JPH10227837A - Apparatus and method for calibration of test voltage in semiconductor testing device - Google Patents

Apparatus and method for calibration of test voltage in semiconductor testing device

Info

Publication number
JPH10227837A
JPH10227837A JP9029482A JP2948297A JPH10227837A JP H10227837 A JPH10227837 A JP H10227837A JP 9029482 A JP9029482 A JP 9029482A JP 2948297 A JP2948297 A JP 2948297A JP H10227837 A JPH10227837 A JP H10227837A
Authority
JP
Japan
Prior art keywords
voltage
calibration
measured
true
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9029482A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ito
充浩 伊藤
Kimio Ogino
公男 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP9029482A priority Critical patent/JPH10227837A/en
Publication of JPH10227837A publication Critical patent/JPH10227837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an apparatus and a method in which the error between the set value and the true value of an output voltage at every discrete terminal of an IC to be inspected is corrected with a simple configuration by a method wherein the calibration value of every route is computed on the basis of a measured value to be measured by a calibration-voltage selection means which finds a measured value to be measured by a voltage measuring device in every route which is changed over by a scanner buffer circuit. SOLUTION: In a calibration-voltage selection circuit 50, a calibration mode which selects a reference-voltage generator 10 is set by a multiplexer circuit 20, and a measured value to be measured by a voltage measuring device 40 is found in every route which is changed over by a scanner buffer circuit 30. A calibration-voltage computing part 60 computes a calibration value in every route on the basis of the measured value to be measured in the calibration-voltage selection part 50. In a DUT voltage selection part 70, a true-voltage mode which selects every terminal of an IC to be inspected is set, and a measured value to be measured by the voltage measuring device 40 is found in every route which is changed over by the scanner buffer circuit 30. A true-voltage correction part 80 corrects a true voltage by using the calibration value which is computed in the calibration-voltage computing part 60 with reference to the measured value to be measured by the DUT voltage selection part 70.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検査ICに各端
子に試験信号を印加して良否を検査する半導体テスト装
置の試験電圧校正装置に関し、特にピン間電圧補正に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a test voltage calibrating device for a semiconductor test device for applying a test signal to each terminal of an IC to be inspected to check the quality of the semiconductor device, and more particularly to a correction of a voltage between pins.

【0002】[0002]

【従来の技術】本出願人は、例えば実開平1−3046
0号公報等で、半導体テスト装置のピンエレクトロニク
ス回路に用いられる試験電圧発生装置を提案している。
このような試験電圧発生装置では、被検査ICに対する
印加電圧が設定電圧と一致するように、電圧帰還回路を
設けている。
2. Description of the Related Art The applicant of the present invention has disclosed, for example, Japanese Utility Model Laid-Open No. 1-3046.
No. 0 proposes a test voltage generator used for a pin electronics circuit of a semiconductor test device.
In such a test voltage generator, a voltage feedback circuit is provided so that the voltage applied to the IC under test matches the set voltage.

【0003】しかし、被検査ICの端子と電圧測定器の
間には、スキャナ回路やバッファ回路が介在していて、
各端子毎に信号伝送経路のインピーダンスが相違してい
る。そこで、校正の際に被検査ICに対して正しい電圧
を印加しても、電圧測定器での測定値がバラツクという
課題があった。ここでは、電圧測定器での測定値を真電
圧と呼ぶことにする。従来は、出力電圧の設定値と真電
圧との誤差電圧は、信号伝送経路のインピーダンスの相
違に起因する程度では、問題にならない程度だったが、
近年の高精度化の要請により問題になってきた。
However, a scanner circuit and a buffer circuit are interposed between the terminal of the IC to be inspected and the voltage measuring device.
The impedance of the signal transmission path differs for each terminal. Therefore, there has been a problem that even when a correct voltage is applied to the IC to be inspected at the time of calibration, the measured value of the voltmeter varies. Here, the value measured by the voltmeter is referred to as a true voltage. In the past, the error voltage between the set value of the output voltage and the true voltage was not a problem as long as it was due to the difference in the impedance of the signal transmission path.
It has become a problem due to the recent demand for higher precision.

【0004】図6は、各ピン1〜nにおける出力電圧の
設定値と真電圧との説明図である。各ピンi(i=1,・・
・,n)に対する増幅器や経路のインピーダンスの特性に
より、出力電圧の設定値Vi'は真電圧Viに対して次の
関係を充足する。 Vi'=VixVgai+Vofi (1) ここで、Vgaiは増幅器のゲイン、Vofiはオフセット電
圧である。従来は、例えば特開平7−280885号公
報に開示されているように、個別のピン毎に出力電圧の
補正回路を設けて、ゲインやオフセット電圧の調整をし
ていた。
FIG. 6 is an explanatory diagram of a set value of an output voltage at each of the pins 1 to n and a true voltage. Each pin i (i = 1, ...
., N), the set value Vi 'of the output voltage satisfies the following relationship with the true voltage Vi, due to the impedance characteristics of the amplifier and the path with respect to the true voltage Vi. Vi ′ = VixVgai + Vofi (1) where Vgai is the gain of the amplifier and Vofi is the offset voltage. Conventionally, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-280885, an output voltage correction circuit is provided for each individual pin to adjust a gain and an offset voltage.

【0005】[0005]

【発明が解決しようとする課題】しかし、個別のピン毎
に出力電圧の補正回路を設けて、ゲインやオフセット電
圧の調整をしていたのでは、調整に時間が掛かると共
に、回路構成も複雑になるという課題があった。本発明
は上述の課題を解決したもので、簡易な構成で被検査I
Cの個別端子毎に出力電圧の設定値と真電圧との誤差を
補正できる半導体テスト装置の試験電圧校正装置を提供
することを目的とする。
However, if an adjustment circuit for the output voltage is provided for each individual pin to adjust the gain and the offset voltage, the adjustment takes time and the circuit configuration becomes complicated. There was a problem of becoming. The present invention has solved the above-mentioned problem, and has a simple configuration to inspect I
It is an object of the present invention to provide a test voltage calibration device for a semiconductor test device that can correct an error between a set value of an output voltage and a true voltage for each individual terminal of C.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成する本
発明は、被検査IC(DUT)の各端子と標準電圧発生
器10とを入力端子に接続し、選択信号に従って一方を
出力するマルチプレクサ回路20と、このマルチプレク
サ回路の各信号を入力し、順次切り換えて出力するスキ
ャナ・バッファ回路30と、このスキャナ・バッファ回
路の出力信号の電圧値を測定する電圧測定器40を備え
る半導体テスト装置の試験電圧校正装置であって、前記
マルチプレクサ回路で標準電圧発生器を選択し、前記ス
キャナ・バッファ回路で切り換えられた経路毎に電圧測
定器で測定される測定値を求める校正電圧選択手段50
と、この校正電圧選択手段で測定した測定値を基に、各
経路毎の校正値を演算する校正電圧演算手段60と、前
記マルチプレクサ回路で被検査ICの各端子を選択し、
前記スキャナ・バッファ回路で切り換えられた経路毎に
電圧測定器で測定される測定値を求めるDUT電圧選択
手段70と、このDUT電圧選択手段で測定した測定値
に対して、前記校正電圧演算手段で演算した当該経路の
校正値を用いて、真電圧に補正する真電圧補正手段80
とを具備することを特徴としている。
According to the present invention, there is provided a multiplexer for connecting each terminal of an IC under test (DUT) and a standard voltage generator to input terminals and outputting one of them according to a selection signal. A semiconductor test apparatus including a circuit 20, a scanner buffer circuit 30 for inputting and sequentially switching signals of the multiplexer circuit, and a voltage measuring device 40 for measuring a voltage value of an output signal of the scanner buffer circuit. A test voltage calibrating device, wherein a standard voltage generator is selected by said multiplexer circuit, and a calibration voltage selecting means 50 for obtaining a measurement value measured by a voltmeter for each path switched by said scanner / buffer circuit.
And a calibration voltage calculating means 60 for calculating a calibration value for each path based on the measurement value measured by the calibration voltage selecting means, and selecting each terminal of the IC under test by the multiplexer circuit,
DUT voltage selection means 70 for obtaining a measurement value measured by a voltage measuring device for each path switched by the scanner / buffer circuit, and a calibration voltage calculation means for the measurement value measured by the DUT voltage selection means. True voltage correction means 80 for correcting to a true voltage using the calculated calibration value of the path.
Are provided.

【0007】本発明の構成によれば、マルチプレクサ回
路20は、被検査ICの各端子と一対一に設けられ、各
端子と標準電圧発生器10とを択一的に選択する。スキ
ャナ・バッファ回路30は、複数個のマルチプレクサ回
路20と電圧測定器40とをn対1に接続するもので、
ここでは時分割により接続している。校正電圧選択手段
50と校正電圧演算手段60は、マルチプレクサ回路2
0が標準電圧発生器10を選択して、被検査ICの各端
子と対応する経路での校正値を演算する。DUT電圧選
択手段70と真電圧補正手段80は、マルチプレクサ回
路20が被検査ICの各端子を選択して測定値を求め、
校正値を加味して真電圧を求めている。
According to the configuration of the present invention, the multiplexer circuit 20 is provided in one-to-one correspondence with each terminal of the IC to be inspected, and alternatively selects each terminal and the standard voltage generator 10. The scanner / buffer circuit 30 connects the plurality of multiplexer circuits 20 and the voltage measuring device 40 in an n-to-1 manner.
Here, connection is made by time division. The calibration voltage selection means 50 and the calibration voltage calculation means 60 are
0 selects the standard voltage generator 10 and calculates a calibration value in a path corresponding to each terminal of the IC under test. The DUT voltage selecting means 70 and the true voltage correcting means 80 determine that the multiplexer circuit 20 selects each terminal of the IC under test to obtain a measured value,
True voltage is calculated by taking into account the calibration value.

【0008】[0008]

【発明の実施の形態】以下図面を用いて、本発明を説明
する。図1は本発明の適用される半導体テスト装置の試
験電圧校正装置の構成図である。図において、被検査I
C(DUT)は、ピン1〜nのn個の端子を有してい
る。標準電圧発生器10は、複数の標準電圧を発生する
ことができる。マルチプレクサ回路20は、ここでは被
検査ICの各端子1〜nと一対一に設けられたもので、
各マルチプレクサ回路20は被検査ICの一端子と標準
電圧発生器10の出力端子とを入力端子に接続し、選択
信号に従って一方を出力する。スキャナ・バッファ回路
30は、マルチプレクサ回路20の各信号を入力し、順
次切り換えて出力する。電圧測定器40は、スキャナ・
バッファ回路30の出力信号の電圧値を測定する。ここ
では、電圧測定器40が、アンプ42とA/D変換器4
4により構成されている。A/D変換器44は、例えば
18ビットの高精度のものを使用し、ディジタル化され
た測定値が演算用のμプロセッサに送られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a test voltage calibration device of a semiconductor test device to which the present invention is applied. In FIG.
C (DUT) has n terminals of pins 1 to n. The standard voltage generator 10 can generate a plurality of standard voltages. Here, the multiplexer circuit 20 is provided one-to-one with each of the terminals 1 to n of the IC under test.
Each multiplexer circuit 20 connects one terminal of the IC under test and the output terminal of the standard voltage generator 10 to the input terminal, and outputs one according to the selection signal. The scanner / buffer circuit 30 receives the signals of the multiplexer circuit 20 and sequentially switches and outputs the signals. The voltage measuring device 40 includes a scanner
The voltage value of the output signal of the buffer circuit 30 is measured. Here, the voltage measuring device 40 includes the amplifier 42 and the A / D converter 4.
4. As the A / D converter 44, a high-precision A / D converter of, for example, 18 bits is used, and the digitized measured value is sent to a μ processor for calculation.

【0009】試験電圧校正装置では、マルチプレクサ回
路20で標準電圧発生器10を選択する校正モードと、
マルチプレクサ回路20で被検査ICの各端子を選択す
る真電圧モードとがある。校正電圧選択部50は、校正
モードとしてスキャナ・バッファ回路30で切り換えら
れた経路毎に電圧測定器40で測定される測定値を求め
る。校正電圧演算部60は、校正電圧選択部50で測定
した測定値を基に、各経路毎の校正値を演算する。DU
T電圧選択部70は、真電圧モードとしてスキャナ・バ
ッファ回路30で切り換えられた経路毎に電圧測定器4
0で測定される測定値を求める。真電圧補正部80は、
DUT電圧選択部70で測定した測定値に対して、校正
電圧演算部60で演算した当該経路の校正値を用いて、
真電圧に補正する。これにより、マルチプレクサ回路2
0→スキャナ・バッファ回路30→電圧測定器40なる
信号伝送経路のインピーダンスの相違に起因する測定値
のバラツキを控除して、真電圧を求めることができる。
In the test voltage calibration apparatus, a calibration mode in which the multiplexer circuit 20 selects the standard voltage generator 10;
There is a true voltage mode in which each terminal of the IC under test is selected by the multiplexer circuit 20. The calibration voltage selection unit 50 obtains a measurement value measured by the voltage measuring device 40 for each path switched by the scanner / buffer circuit 30 as the calibration mode. The calibration voltage calculator 60 calculates a calibration value for each path based on the measurement value measured by the calibration voltage selector 50. DU
The T voltage selection unit 70 controls the voltage measurement device 4 for each path switched by the scanner / buffer circuit 30 as the true voltage mode.
The measured value measured at 0 is determined. The true voltage correction unit 80
For the measurement value measured by the DUT voltage selection unit 70, using the calibration value of the path calculated by the calibration voltage calculation unit 60,
Correct to true voltage. Thereby, the multiplexer circuit 2
The true voltage can be obtained by subtracting the variation of the measured value caused by the difference in the impedance of the signal transmission path from 0 → scanner buffer circuit 30 → voltage measuring device 40.

【0010】このように校正された装置の動作を説明す
る。図2は校正モードにおける構成ブロック図である。
図において、校正電圧選択部50が校正モードとしてし
ているので、被検査ICは省略してある。校正電圧演算
部60は、校正電圧選択部50で測定した測定値を基
に、各経路毎の校正値を演算して、補正値テーブル90
を作成する。
The operation of the thus calibrated apparatus will be described. FIG. 2 is a configuration block diagram in the calibration mode.
In the figure, since the calibration voltage selection unit 50 is in the calibration mode, the IC to be inspected is omitted. The calibration voltage calculation unit 60 calculates a calibration value for each path based on the measurement value measured by the calibration voltage selection unit 50, and generates a correction value table 90.
Create

【0011】図3は校正電圧演算部60の演算の一例を
示す図である。標準電圧発生器10は、マルチプレクサ
20への入力電圧として、低標準電圧VO1と高標準電圧
O2を発生する。このとき、電圧測定器40で測定する
電圧が、それぞれVm1、Vm2であるとすれば、経路のゲ
インVgaiと、オフセット電圧Vofiは次式で与えられ
る。 Vgai=(VO2−VO1)/(Vm2−Vm1) (2) Vofi=VO1−Vgai・Vm1 (3)
FIG. 3 is a diagram showing an example of the operation of the calibration voltage operation unit 60. The standard voltage generator 10 generates a low standard voltage V O1 and a high standard voltage V O2 as input voltages to the multiplexer 20. At this time, if the voltages measured by the voltage measuring device 40 are Vm 1 and Vm 2 , respectively, the gain Vgai of the path and the offset voltage Vofi are given by the following equations. Vgai = (V O2 -V O1) / (Vm 2 -Vm 1) (2) Vofi = V O1 -Vgai · Vm 1 (3)

【0012】図4は、試験電圧校正装置の校正モードと
真電圧モードを説明する流れ図である。なお、ここでは
被検査ICのピンi(=1〜n)に対応する経路のゲイン
をAi、オフセット電圧をBiと表す。まず、校正モード
では校正電圧選択部50によって、被検査ICの各ピン
iについて、低標準電圧VO1と高標準電圧VO2を印加し
て、電圧測定器40により出力電圧Vm1、Vm2を測定す
る(S1)。次に、校正電圧演算部60では、(2)、(3)
式に従って、各ピンの経路におけるゲインAiとオフセ
ット電圧Biを演算して(S2)、補正値テーブル90
に格納する(S3)。
FIG. 4 is a flowchart for explaining the calibration mode and the true voltage mode of the test voltage calibration apparatus. Here, the gain of the path corresponding to the pin i (= 1 to n) of the IC under test is represented by Ai, and the offset voltage is represented by Bi. First, in the calibration mode, a low standard voltage V O1 and a high standard voltage V O2 are applied to each pin i of the IC under test by the calibration voltage selection unit 50, and the output voltages Vm 1 and Vm 2 are measured by the voltage measuring device 40. Measure (S1). Next, in the calibration voltage calculation unit 60, (2), (3)
The gain Ai and the offset voltage Bi in the path of each pin are calculated according to the equation (S2), and the correction value table 90 is calculated.
(S3).

【0013】続いて真電圧モードでは、DUT電圧選択
部70により被検査ICのピン毎に電圧測定器40で電
圧を測定する。そして、真電圧補正部80により次式に
従って真電圧に補正する(S4)。 VOi=Vmi・Ai+Bi (4) この真電圧を用いて、被検査ICの検査機能として予め
定められた演算を行う(S5)。
Subsequently, in the true voltage mode, the voltage is measured by the voltage measuring device 40 for each pin of the IC under test by the DUT voltage selecting section 70. Then, the true voltage correction unit 80 corrects the true voltage according to the following equation (S4). V O i = Vmi · Ai + Bi (4) Using this true voltage, a predetermined operation is performed as a test function of the IC under test (S5).

【0014】図5は、真電圧モードにおける構成ブロッ
ク図である。DUT電圧選択部70は、真電圧モードと
して被検査ICのピン毎に電圧測定器40により測定値
を求める。真電圧補正部80は、各ピンに対応するゲイ
ンAiとオフセットBiを補正値テーブル90を参照し
て求め、真電圧に補正する。
FIG. 5 is a configuration block diagram in the true voltage mode. The DUT voltage selector 70 obtains a measured value by the voltage measuring device 40 for each pin of the IC under test in the true voltage mode. The true voltage corrector 80 obtains the gain Ai and the offset Bi corresponding to each pin with reference to the correction value table 90, and corrects the true voltage.

【0015】次に、具体的な数値例を用いて説明する。
ピン1について、低標準電圧VO1として-1.0Vを印加し
たところ、電圧測定器40で測定した電圧Vm1が-1.2V
となった。高標準電圧VO2として2.0Vを印加したとこ
ろ、電圧測定器40で測定した電圧Vm2が2.7Vとなっ
た。すると、経路のゲインVga1は1.3、オフセット電圧
Vof1は0.1Vとなる。同様にして、ピン2について、低
標準電圧VO1として-2.0Vを印加したところ、電圧測定
器40で測定した電圧Vm1が-1.5Vとなった。高標準電
圧VO2として2.0Vを印加したところ、電圧測定器40
で測定した電圧Vm2が2.5Vとなった。すると、経路の
ゲインVga1は1.0、オフセット電圧Vof1は0.5Vとな
る。
Next, a description will be given using specific numerical examples.
When a low standard voltage V O1 of −1.0 V is applied to the pin 1, the voltage Vm 1 measured by the voltmeter 40 becomes −1.2 V
It became. When 2.0 V was applied as the high standard voltage V O2 , the voltage Vm 2 measured by the voltmeter 40 became 2.7 V. Then, the gain Vga 1 pathway 1.3, the offset voltage Vof 1 becomes 0.1 V. Similarly, when -2.0 V was applied to the pin 2 as the low standard voltage V O1 , the voltage Vm 1 measured by the voltmeter 40 became -1.5 V. When 2.0 V was applied as the high standard voltage V O2 , a voltage measuring device 40
The voltage Vm 2 measured at 2.5 V was 2.5 V. Then, the gain Vga 1 pathway 1.0, the offset voltage Vof 1 becomes 0.5V.

【0016】今度は、被検査ICのピン1の出力電圧Vm
1は1.0Vであり、ピン2の出力電圧Vm2は1.2Vが得ら
れたとする。LSIテスタの測定値に対する演算は、ピ
ン1の出力電圧Vm1とピン2の出力電圧Vm2の平均をと
るものとすれば、補正前の値は1.1Vとなる。これに対
して、真電圧を求めると次のようになる。 ピン1の真電圧:VO1=Vm1・A1+B1=1.0・1.3+0.1=1.4V (5) ピン2の真電圧:VO2=Vm2・A2+B2=1.0・1.0+0.5=1.5V (6) 両者の真電圧の平均をとると、1.45Vが得られる。
This time, the output voltage Vm of the pin 1 of the IC under test is
It is assumed that 1 is 1.0 V and the output voltage Vm 2 of the pin 2 is 1.2 V. Operations on the measured value of the LSI tester, if one takes the average of the output voltage Vm 1 and pin 2 output voltage Vm 2 pin 1, the value before correction becomes 1.1V. On the other hand, when the true voltage is obtained, it becomes as follows. True voltage of pin 1: V O1 = Vm 1 · A 1 + B 1 = 1.0 · 1.3 + 0.1 = 1.4 V (5) True voltage of pin 2: V O2 = Vm 2 · A 2 + B 2 = 1.0 · 1.0 + 0 .5 = 1.5V (6) Taking the average of both true voltages gives 1.45V.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、校
正モードと真電圧モードを用いて、マルチプレクサ回路
20→スキャナ・バッファ回路30→電圧測定器40な
る信号伝送経路のインピーダンスの相違に起因する測定
値のバラツキを補償しているので、伝送経路のバラツキ
に依存しない高精度の計測ができるという効果がある。
また、校正モードと真電圧モードを切り換えているの
で、従来のように個別のピン毎に出力電圧の補正回路を
設けて、ゲインやオフセット電圧の調整をする場合に比
較して、構成が簡単になるという効果もある。
As described above, according to the present invention, the calibration mode and the true voltage mode are used to cause the difference in the impedance of the signal transmission path of the multiplexer circuit 20 → the scanner / buffer circuit 30 → the voltage measuring device 40. Since the dispersion of the measured values is compensated, there is an effect that high-precision measurement can be performed without depending on the dispersion of the transmission path.
Also, since the mode is switched between the calibration mode and the true voltage mode, the configuration is simpler than in the conventional case where an output voltage correction circuit is provided for each individual pin and the gain and offset voltage are adjusted. There is also the effect of becoming.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の適用される半導体テスト装置の試験電
圧校正装置の構成図である。
FIG. 1 is a configuration diagram of a test voltage calibration device of a semiconductor test device to which the present invention is applied.

【図2】校正モードにおける構成ブロック図である。FIG. 2 is a configuration block diagram in a calibration mode.

【図3】校正電圧演算部60の演算の一例を示す図であ
る。
FIG. 3 is a diagram illustrating an example of a calculation performed by a calibration voltage calculator 60;

【図4】試験電圧校正装置の校正モードと真電圧モード
を説明する流れ図である。
FIG. 4 is a flowchart illustrating a calibration mode and a true voltage mode of the test voltage calibration device.

【図5】真電圧モードにおける構成ブロック図である。FIG. 5 is a configuration block diagram in a true voltage mode.

【図6】各ピン1〜nにおける出力電圧の設定値と真電
圧との説明図である。
FIG. 6 is an explanatory diagram of a set value of an output voltage at each of the pins 1 to n and a true voltage.

【符号の説明】[Explanation of symbols]

DUT 被検査IC 10 標準電圧発生器 20 マルチプレクサ 30 スキャナ・バッファ回路 40 電圧測定器 50 校正電圧選択部 60 校正電圧演算部 70 DUT電圧選択部 80 真電圧補正部 DUT IC under test 10 Standard voltage generator 20 Multiplexer 30 Scanner buffer circuit 40 Voltage measuring device 50 Calibration voltage selector 60 Calibration voltage calculator 70 DUT voltage selector 80 True voltage correction unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被検査IC(DUT)の各端子と標準電圧
発生器(10)とを入力端子に接続し、選択信号に従っ
て一方を出力するマルチプレクサ回路(20)と、 このマルチプレクサ回路の各信号を入力し、順次切り換
えて出力するスキャナ・バッファ回路(30)と、 このスキャナ・バッファ回路の出力信号の電圧値を測定
する電圧測定器(40)を備える半導体テスト装置の試
験電圧校正装置であって、 前記マルチプレクサ回路で標準電圧発生器を選択し、前
記スキャナ・バッファ回路で切り換えられた経路毎に電
圧測定器で測定される測定値を求める校正電圧選択手段
(50)と、 この校正電圧選択手段で測定した測定値を基に、各経路
毎の校正値を演算する校正電圧演算手段(60)と、 前記マルチプレクサ回路で被検査ICの各端子を選択
し、前記スキャナ・バッファ回路で切り換えられた経路
毎に電圧測定器で測定される測定値を求めるDUT電圧
選択手段(70)と、 このDUT電圧選択手段で測定した測定値に対して、前
記校正電圧演算手段で演算した当該経路の校正値を用い
て、真電圧に補正する真電圧補正手段(80)と、 を具備することを特徴とする半導体テスト装置の試験電
圧校正装置。
1. A multiplexer circuit (20) for connecting each terminal of an IC under test (DUT) and a standard voltage generator (10) to an input terminal and outputting one according to a selection signal; A scanner buffer circuit (30) for inputting and sequentially switching and outputting a voltage; and a voltage measuring device (40) for measuring a voltage value of an output signal of the scanner buffer circuit. Calibration voltage selection means (50) for selecting a standard voltage generator by the multiplexer circuit and obtaining a measurement value measured by the voltage measurement device for each path switched by the scanner / buffer circuit; A calibration voltage calculating means (60) for calculating a calibration value for each path based on the measurement value measured by the means; A DUT voltage selection means (70) for selecting a terminal and obtaining a measurement value measured by a voltmeter for each path switched by the scanner / buffer circuit; and for a measurement value measured by the DUT voltage selection means. A true voltage correcting means (80) for correcting to a true voltage by using the calibration value of the path calculated by the calibration voltage calculating means, and a test voltage calibrating apparatus for a semiconductor test apparatus.
【請求項2】前記校正電圧選択手段は、標準電圧発生器
から複数の標準電圧を出力して、それぞれ電圧測定器に
より測定し、 前記校正電圧演算手段は、前記校正電圧選択手段による
複数の測定値から当該経路におけるゲインとオフセット
電圧を演算することを特徴とする請求項1記載の半導体
テスト装置の試験電圧校正装置。
2. The calibration voltage selection means outputs a plurality of standard voltages from a standard voltage generator and measures each with a voltage measuring device, and the calibration voltage calculation means performs a plurality of measurements with the calibration voltage selection means. 2. The test voltage calibration device for a semiconductor test device according to claim 1, wherein a gain and an offset voltage in the path are calculated from the values.
【請求項3】前記校正電圧選択手段は、標準電圧発生器
から複数の標準電圧を出力して、それぞれ電圧測定器に
より測定し、 前記校正電圧演算手段は、前記校正電圧選択手段による
複数の測定値から当該経路におけるゲインとオフセット
電圧を演算して、各経路におけるゲインとオフセット電
圧を補正値テーブルに格納し、 前記真電圧補正手段は、この補正値テーブルをすること
を特徴とする請求項1記載の半導体テスト装置の試験電
圧校正装置。
3. The calibration voltage selection means outputs a plurality of standard voltages from a standard voltage generator and measures each with a voltage measuring device. The calibration voltage calculation means performs a plurality of measurements by the calibration voltage selection means. The gain and offset voltage in each path are calculated from the values, and the gain and offset voltage in each path are stored in a correction value table, and the true voltage correction means performs this correction value table. A test voltage calibration device for the semiconductor test device according to the above.
【請求項4】被検査IC(DUT)の各端子と標準電圧
発生器(10)とを入力端子に接続し、選択信号に従っ
て一方を出力するマルチプレクサ回路(20)と、 このマルチプレクサ回路の各信号を入力し、順次切り換
えて出力するスキャナ・バッファ回路(30)と、 このスキャナ・バッファ回路の出力信号の電圧値を測定
する電圧測定器(40)を備える半導体テスト装置の試
験電圧校正方法であって、 前記マルチプレクサ回路で標準電圧発生器を選択し、前
記スキャナ・バッファ回路で切り換えられた経路毎に電
圧測定器で測定される測定値を求める校正電圧選択工程
と、 この校正電圧選択手段で測定した測定値を基に、各経路
毎の校正値を演算する校正電圧演算工程と、 前記マルチプレクサ回路で被検査ICの各端子を選択
し、前記スキャナ・バッファ回路で切り換えられた経路
毎に電圧測定器で測定される測定値を求めるDUT電圧
選択工程と、 このDUT電圧選択手段で測定した測定値に対して、前
記校正電圧演算手段で演算した当該経路の校正値を用い
て、真電圧に補正する真電圧補正工程と、 を具備することを特徴とする半導体テスト装置の試験電
圧校正方法。
4. A multiplexer circuit (20) for connecting each terminal of an IC under test (DUT) and a standard voltage generator (10) to an input terminal and outputting one according to a selection signal; A scanner buffer circuit (30) for inputting and sequentially switching and outputting the same, and a test voltage calibration method for a semiconductor test apparatus comprising a voltage measuring device (40) for measuring a voltage value of an output signal of the scanner / buffer circuit. A calibration voltage selection step of selecting a standard voltage generator by the multiplexer circuit and obtaining a measurement value measured by a voltage measurement device for each path switched by the scanner / buffer circuit; A calibration voltage calculation step of calculating a calibration value for each path based on the measured values, and selecting each terminal of the IC under test by the multiplexer circuit; A DUT voltage selection step of obtaining a measurement value measured by a voltage measuring device for each path switched by the scanner / buffer circuit; and calculating by the calibration voltage calculation means the measurement value measured by the DUT voltage selection means And a true voltage correction step of correcting to a true voltage by using the calibration value of the path as described above.
JP9029482A 1997-02-14 1997-02-14 Apparatus and method for calibration of test voltage in semiconductor testing device Pending JPH10227837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029482A JPH10227837A (en) 1997-02-14 1997-02-14 Apparatus and method for calibration of test voltage in semiconductor testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029482A JPH10227837A (en) 1997-02-14 1997-02-14 Apparatus and method for calibration of test voltage in semiconductor testing device

Publications (1)

Publication Number Publication Date
JPH10227837A true JPH10227837A (en) 1998-08-25

Family

ID=12277310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029482A Pending JPH10227837A (en) 1997-02-14 1997-02-14 Apparatus and method for calibration of test voltage in semiconductor testing device

Country Status (1)

Country Link
JP (1) JPH10227837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281292A (en) * 2000-04-03 2001-10-10 Advantest Corp Method and device for calibrating voltage generator of ic testing device
KR100499624B1 (en) * 1998-12-31 2005-09-02 주식회사 하이닉스반도체 Voltage generator test device for semiconductor memory devices
JP2015055516A (en) * 2013-09-11 2015-03-23 日置電機株式会社 Substrate inspection device and standard

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499624B1 (en) * 1998-12-31 2005-09-02 주식회사 하이닉스반도체 Voltage generator test device for semiconductor memory devices
JP2001281292A (en) * 2000-04-03 2001-10-10 Advantest Corp Method and device for calibrating voltage generator of ic testing device
JP4502448B2 (en) * 2000-04-03 2010-07-14 株式会社アドバンテスト Voltage generator calibration method and voltage generator calibration device in IC test equipment
JP2015055516A (en) * 2013-09-11 2015-03-23 日置電機株式会社 Substrate inspection device and standard

Similar Documents

Publication Publication Date Title
US7138819B2 (en) Differential voltage measuring apparatus and semiconductor testing apparatus
KR960008338A (en) Timing correction method and circuit thereof for measuring signal of semiconductor test device
US5875198A (en) Semiconductor device testing apparatus
JP2000009792A (en) Test burn-in system and test burn-in system calibrating method therefor
JPH0856160A (en) Abnormality detector for a/d converter
JP2000295102A (en) Digital calibration method and system for a/d converter or d/a converter
JP4625453B2 (en) Measuring circuit with improved accuracy
JPH10227837A (en) Apparatus and method for calibration of test voltage in semiconductor testing device
JP2008151718A (en) Semiconductor testing apparatus
JP3628789B2 (en) Automatic calibration system for semiconductor test system
JPH09119853A (en) Method and apparatus for correction of output value of sensor
JP3083033B2 (en) measuring device
JP2008096354A (en) Semiconductor testing apparatus
TWI842062B (en) Systems and methods using impedance simulation for calibrating an impedance measurement device, and an impedance measurement device that is calibrated using impedance simulation
JPH09325174A (en) Semiconductor inspecting instrument
JP7117340B2 (en) Measuring system and measuring method
JP3003282B2 (en) Circuit inspection equipment
KR100815537B1 (en) Ic tester
JP2624920B2 (en) Vertical amplifier calibration system for multi-phenomenon oscilloscope
KR100406107B1 (en) Subscriber line measuring method in testing unit of exchange
JPH11295394A (en) Apparatus for testing analog/digital converter
JP2002098738A (en) Ic tester
JP2023147461A (en) Measurement circuit and measurement system using the same
JPH10307168A (en) Signal generator and measuring apparatus
JPH0783963A (en) Calibration of dc testing apparatus