Ω/□程度である。上記溶剤型導電性塗料における導電
性物質の添加量がバインダーに対して5重量%未満では
得られる耐電防止熱可塑性成形体の耐電防止性能が十分
でなく、30重量%を超えると被膜形成能が低下し、繊
維表面等の被着体に均一な被膜を形成しにくくなるおそ
れがある。
As a coating material for forming a film containing the above-mentioned conductive material on the surface, for example, a coating material such as a copolymer composed of 10 mol% of 2-hydroxypropyl acrylate / 90 mol% of vinyl chloride has a film forming ability. Using a synthetic resin as a binder, the above-mentioned conductive substance, for example, 5 to 30% by weight of tin oxide powder is added to the binder, and these are added to, for example, methyl ethyl ketone: cyclohexane =
Solvent-type conductive paint dissolved in a solvent such as a 1: 5 (weight ratio) mixed solvent may be used. The surface specific resistance of the conductive fiber obtained by using the solvent-type conductive paint is 10 3 to 10 10
It is about Ω / □. When the amount of the conductive substance in the solvent-type conductive paint is less than 5% by weight with respect to the binder, the obtained antistatic thermoplastic molded article does not have sufficient antistatic performance. It may be difficult to form a uniform coating on an adherend such as a fiber surface.

【0021】又、上記塗料として、例えば、ジペンタエ
リスルトールヘキサアクリレート(6官能オリゴマー)
20〜40重量部/重合度2400のポリビニルアセタ
ール70〜30重量部からなる被膜形成能を有する重合
性オリゴマー及び合成樹脂に対し、導電性物質、例え
ば、酸化錫粉末10〜30重量部を配合し、該組成物に
たいし、ハイドロキノン(重合禁止剤)0.2重量部、
2,4−ジエチルチオキサントン(重合開始剤)4重量
部及びp−ジメチルアミノ安息香酸エチル(光増感剤)
4重量部を添加した紫外線硬化塗料が挙げられる。
Further, as the above coating material, for example, dipentaerythritol hexaacrylate (hexafunctional oligomer)
A conductive substance, for example, 10 to 30 parts by weight of a tin oxide powder is blended with a polymerizable oligomer and a synthetic resin having a film forming ability consisting of 20 to 40 parts by weight / 70 to 30 parts by weight of polyvinyl acetal having a polymerization degree of 2400. With respect to the composition, hydroquinone (polymerization inhibitor) 0.2 parts by weight,
4 parts by weight of 2,4-diethylthioxanthone (polymerization initiator) and ethyl p-dimethylaminobenzoate (photosensitizer)
UV-curable paints to which 4 parts by weight are added.

【0022】上記紫外線硬化塗料を浸漬塗布した被着
体、例えば、ポリエステル繊維に、高圧水銀ランプ等の
光源から1800mJ/cm2 の紫外線を照射して得ら
れる導電性繊維の表面固有抵抗は、106 〜1011Ω/
□程度である。上記溶剤型導電性塗料における導電性物
質の添加量が10重量%未満では得られる耐電防止熱可
塑性成形体の耐電防止性能が十分でなく、30重量%を
超えると被膜形成能が低下し、繊維表面等の被着体に均
一な被膜を形成しにくくなるおそれがある。
The surface resistivity of a conductive fiber obtained by irradiating an ultraviolet-ray of 1800 mJ / cm 2 from a light source such as a high-pressure mercury lamp to an adherend, for example, a polyester fiber, which has been immersed and coated with the above-mentioned ultraviolet curable paint, has a surface resistivity of 10%. 6 to 10 11 Ω /
□ It is about. If the amount of the conductive substance in the solvent-type conductive paint is less than 10% by weight, the obtained antistatic thermoplastic molded article has insufficient antistatic performance. There is a possibility that it is difficult to form a uniform coating on the adherend such as the surface.

【0023】請求項1記載の発明において、三次元網状
導電層の個々のドメインの断面径は、特に限定されるも
のでなく、用いられる導電性物質の性能、三次元網状導
電層の構造等によって適宜設定されるものである。請求
項2記載の発明の帯電防止熱可塑性樹脂成形体は、上記
三次元網状導電層の個々のドメインの断面径を1〜3m
mに限定するものである。上記三次元網状導電層の個々
のドメインの断面径が1mm未満の場合、導電性物質の
種類によっては、得られる帯電防止熱可塑性樹脂成形体
の強度が低下するおそれがあり、3mmを超えると、得
られる帯電防止熱可塑性樹脂成形体の表面固有抵抗が1
6 〜107 Ω/□より大きく(悪く)なるおそれがあ
る。
In the first aspect of the present invention, the cross-sectional diameter of each domain of the three-dimensional net-like conductive layer is not particularly limited, and depends on the performance of the conductive material used, the structure of the three-dimensional net-like conductive layer, and the like. It is set appropriately. According to a second aspect of the present invention, there is provided the antistatic thermoplastic resin molded article having a cross-sectional diameter of each domain of the three-dimensional net-like conductive layer of 1 to 3 m.
m. When the cross-sectional diameter of each domain of the three-dimensional network conductive layer is less than 1 mm, depending on the type of the conductive substance, the strength of the obtained antistatic thermoplastic resin molded article may be reduced, and when it exceeds 3 mm, The surface resistivity of the obtained antistatic thermoplastic resin molded product is 1
0 6 ~10 7 Ω / □ is greater (worse) becomes a possibility.

【0024】請求項3記載の発明において、熱可塑性樹
脂粒状体の粒径は、上記三次元網状導電層の個々のドメ
インの断面径に対応するものであるが、帯電防止熱可塑
性樹脂成形体の所望の帯電防止性能に応じて、以下に示
す導電性物質の選定がなされる。例えば、導電性物質と
して、銀ペースト、銅ペースト等の導電ペーストが用い
て、直径2〜3mm程度の通常の熱可塑性樹脂成形用ペ
レットからなる粒状体表面にコーティングが施された場
合、得られる帯電防止熱可塑性樹脂成形体の表面固有抵
抗が101 〜102 Ω/□程度となる。又、アルミニウ
ム、亜鉛等の金属微粉末類、酸化チタン、酸化亜鉛、酸
化錫等の金属酸化物微粉末類を用いた場合、表面固有抵
抗が106 〜108 Ω/□程度となり、導電性カーボン
粉末、導電性ポリアニリン粉末等の有機導電性物質を用
いた場合、表面固有抵抗が107 〜108 Ω/□程度と
なる。
According to the third aspect of the present invention, the particle size of the thermoplastic resin particles corresponds to the cross-sectional diameter of each domain of the three-dimensional net-like conductive layer. The following conductive materials are selected according to the desired antistatic performance. For example, when a conductive paste such as a silver paste or a copper paste is used as a conductive substance and a coating is applied to the surface of a granular material made of a normal thermoplastic resin molding pellet having a diameter of about 2 to 3 mm, the obtained charged material is charged. The surface resistivity of the prevention thermoplastic resin molded article is about 10 1 to 10 2 Ω / □. Also, when metal fine powders such as aluminum and zinc, and metal oxide fine powders such as titanium oxide, zinc oxide and tin oxide are used, the surface resistivity becomes about 10 6 to 10 8 Ω / □, and When an organic conductive substance such as a carbon powder and a conductive polyaniline powder is used, the surface specific resistance is about 10 7 to 10 8 Ω / □.

【0025】上記導電ペーストの付着量は、熱可塑性樹
脂100重量部に対し5〜15重量部が好ましい。上記
導電ペーストの付着量が5重量部未満である場合、得ら
れる耐電防止熱可塑性樹脂成形体の帯電防止性能が低下
し、又、上記付着量が15重量部を超えると、得られる
耐電防止熱可塑性樹脂成形体の強度が低下する。
The amount of the conductive paste attached is preferably 5 to 15 parts by weight based on 100 parts by weight of the thermoplastic resin. When the amount of the conductive paste is less than 5 parts by weight, the antistatic performance of the obtained antistatic thermoplastic resin molded article is reduced. When the amount of the conductive paste exceeds 15 parts by weight, the obtained antistatic heat is obtained. The strength of the plastic resin molded article decreases.

【0026】上記金属微粉末類もしくは金属酸化物微粉
末類からなる導電性粉末の付着量は、熱可塑性樹脂10
0重量部に対し1〜15重量部が好ましい。上記付着量
が1重量部未満である場合、得られる耐電防止熱可塑性
樹脂成形体の帯電防止性能が低下し、又、上記付着量が
15重量部を超えると、得られる耐電防止熱可塑性樹脂
成形体の強度が低下する。
The amount of the conductive powder composed of the above-mentioned metal fine powder or metal oxide fine powder is determined by the amount of thermoplastic resin 10
1 to 15 parts by weight per 0 parts by weight is preferred. When the amount is less than 1 part by weight, the antistatic performance of the obtained antistatic thermoplastic resin molded article is reduced, and when the amount exceeds 15 parts by weight, the obtained antistatic thermoplastic resin molding is obtained. Body strength is reduced.

【0027】アニリン系重合体、ピロール系重合体、チ
オフェン系重合体等の有機質の導電性物質の付着量は、
熱可塑性樹脂100重量部に対し0.1〜30重量部が
好ましい。上記付着量が0.1重量部未満である場合、
得られる耐電防止熱可塑性樹脂成形体の帯電防止性能が
低下し、又、上記付着量が30重量部を超えると、得ら
れる耐電防止熱可塑性樹脂成形体の透明性が低下する。
The amount of the organic conductive material such as aniline polymer, pyrrole polymer, thiophene polymer, etc.
0.1 to 30 parts by weight is preferable for 100 parts by weight of the thermoplastic resin. When the adhesion amount is less than 0.1 parts by weight,
When the antistatic performance of the obtained antistatic thermoplastic resin molded article decreases, and when the amount of adhesion exceeds 30 parts by weight, the transparency of the obtained antistatic thermoplastic resin molded article decreases.

【0028】上記導電性物質は、熱可塑性樹脂バインダ
ーの他、必要に応じて、紫外線吸収剤、酸化防止剤、熱
重合禁止剤等が添加されてもよい。
The conductive material may contain, as necessary, an ultraviolet absorber, an antioxidant, a thermal polymerization inhibitor and the like in addition to the thermoplastic resin binder.

【0029】上記紫外線吸収剤としては、特に限定され
るものではないが、例えば、サリチル酸系紫外線吸収
剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾー
ル系紫外線吸収剤、シアノアクリレート系紫外線吸収剤
等が挙げられる。上記酸化防止剤としては、例えば、フ
ェノール系酸化防止剤、リン酸系酸化防止剤、イオウ系
酸化防止剤等が挙げられる。上記重合禁止剤としては、
例えば、ヒドロキノン、p−メトキシフェノール等が挙
げられる。
The ultraviolet absorber is not particularly limited, but examples thereof include a salicylic acid-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and a cyanoacrylate-based ultraviolet absorber. . Examples of the antioxidant include a phenolic antioxidant, a phosphoric acid antioxidant, and a sulfur antioxidant. As the above polymerization inhibitor,
For example, hydroquinone, p-methoxyphenol and the like can be mentioned.

【0030】請求項1記載の発明の帯電防止熱可塑性樹
脂成形体は、内部に三次元網状導電層が充満しているの
で高度の帯電防止性能を有するものであって、図1〜図
4に示すような曲げ、切削、穴開け及び真空成形等の二
次加工が施されても、上記三次元網状導電層の機能に影
響を及ぼすことが実質的になく、高度の帯電防止性能を
保持し得るものである。
The antistatic thermoplastic resin molded article according to the first aspect of the present invention has a high degree of antistatic performance because the inside thereof is filled with a three-dimensional net-like conductive layer. Even if secondary processing such as bending, cutting, drilling, and vacuum forming as shown is performed, the function of the three-dimensional net-like conductive layer is not substantially affected, and a high level of antistatic performance is maintained. What you get.

【0031】請求項2記載の発明の帯電防止熱可塑性樹
脂成形体は、請求項1記載の発明の帯電防止熱可塑性樹
脂成形体において、該帯電防止熱可塑性樹脂成形体の内
部の三次元網状導電層の個々のドメインの断面径が1〜
3mmとなされているので、導電性物質を所定量で用い
れば、その表面固有抵抗が101 〜106 Ω/□の範囲
で確実に高度の帯電防止性能を有するものである。
The antistatic thermoplastic resin molded article according to the second aspect of the present invention is the antistatic thermoplastic resin molded article according to the first aspect of the present invention, wherein the three-dimensional network conductive inside the antistatic thermoplastic resin molded article is provided. The cross-sectional diameter of each domain of the layer is 1 to
Since the thickness is set to 3 mm, when a predetermined amount of the conductive substance is used, the surface specific resistance surely has a high antistatic performance in a range of 10 1 to 10 6 Ω / □.

【0032】請求項3記載の発明の帯電防止熱可塑性樹
脂成形体の製造方法は、通常用いられる直径2〜3mm
の熱可塑性樹脂ペレットに、予め導電性物質を所定量で
含む被膜を形成しておき、加熱加圧して成形することに
よって、請求項1もしくは請求項2記載の発明の帯電防
止熱可塑性樹脂成形体を極めて容易に製造することがで
きる。
The method for producing an antistatic thermoplastic resin molded article according to the third aspect of the present invention is a method for manufacturing a normally used antistatic thermoplastic resin article having a diameter of 2 to 3 mm.
3. An antistatic thermoplastic resin molded article according to claim 1 or 2, wherein a coating containing a predetermined amount of a conductive substance is formed in advance on said thermoplastic resin pellet, and is formed by applying heat and pressure. Can be produced very easily.

【0033】請求項4記載の発明の帯電防止熱可塑性樹
脂成形体の製造方法は、導電性繊維が三次元網状組織を
形成して熱可塑性樹脂成形体の内部に充満するようにキ
ャスティング用金型内に配置して重合性モノマーを注入
され重合硬化されるので、請求項1もしくは請求項2記
載の発明の帯電防止熱可塑性樹脂成形体を極めて容易に
製造することができる。更に、本製造方法によって得ら
れる帯電防止熱可塑性樹脂成形体は、上記のように高度
の帯電防止性能と共に高度の電磁波遮蔽性能を有するも
のである。
According to a fourth aspect of the present invention, there is provided a method of manufacturing an antistatic thermoplastic resin molded article, wherein the conductive fiber forms a three-dimensional network and fills the inside of the thermoplastic resin molded article. Since the polymerizable monomer is injected and polymerized and cured, the antistatic thermoplastic resin molded article according to the first or second aspect of the present invention can be manufactured very easily. Furthermore, the antistatic thermoplastic resin molded article obtained by the present production method has a high antistatic performance and a high electromagnetic wave shielding performance as described above.

【0034】又、請求項1〜2記載の帯電防止熱可塑性
樹脂成形体及び請求項3〜4記載の帯電防止熱可塑性樹
脂成形体の製造方法で得られる帯電防止熱可塑性樹脂成
形体は、切削や穴開けによって、切削面や穴開け面に導
電部分が露出するので該面からアース端子を容易に取り
出すことができる。
In addition, the antistatic thermoplastic resin molded article obtained by the method for producing an antistatic thermoplastic resin molded article according to claim 1 or 2 and the method for producing an antistatic thermoplastic resin molded article according to claim 3 or 4 are cut. By drilling holes, the conductive portion is exposed on the cutting surface or the drilling surface, so that the ground terminal can be easily taken out from the surface.

【0035】[0035]

【発明の実施の形態】以下に実施例を掲げて、本発明の
実施の態様を更に詳しく説明するが、本発明はこれら実
施例のみに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0036】(実施例1)塩化ビニル樹脂100重量部
に、錫マレエート系安定剤1.8重量部、錫メルカプタ
ン系安定剤0.3重量部、錫ラウレート系安定剤0.3
重量部からなる安定剤その他滑剤、着色剤等を添加し、
更に、銀ペースト11重量部を加えてブレンダーで混合
し、塩化ビニル樹脂組成物を調製した後、ペレタイザー
を用いて直径2mm、長さ2mmの枕型の帯電防止ペレ
ットを作製した。上記帯電防止ペレットを圧縮成形機を
用いて厚さ3mmの帯電防止塩化ビニル樹脂板を作製し
た。得られた帯電防止塩化ビニル樹脂板の表面固有抵抗
は、5×10Ω/□であった。
Example 1 1.8 parts by weight of a tin maleate stabilizer, 0.3 part by weight of a tin mercaptan stabilizer, and 0.3 part by weight of a tin laurate stabilizer were added to 100 parts by weight of a vinyl chloride resin.
Stabilizer consisting of parts by weight, other lubricants, coloring agents, etc. are added,
Further, 11 parts by weight of silver paste was added and mixed with a blender to prepare a vinyl chloride resin composition, and a pillow-shaped antistatic pellet having a diameter of 2 mm and a length of 2 mm was prepared using a pelletizer. A 3 mm thick antistatic vinyl chloride resin plate was prepared from the above antistatic pellets using a compression molding machine. The surface specific resistance of the obtained antistatic vinyl chloride resin plate was 5 × 10Ω / □.

【0037】(実施例2)塩化ビニル樹脂100重量部
に、錫マレエート系安定剤1.8重量部、錫メルカプタ
ン系安定剤0.3重量部、錫ラウレート系安定剤0.3
重量部からなる安定剤その他滑剤、着色剤等を添加し、
更に、導電性酸化チタン粉体7重量部を加えてブレンダ
ーで混合し、塩化ビニル樹脂組成物を調製した後、ペレ
タイザーを用いて直径2mm、長さ2mmの枕型の帯電
防止ペレットを作製した。上記帯電防止ペレットを圧縮
成形機を用いて厚さ3mmの帯電防止塩化ビニル樹脂板
を作製した。得られた帯電防止塩化ビニル樹脂板の表面
固有抵抗は、3×107 Ω/□であった。
Example 2 1.8 parts by weight of a tin maleate-based stabilizer, 0.3 parts by weight of a tin mercaptan-based stabilizer, and 0.3 parts by weight of a tin laurate-based stabilizer were added to 100 parts by weight of a vinyl chloride resin.
Stabilizer consisting of parts by weight, other lubricants, coloring agents, etc. are added,
Further, 7 parts by weight of conductive titanium oxide powder was added and mixed with a blender to prepare a vinyl chloride resin composition, and a pillow-shaped antistatic pellet having a diameter of 2 mm and a length of 2 mm was prepared using a pelletizer. A 3 mm thick antistatic vinyl chloride resin plate was prepared from the above antistatic pellets using a compression molding machine. The surface resistivity of the obtained antistatic vinyl chloride resin plate was 3 × 10 7 Ω / □.

【0038】(実施例3)メチルエチルケトン/シクロ
ヘキサノン=1:5(重量比)混合溶媒に導電性酸化錫
を分散した液中に錫マレエート系安定剤1.8重量部、
錫メルカプタン系安定剤0.3重量部、錫ラウレート系
安定剤0.3重量部からなる安定剤その他滑剤、着色剤
等を含有する塩化ビニル樹脂組成物(徳山積水社製、商
品名「エスレックE−HA」)からなる直径2mm、長
さ2mmの枕型ペレットを浸漬した後、乾燥して、塩化
ビニル樹脂100重量部に対し、導電性酸化錫がその表
面に被膜状に7重量部付着した帯電防止ペレットを作製
した。上記帯電防止ペレットを圧縮成形機を用いて厚さ
3mmの帯電防止塩化ビニル樹脂板を作製した。得られ
た帯電防止塩化ビニル樹脂板の表面固有抵抗は、4×1
6 Ω/□であった。
Example 3 1.8 parts by weight of a tin maleate-based stabilizer in a liquid in which conductive tin oxide was dispersed in a mixed solvent of methyl ethyl ketone / cyclohexanone = 1: 5 (weight ratio),
A vinyl chloride resin composition containing 0.3 parts by weight of a tin mercaptan-based stabilizer and 0.3 parts by weight of a tin laurate-based stabilizer and containing a lubricant, a colorant, and the like (trade name "ESLEC E" manufactured by Tokuyama Sekisui Co., Ltd.) -HA "), a pillow-shaped pellet having a diameter of 2 mm and a length of 2 mm was immersed and dried, and 7 parts by weight of conductive tin oxide was adhered to the surface of the vinyl chloride resin in a film form with respect to 100 parts by weight of vinyl chloride resin. An antistatic pellet was prepared. A 3 mm thick antistatic vinyl chloride resin plate was prepared from the above antistatic pellets using a compression molding machine. The surface specific resistance of the obtained antistatic vinyl chloride resin plate was 4 × 1
0 6 Ω / □ it was.

【0039】(実施例4)金属付着量が13.3重量
%、繊維径45μm(繊度20デニール)、135メッ
シュからなる開口率0.58のニッケル無電解メッキポ
リエステルモノフィラメント糸織布(高瀬染工場社製、
商品名「メッタス401−D」)5枚を重ねてキャステ
ィング用金型に充填し、該金型内に、メチルメタクリレ
ート100重量部に、アゾイソブチロニトリル0.5重
量部を混合した重合性モノマーを、60℃の加熱炉中
で、24時間加熱、硬化させ、厚さ3mmの帯電防止ポ
リメチルメタクリレート板を作製した。得られた帯電防
止ポリメチルメタクリレート板の表面固有抵抗は、2×
106 Ω/□であった。
Example 4 Nickel electroless plated polyester monofilament yarn woven cloth having a metal adhesion amount of 13.3% by weight, a fiber diameter of 45 μm (fineness of 20 denier), and an opening ratio of 0.58 consisting of 135 mesh (Takase Dyeing Factory) Company
A trade name "METTAS 401-D") 5 sheets are stacked and filled in a casting mold, and in the mold, 0.5 parts by weight of azoisobutyronitrile is mixed with 100 parts by weight of methyl methacrylate. The monomer was heated and cured in a heating furnace at 60 ° C. for 24 hours to produce an antistatic polymethyl methacrylate plate having a thickness of 3 mm. The surface resistivity of the obtained antistatic polymethyl methacrylate plate is 2 ×
It was 10 6 Ω / □.

【0040】(実施例5)ジペンタエリスリトールヘキ
サアクリレート30重量部、ハイドロキノン0.2重量
部、2,4−ジエチルチオキサントン4重量部及びp−
ジメチルアミノ安息香酸エチル4重量部をエチルセロソ
ルブに溶解、分散させた後、重合度2400のポリビニ
ルアセタール50重量部及び導電性酸化錫20重量部を
攪拌機を用い10時間攪拌混合して紫外線硬化塗料を調
製した。上記紫外線硬化塗料中にポリエステル繊維を浸
漬塗布し、高圧水銀ランプを用いて1800mJ/cm
2 の紫外線を照射してポリエステル繊維上の塗膜を硬化
させて導電性繊維を作製した。得られた導電性繊維を実
施例4と同様に織成した織布を用いたこと以外、実施例
4と同様にして厚さ3mmの帯電防止ポリメチルメタク
リレート板を作製した。得られた帯電防止ポリメチルメ
タクリレート板の表面固有抵抗は、5×106Ω/□で
あった。
Example 5 30 parts by weight of dipentaerythritol hexaacrylate, 0.2 part by weight of hydroquinone, 4 parts by weight of 2,4-diethylthioxanthone and p-
After dissolving and dispersing 4 parts by weight of ethyl dimethylaminobenzoate in ethyl cellosolve, 50 parts by weight of polyvinyl acetal having a polymerization degree of 2400 and 20 parts by weight of conductive tin oxide are stirred and mixed for 10 hours using a stirrer to prepare an ultraviolet-curable paint. Prepared. A polyester fiber is immersed and coated in the above-mentioned ultraviolet-curing paint, and is subjected to 1800 mJ / cm using a high-pressure mercury lamp.
The conductive fiber was prepared by irradiating the ultraviolet ray of No. 2 to cure the coating film on the polyester fiber. An antistatic polymethyl methacrylate plate having a thickness of 3 mm was produced in the same manner as in Example 4, except that a woven fabric in which the obtained conductive fibers were woven in the same manner as in Example 4 was used. The surface resistivity of the obtained antistatic polymethyl methacrylate plate was 5 × 10 6 Ω / □.

【0041】上記実施例で得られた帯電防止熱可塑性樹
脂成形体の図1〜図4に示される各2次加工の後の表面
固有抵抗を各々測定したが、いずれも加工前の値と同じ
であり、帯電防止性能が低下することはなかった。
The surface resistivity of each of the antistatic thermoplastic resin molded articles obtained in the above Examples after the secondary processing shown in FIGS. 1 to 4 was measured. And the antistatic performance did not decrease.

【0042】[0042]

【発明の効果】本発明の帯電防止熱可塑性樹脂成形体
は、叙上の如く構成されているので、導高度の帯電防止
性能を有するものであって、曲げ、切削、穴開け、真空
成形等の各種二次加工が施されても、実質的に何ら影響
することなく、高度の帯電防止性能を保持し得るもので
ある。又、請求項3及び請求項4記載の帯電防止熱可塑
性樹脂成形体の製造方法は、叙上の如く構成されている
ので、極めて容易に上記高度の帯電防止性能を有する帯
電防止熱可塑性樹脂成形体をえることができる。
The antistatic thermoplastic resin molded article of the present invention has a high degree of antistatic performance since it is constructed as described above, and can be formed by bending, cutting, drilling, vacuum forming, etc. Even if the various secondary processes described above are performed, a high degree of antistatic performance can be maintained without any substantial effect. In addition, since the method for producing an antistatic thermoplastic resin molded article according to the third and fourth aspects is configured as described above, it is very easy to mold the antistatic thermoplastic resin molded article having the high antistatic performance. You can gain body.

【0043】[0043]

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)帯電防止熱可塑性樹脂成形体の2次加工
前の断面図である。 (b)帯電防止熱可塑性樹脂成形体の曲げ加工後の断面
図である。
FIG. 1 (a) is a cross-sectional view of an antistatic thermoplastic resin molded product before secondary processing. (B) It is sectional drawing after bending processing of the antistatic thermoplastic resin molded object.

【図2】(a)帯電防止熱可塑性樹脂成形体の2次加工
前の断面図である。 (b)帯電防止熱可塑性樹脂成形体の切削加工後の断面
図である。
FIG. 2A is a cross-sectional view of an antistatic thermoplastic resin molded product before secondary processing. (B) It is sectional drawing after cutting of the antistatic thermoplastic resin molded object.

【図3】(a)帯電防止熱可塑性樹脂成形体の2次加工
前の断面図である。 (b)帯電防止熱可塑性樹脂成形体の穴開け加工後の断
面図である。
FIG. 3A is a cross-sectional view of an antistatic thermoplastic resin molded product before secondary processing. (B) It is sectional drawing after drilling of the antistatic thermoplastic resin molded object.

【図4】(a)帯電防止熱可塑性樹脂成形体の2次加工
前の断面図である。 (b)帯電防止熱可塑性樹脂成形体の真空成形加工後の
断面図である。
FIG. 4A is a cross-sectional view of an antistatic thermoplastic resin molded product before secondary processing. (B) It is sectional drawing after vacuum forming of an antistatic thermoplastic resin molded object.

【図5】本発明の実施例1で得られた帯電防止熱可塑性
樹脂成形体の断面を模式的に示す説明図である。
FIG. 5 is an explanatory view schematically showing a cross section of the antistatic thermoplastic resin molded article obtained in Example 1 of the present invention.

【図6】本発明の実施例4の帯電防止熱可塑性樹脂成形
体の製造方法を模式的に示す説明図である。
FIG. 6 is an explanatory view schematically showing a method for producing an antistatic thermoplastic resin molded article of Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 導電層(塗膜) 2 基材層(熱可塑性樹脂) 3 (本発明の)導電層 4 熱可塑性樹脂 4’ドメインの1つ 5 金属メッキ繊維製ネット 6 キャスティング用金型 7 重合性モノマー REFERENCE SIGNS LIST 1 conductive layer (coating film) 2 base layer (thermoplastic resin) 3 conductive layer (of the present invention) 4 thermoplastic resin 4 ′ one of domains 5 metal-plated fiber net 6 casting mold 7 polymerizable monomer

フロントページの続き (51)Int.Cl.6 識別記号 FI // B29K 105:00 Continued on the front page (51) Int.Cl. 6 Identification code FI // B29K 105: 00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部に三次元網状導電層が形成されてな
ることを特徴とする帯電防止熱可塑性樹脂成形体。
1. An antistatic thermoplastic resin molded article having a three-dimensional network conductive layer formed therein.
【請求項2】 三次元網状導電層の個々のドメインの断
面径が1〜3mmであることを特徴とする請求項1記載
の帯電防止熱可塑性樹脂成形体。
2. The molded article according to claim 1, wherein the cross-sectional diameter of each domain of the three-dimensional net-like conductive layer is 1 to 3 mm.
【請求項3】 導電性物質を含む薄膜で被覆されてなる
粒径1〜3mmの熱可塑性樹脂粒状体を加熱加圧するこ
とを特徴とする帯電防止熱可塑性樹脂成形体の製造方
法。
3. A method for producing an antistatic thermoplastic resin article, comprising heating and pressing a thermoplastic resin particle having a particle size of 1 to 3 mm, which is coated with a thin film containing a conductive substance.
【請求項4】 導電性繊維を重合性モノマー内部に三次
元網状に埋設し、この状態で重合性モノマーを重合させ
ることを特徴とする帯電防止熱可塑性樹脂成形体の製造
方法。
4. A method for producing a molded article of an antistatic thermoplastic resin, comprising burying conductive fibers in a three-dimensional network inside a polymerizable monomer and polymerizing the polymerizable monomer in this state.
JP9085021A 1996-12-25 1997-04-03 Antistatic thermoplastic resin molding and its production Withdrawn JPH10237184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9085021A JPH10237184A (en) 1996-12-25 1997-04-03 Antistatic thermoplastic resin molding and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34616296 1996-12-25
JP8-346162 1996-12-25
JP9085021A JPH10237184A (en) 1996-12-25 1997-04-03 Antistatic thermoplastic resin molding and its production

Publications (1)

Publication Number Publication Date
JPH10237184A true JPH10237184A (en) 1998-09-08

Family

ID=26426062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9085021A Withdrawn JPH10237184A (en) 1996-12-25 1997-04-03 Antistatic thermoplastic resin molding and its production

Country Status (1)

Country Link
JP (1) JPH10237184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028115A (en) * 2011-07-29 2013-02-07 Toda Kogyo Corp Method for producing molded article, and molded article
KR20180048557A (en) * 2015-07-01 2018-05-10 아쉬.에.에프. Conductive composites made from coated powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028115A (en) * 2011-07-29 2013-02-07 Toda Kogyo Corp Method for producing molded article, and molded article
KR20180048557A (en) * 2015-07-01 2018-05-10 아쉬.에.에프. Conductive composites made from coated powder
JP2018523267A (en) * 2015-07-01 2018-08-16 エイチ.イー.エフ. Conductive composites produced from coating powders
US11001678B2 (en) 2015-07-01 2021-05-11 H.E.F. Conductive composite produced from coated powders

Similar Documents

Publication Publication Date Title
CA1269189A (en) Conductive thermosetting compositions and process for using same
US6537359B1 (en) Conductive ink or paint
CN1138991C (en) Ultra-flexible retroreflective sheeting with coated back surface
CA2608223A1 (en) Electrically conductive polymer resin and method for making same
WO2007019261A1 (en) Heat-transferring adhesive tape with improved functionality
US6368994B1 (en) Rapid processing of organic materials using short wavelength microwave radiation
US6103812A (en) Microwave curable adhesive
JP2011504961A (en) Adhesive sheet and manufacturing method thereof
TW201005049A (en) Dispersion for the application of a metal layer
TW201221586A (en) Ink composition and decorative sheet produced using same
CN1332400C (en) Coated conductive particle, conductive material, anisotropic conductive adhesive and anisotropic conductive junction structure
JP6718280B2 (en) Conductive particles, anisotropic conductive material and connection structure
JP4081839B2 (en) Electrode connecting adhesive and connection structure of fine electrode using the same
JPH10237184A (en) Antistatic thermoplastic resin molding and its production
KR100710957B1 (en) Anisotropic-electroconductive adhesive, circuit connection using the same, and circuit connection structure
JP2007056162A (en) Photocurable composition for molded article production involving semi-curing process
Trovalusci et al. Neural network approach to quality monitoring of injection molding of photoluminescent polymers
JP5052050B2 (en) Electrode connecting adhesive and connection structure of fine electrode using the same
JPH11236535A (en) Electrode connection adhesive and connected structure of fine electrodes
JP2003317546A (en) Conductive particle, conductive material, and anisotropic conductive film
JPS5846508A (en) Conductive material and method of producing same
KR100814278B1 (en) Using for b-stage cured resin films electromagnetic waves absorbent material and method for manufacturing the same
JPH01234435A (en) Electrically conductive polymer composite and production thereof
TWI314942B (en)
JP5954627B2 (en) Ink composition and decorative sheet using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051026

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051202