JPH10225804A - Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor - Google Patents

Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor

Info

Publication number
JPH10225804A
JPH10225804A JP9026498A JP2649897A JPH10225804A JP H10225804 A JPH10225804 A JP H10225804A JP 9026498 A JP9026498 A JP 9026498A JP 2649897 A JP2649897 A JP 2649897A JP H10225804 A JPH10225804 A JP H10225804A
Authority
JP
Japan
Prior art keywords
cutting edge
vapor deposition
phase
thickness
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9026498A
Other languages
Japanese (ja)
Inventor
Toru Nakamura
徹 中村
Atsushi Sugawara
淳 菅原
Kazuhiro Kono
和弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9026498A priority Critical patent/JPH10225804A/en
Publication of JPH10225804A publication Critical patent/JPH10225804A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of chipping in a cutting edge even if intermittent cutting is performed by double cutting by similarly forming a hard coated layer in a specific average layer thickness by a chemical vapor deposition method and/or a physical vapor deposition method. SOLUTION: In a vacuum, heat treatment of heating is performed on a base body on which at least a part in the thickness direction of a growth suppressing hard layer and a de-β phase zone of a cutting edge ridgeline part is removed by honing work, and a de-β phase zone having an average layer thickness of 5 to 30μm is formed in the substantially same thickness over a cutting face, the cutting edge ridgeline part and a flank relief in a base body surface part. Next, a hard coated layer composed of one kind of single layer or two or more kinds of plural layers among TiC, TiN, TiCN, TiCO and TiCNO and also Al2 O3 , is formed in an average layer thickness of 5 to 20μm over the whole surface of the base body by a chemical vapor deposition method and/or a physical vapor deposition method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、すぐれた耐欠損
性を有し、したがって特に耐欠損性が要求される、例え
ば鋼の断続重切削などに用いた場合にも切刃に欠損の発
生なく、すぐれた切削性能を長期に亘って発揮する表面
被覆超硬合金製切削工具(以下、被覆超硬工具と云
う)、およびその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent fracture resistance, and therefore, is required to have particularly high fracture resistance. The present invention relates to a surface-coated cemented carbide cutting tool that exhibits excellent cutting performance over a long period of time (hereinafter referred to as a coated cemented carbide tool), and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、一般に被覆超硬工具が、図2の切
刃部縦断面を光学顕微鏡で観察した組織による概略工程
図で示される通り、(a) Coおよび/またはNiを
主成分とする結合相形成成分:5〜15重量%、Ti、
Ta、Nb、Zr、およびHfの窒化物および炭窒化物
(以下、それぞれTiN、TaN、NbN、ZrN、お
よびHfN、さらにTiCN、TaCN、NbCN、Z
rCN、およびHfCNで示す)、並びにこれらの2種
以上の固溶体のうちの1種または2種以上からなるβ相
形成成分:1〜10重量%を含有する炭化タングステン
基超硬合金(以下、単に超硬合金と云う)で構成され、
かつ表面部に、すくい面、すくい面と逃げ面の交わる切
刃稜線部、および逃げ面にかけて層厚が5〜30μmの
β相が存在しない、すなわち基体内部に比して硬さの低
い脱β相帯域が存在する基体を用意し、(b) 上記基
体の切刃稜線部に、すくい面側からみた幅で0.03〜
0.3mmのホーニング加工を施して所定寸法とし、
(c)上記ホーニング加工後の基体の全面に亘って、T
iの炭化物、窒化物、炭窒化物、炭酸化物、および炭窒
酸化物、さらに酸化アルミニウム(以下、それぞれTi
C、TiN、TiCN、TiCO、およびTiCNO、
さらにAl2 3 で示す)のうちの1種の単層または2
種以上の複層からなる硬質被覆層を、同じく化学蒸着法
および/または物理蒸着法にて5〜20μmの平均層厚
で形成する、以上(a)〜(c)の基本工程によって製
造され、またこの被覆超硬工具が、鋼や鋳鉄などの連続
切削や断続切削に用いられることも知られている。
2. Description of the Related Art Conventionally, a coated carbide tool is generally used as a cutting tool shown in FIG.
Schematic process by microstructure of the blade section observed by optical microscope
As shown in the figure, (a) Co and / or Ni
Bonding phase forming component as a main component: 5 to 15% by weight, Ti,
Nitride and carbonitride of Ta, Nb, Zr, and Hf
(Hereinafter, TiN, TaN, NbN, ZrN,
And HfN, and also TiCN, TaCN, NbCN, Z
rCN, and HfCN), and two of these.
Β phase consisting of one or more of the above solid solutions
Forming component: Tungsten carbide containing 1 to 10% by weight
It is composed of base cemented carbide (hereinafter simply referred to as cemented carbide),
The rake face, the face where the rake face meets the flank face
The layer thickness is 5 to 30 μm over the ridgeline and flank.
Absence of β phase, that is, lower hardness than inside the substrate
A substrate having a β-phase zone is prepared, and (b)
0.03 to width of the cutting edge of the body as viewed from the rake face
0.3mm honing processing to give the specified dimensions,
(C) T over the entire surface of the substrate after honing
i carbides, nitrides, carbonitrides, carbonates, and carbonitrides
Oxide and aluminum oxide (hereinafter referred to as Ti
C, TiN, TiCN, TiCO, and TiCNO;
Further AlTwoO ThreeMonolayer or 2 of
Hard coating layer consisting of multiple layers
And / or 5-20 μm average layer thickness by physical vapor deposition
Formed by the above basic steps (a) to (c).
And the coated carbide tool is used for continuous machining of steel, cast iron, etc.
It is also known to be used for cutting and intermittent cutting.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削装置
のFA化および高性能化はめざましく、かつ切削加工の
省力化および省エネ化に対する要求も強く、これに伴
い、切削加工は連続切削は勿論のこと、断続切削も可能
であるばかりでなく、高送りや高切り込みなどの重切削
にも適用できる切削工具が求められる傾向にあるが、上
記の従来被覆超硬工具においては、上記のホーニング加
工で切刃稜線部の脱β相帯域の厚さ方向の一部あるいは
全部が除去されるため、切刃稜線部の脱β相帯域の厚さ
はすくい面および逃げ面における脱β相帯域の厚さに比
して相対的に薄く、あるいはこれが皆無となるため、例
えばこれを鋼の断続重切削に用いた場合、特に切刃稜線
部に欠けが発生し易く、実用に供することができないの
が現状である。
On the other hand, in recent years, the cutting equipment has been remarkably changed to FA and high performance, and there is also a strong demand for labor saving and energy saving of the cutting work. In addition, not only intermittent cutting is possible, but also cutting tools that can be applied to heavy cutting such as high feed and high cutting tend to be demanded. Because part or all in the thickness direction of the β-phase zone of the cutting edge is removed in the thickness direction, the thickness of the β-phase zone at the cutting edge is the thickness of the β-phase zone at the rake face and flank. Since it is relatively thin compared to that, or it is completely absent, for example, when it is used for intermittent heavy cutting of steel, chipping tends to occur especially at the cutting edge ridge line, and it can not be used practically It is the current situation.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具に着目
し、これの耐欠損性向上をはかるべく研究を行った結
果、被覆超硬工具を製造するに際して、図1の切刃部縦
断面を光学顕微鏡で観察した組織による概略工程図で示
される通り、Coおよび/またはNiを主成分とする結
合相形成成分:5〜15重量%、TiN、TaN、Nb
N、ZrN、およびHfN、さらにTiCN、TaC
N、NbCN、ZrCN、およびHfCN、並びにこれ
らの2種以上の固溶体のうちの1種または2種以上から
なるβ相形成成分:1〜10重量%を含有する超硬合金
で構成され、かつ表面部に、切刃部縦断面を光学顕微鏡
で観察した組織(以下、同じ)で、すくい面、切刃稜線
部、および逃げ面にかけて層厚が5〜30μmのβ相が
存在しない、基体内部に比して硬さの低い脱β相帯域が
存在する基体の表面に、あらかじめTi、Zr、および
Hfの炭化物および炭窒化物(以下、それぞれTiC、
ZrC、およびHfC、さらにTiCN、ZrCN、お
よびHfCNで示す)のうちの1種の単層または2種以
上の複層からなる硬質層を化学蒸着法および/または物
理蒸着法にて1〜5μmの平均層厚で形成した状態で、
すくい面側からみた幅で0.03〜0.3mmのホーニ
ング加工を施し、このホーニング加工で切刃稜線部の上
記硬質層、および同じく切刃稜線部の脱β相帯域の厚さ
方向の一部あるいは全部が除去されるため、切刃稜線部
の脱β相帯域の厚さはすくい面および逃げ面における脱
β相帯域の厚さに比して相対的に薄く、あるいはこれが
皆無となるが、これを真空雰囲気中、1350〜150
0℃の温度に加熱すると、切刃稜線部の基体表面部にお
けるβ相が分解し、これの構成成分である窒素(N)成
分が真空雰囲気に放出され、これによって切刃稜線部の
基体表面部における脱β相帯域の厚さ方向の形成が進行
し、一方すくい面および逃げ面の表面部における脱β相
帯域のさらなる厚さ方向の形成(肉厚化)は、上記ホー
ニング加工で除去されずに残留した上記硬質層によって
N成分の真空雰囲気への放出が阻止されるために行われ
ないことから、前記加熱温度に所定時間保持することに
よって、基体表面部にはすくい面、切刃稜線部、および
逃げ面にかけて実質的に同じ厚さの脱β相帯域が形成さ
れるようになり、この状態で、上記の硬質被覆層を、同
じく化学蒸着法および/または物理蒸着法にて5〜20
μmの平均層厚で形成すると、製造された被覆超硬工具
は、基体表面部に実質的に同じ厚さで存在する脱β相帯
域によってすぐれた耐欠損性を示すようになるという研
究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, the above-mentioned conventional coated carbide tools were focused on, and as a result of researching to improve the fracture resistance thereof, when manufacturing the coated carbide tools, the cutting edge longitudinal section of FIG. As shown in the schematic process drawing of the structure observed with an optical microscope, a binder phase forming component containing Co and / or Ni as a main component: 5 to 15% by weight, TiN, TaN, Nb
N, ZrN, and HfN, as well as TiCN, TaC
N, NbCN, ZrCN, and HfCN, and a β-phase-forming component composed of one or more of two or more of these solid solutions, composed of a cemented carbide containing 1 to 10% by weight and having a surface In the part, there is a β-phase with a layer thickness of 5 to 30 μm over the rake face, the cutting edge ridge part, and the flank, with a structure in which the longitudinal section of the cutting edge part is observed with an optical microscope (the same applies hereinafter). On the surface of the substrate where the de-beta phase zone having a relatively low hardness exists, carbides and carbonitrides of Ti, Zr, and Hf (hereinafter, TiC,
ZrC, and HfC, and also TiCN, ZrCN, and HfCN), and a hard layer composed of a single layer or a multilayer of two or more layers is formed by chemical vapor deposition and / or physical vapor deposition to a thickness of 1 to 5 μm. In the state formed with the average layer thickness,
Honing is performed with a width of 0.03 to 0.3 mm as viewed from the rake face side, and the honing is applied to the hard layer of the cutting edge ridge and the thickness direction of the β-phase removal zone of the cutting edge ridge. Since part or all is removed, the thickness of the β-phase zone at the cutting edge ridge portion is relatively thin compared to the thickness of the β-phase zone at the rake face and the flank, or there is no such zone. In a vacuum atmosphere, 1350-150
When heated to a temperature of 0 ° C., the β phase on the surface of the substrate at the cutting edge ridge is decomposed, and a nitrogen (N) component, which is a component thereof, is released into a vacuum atmosphere. The formation in the thickness direction of the de-β-phase zone in the portion proceeds, while the further formation of the β-phase zone in the thickness direction (thickening) at the rake face and the flank surface is removed by the honing process. Since the release of the N component into the vacuum atmosphere is prevented by the remaining hard layer without being removed, by keeping the heating temperature for a predetermined time, the rake face and the cutting edge ridge line are formed on the surface of the substrate. And the flank, a substantially equal thickness of the de-beta phase zone is formed, and in this state, the hard coating layer is formed by the chemical vapor deposition method and / or the physical vapor deposition method. 20
Research has shown that when formed at an average layer thickness of μm, the coated coated carbide tool produced exhibits excellent fracture resistance due to the de-beta phase zone present at substantially the same thickness on the substrate surface. I got it.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、(a) Coおよび/またはNi
を主成分とする結合相形成成分:5〜15重量%、Ti
N、TaN、NbN、ZrN、およびHfN、さらにT
iCN、TaCN、NbCN、ZrCN、およびHfC
N、並びにこれらの2種以上の固溶体のうちの1種また
は2種以上からなるβ相形成成分:1〜10重量%を含
有する超硬合金、望ましくはCoおよび/またはNiを
主成分とする結合相形成成分:5〜15重量%、Ti
N、TaN、NbN、ZrN、およびHfN、さらにT
iCN、TaCN、NbCN、ZrCN、およびHfC
N、並びにこれらの2種以上の固溶体のうちの1種また
は2種以上からなるβ相形成成分:1〜10重量%を含
有し、残りが炭化タングステン(以下、WCで示す)と
不可避不純物からなる組成を有する超硬合金で構成さ
れ、かつ表面部に、すくい面、すくい面と逃げ面の交わ
る切刃稜線部、および逃げ面にかけて層厚が5〜30μ
mのβ相が存在しない、基体内部に比して硬さの低い脱
β相帯域が存在する基体を用意し、(b) 上記基体の
表面に、TiC、ZrC、およびHfC、さらにTiC
N、ZrCN、およびHfCNのうちの1種の単層また
は2種以上の複層からなる脱β相帯域の成長抑止硬質層
を化学蒸着法および/または物理蒸着法にて1〜5μm
の平均層厚で形成し、(c) 上記成長抑止硬質層形成
の基体の切刃稜線部にホーニング加工(通常、すくい面
側からみた幅で0.03〜0.3mm)を施して所定寸
法とし、(d) 上記ホーニング加工によって切刃稜線
部の成長抑止硬質層および脱β相帯域の厚さ方向の少く
とも一部が除去された基体に、真空中、1350〜15
00℃の温度に加熱の熱処理を施して、真空雰囲気に直
接さらされる切刃稜線部での基体から真空雰囲気への脱
窒を行って切刃稜線部だけの脱β相帯域の厚さ方向の形
成をはかることにより、基体表面部にすくい面、切刃稜
線部、および逃げ面にかけて実質的に同じ厚さにして、
平均層厚が5〜30μmの脱β相帯域を形成し、(e)
上記熱処理後の基体の全面に亘って、TiC、Ti
N、TiCN、TiCO、およびTiCNO、さらにA
2 3 のうちの1種の単層または2種以上の複層から
なる硬質被覆層を、同じく化学蒸着法および/または物
理蒸着法にて5〜20μmの平均層厚で形成する、以上
(a)〜(e)の基本工程によって被覆超硬工具を製造
する方法、並びに、上記方法によって製造された、
(a) Coおよび/またはNiを主成分とする結合相
形成成分:5〜15重量%、TiN、TaN、NbN、
ZrN、およびHfN、さらにTiCN、TaCN、N
bCN、ZrCN、およびHfCN、並びにこれらの2
種以上の固溶体のうちの1種または2種以上からなるβ
相形成成分:1〜10重量%を含有する超硬合金、望ま
しくはCoおよび/またはNiを主成分とする結合相形
成成分:5〜15重量%、TiN、TaN、NbN、Z
rN、およびHfN、さらにTiCN、TaCN、Nb
CN、ZrCN、およびHfCN、並びにこれらの2種
以上の固溶体のうちの1種または2種以上からなるβ相
形成成分:1〜10重量%を含有し、残りがWCと不可
避不純物からなる組成を有する超硬合金で構成された基
体の表面部に、すくい面、切刃稜線部、および逃げ面に
かけて実質的に同じ厚さにして、平均層厚が5〜30μ
mのβ相が存在しない、基体内部に比して硬さの低い脱
β相帯域が存在し、(b) また、基体表面上の切刃稜
線部を除くすくい面と逃げ面には、化学蒸着法および/
または物理蒸着法にて1〜5μmの平均層厚で形成され
た、TiC、ZrC、およびHfC、さらにTiCN、
ZrCN、およびHfCNのうちの1種の単層または2
種以上の複層からなる脱β相帯域の成長抑止硬質層が存
在し、(c) さらに、成長抑止硬質層および基体切刃
稜線部の全面に亘って、同じく化学蒸着法および/また
は物理蒸着法にて形成された、TiC、TiN、TiC
N、TiCO、およびTiCNO、さらにAl2 3
うちの1種の単層または2種以上の複層からなる硬質被
覆層が5〜20μmの平均層厚で存在する断面構造をも
った被覆超硬工具、に特徴を有するものである。
The present invention has been made on the basis of the above research results, and (a) Co and / or Ni
Phase forming component mainly composed of: 5 to 15% by weight, Ti
N, TaN, NbN, ZrN, and HfN, plus T
iCN, TaCN, NbCN, ZrCN, and HfC
N, and a β-phase forming component composed of one or more of these two or more solid solutions: a cemented carbide containing 1 to 10% by weight, preferably Co and / or Ni as a main component Bound phase forming component: 5 to 15% by weight, Ti
N, TaN, NbN, ZrN, and HfN, plus T
iCN, TaCN, NbCN, ZrCN, and HfC
N and one or more of these two or more solid solutions, β-phase-forming component: 1 to 10% by weight, the balance being tungsten carbide (hereinafter, referred to as WC) and unavoidable impurities. And a layer thickness of 5 to 30 μm over the rake face, the cutting edge ridge line where the rake face and the flank face intersect, and the flank face.
A substrate in which there is no β phase of m and a de-β phase zone having a lower hardness than the inside of the substrate is prepared. (b) TiC, ZrC, HfC, and TiC are formed on the surface of the substrate.
A single layer of one of N, ZrCN, and HfCN or a growth-suppressing hard layer composed of a multilayer of two or more layers in a β-phase removal zone is formed to a thickness of 1 to 5 μm by a chemical vapor deposition method and / or a physical vapor deposition method.
(C) Honing (usually 0.03 to 0.3 mm in width as viewed from the rake face side) on the cutting edge ridge of the substrate on which the above-described growth-inhibiting hard layer is formed, (D) The substrate from which at least a part of the growth-inhibiting hard layer at the edge of the cutting edge and the at least part of the β-removed phase zone in the thickness direction has been removed by the honing process, is subjected to a vacuum at 1350 to 15
A heat treatment of heating to a temperature of 00 ° C. is performed, and the denitrification from the substrate to the vacuum atmosphere is performed at the cutting edge ridge portion directly exposed to the vacuum atmosphere. By measuring the formation, the rake surface on the substrate surface, the cutting edge ridge portion, and the flank surface to have substantially the same thickness,
(E) forming a de-β-phase zone having an average layer thickness of 5 to 30 μm;
TiC, Ti over the entire surface of the substrate after the heat treatment
N, TiCN, TiCO, and TiCNO, plus A
A hard coating layer composed of one kind of single layer or two or more kinds of l 2 O 3 is similarly formed with an average layer thickness of 5 to 20 μm by a chemical vapor deposition method and / or a physical vapor deposition method. (A) a method for producing a coated carbide tool by the basic steps of (e), and
(A) A binder phase forming component containing Co and / or Ni as a main component: 5 to 15% by weight, TiN, TaN, NbN,
ZrN and HfN, as well as TiCN, TaCN, N
bCN, ZrCN, and HfCN, and their 2
Β consisting of one or more of the solid solutions
Phase forming component: cemented carbide containing 1 to 10% by weight, desirably a binder phase forming component containing Co and / or Ni as a main component: 5 to 15% by weight, TiN, TaN, NbN, Z
rN and HfN, as well as TiCN, TaCN, Nb
CN, ZrCN, and HfCN, and a β-phase forming component consisting of one or more of two or more of these solid solutions: 1 to 10% by weight, and the balance being WC and unavoidable impurities. The surface portion of the substrate made of cemented carbide having the rake face, the cutting edge ridge portion, and the flank face have substantially the same thickness, and the average layer thickness is 5 to 30 μm.
There is a β-phase zone having a lower hardness than the inside of the substrate, in which there is no β phase of m, and (b) a rake face and a flank except for a cutting edge ridge on the surface of the substrate have chemical Evaporation method and / or
Alternatively, TiC, ZrC, and HfC formed with an average layer thickness of 1 to 5 μm by physical vapor deposition, and TiCN,
ZrCN, and one monolayer or 2 of HfCN
There is a hard layer for inhibiting the growth of the β-removed phase zone composed of a plurality of layers of at least one kind. , TiN, TiC formed by the method
N, TiCO, TiCNO, and a coating superstructure having a cross-sectional structure in which a hard coating layer composed of a single layer or two or more layers of Al 2 O 3 is present with an average layer thickness of 5 to 20 μm. A hard tool.

【0006】つぎに、この発明の被覆超硬工具、および
その製造法において、基体の組成、脱β相帯域、脱β相
帯域の成長抑止硬質層、および硬質被覆層の平均層厚、
さらに熱処理温度を上記の通りに数値限定した理由を説
明する。
Next, in the coated cemented carbide tool of the present invention and the method of manufacturing the same, the composition of the substrate, the β-free zone, the growth-suppressing hard layer in the β-free zone, and the average thickness of the hard coating layer,
Further, the reason why the heat treatment temperature is numerically limited as described above will be described.

【0007】(1) 基体の結合相形成成分の含有量 結合相形成成分には、焼結性を促進し、もって基体の強
度を向上させる作用があるが、その含有量が5重量%未
満では前記作用に所望の効果が得られず、一方その含有
量が15重量%を越えると、耐摩耗性が急激に低下する
ようになることから、その含有量を5〜15重量%と定
めた。
(1) Content of Boundary Phase Forming Component of Substrate The binding phase forming component has an effect of promoting sintering properties and thus improving the strength of the substrate. If the desired effect cannot be obtained in the above-mentioned operation, and if the content exceeds 15% by weight, the abrasion resistance rapidly decreases, so the content is set to 5 to 15% by weight.

【0008】(2) 基体のβ相形成成分の含有量 β相形成成分には、基体の硬さを向上させて耐摩耗性を
向上させる作用があるが、その含有量が1重量%未満で
は前記作用に所望の効果が得られず、一方その含有量が
10重量%を越えると、耐欠損性が低下するようになる
ことから、その含有量を1〜10重量%と定めた。
(2) Content of β-phase-forming component of substrate The β-phase-forming component has the effect of improving the hardness of the substrate and improving the wear resistance. However, if the content is less than 1% by weight, If the desired effect cannot be obtained in the above operation, and if the content exceeds 10% by weight, the fracture resistance decreases, so the content is set to 1 to 10% by weight.

【0009】(3) 基体表面部の脱β相帯域の平均層
厚 上記の通り脱β相帯域には、実質的にβ相が存在せず、
これによって基体内部に比して相対的に低い硬さを有す
るようになり、耐欠損性を向上させる作用があるが、そ
の平均層厚が5μm未満では、所望の耐欠損性を確保す
ることができず、一方その平均層厚が30μmを越える
と、基体に塑性変形が発生し易くなり、この結果切刃が
偏摩耗して短時間で使用寿命に至るようになることか
ら、その平均層厚を5〜30μmと定めた。
(3) Average layer thickness of de-β-phase zone on substrate surface As described above, β-phase does not substantially exist in the de-β-phase zone.
As a result, the material has a relatively low hardness as compared with the inside of the base, and has an effect of improving the fracture resistance. However, if the average layer thickness is less than 5 μm, the desired fracture resistance can be secured. On the other hand, if the average layer thickness exceeds 30 μm, plastic deformation is likely to occur in the base, resulting in uneven wear of the cutting edge and a short service life. Was determined to be 5 to 30 μm.

【0010】(4) 成長抑止硬質層の平均層厚 その平均層厚が1μm未満では、基体表面部のすくい面
と逃げ面における脱β相帯域の成長抑止に所望の効果が
得られず、一方前記の脱β相帯域の成長抑止効果は5μ
mまでの平均層厚で十分であることから、その平均層厚
を1〜5μmと定めた。
(4) Average Layer Thickness of the Growth Inhibiting Hard Layer If the average layer thickness is less than 1 μm, the desired effect cannot be obtained in suppressing the growth of the β-free zone at the rake face and flank face of the substrate surface. The growth suppression effect of the above-mentioned de-β-phase zone is 5 μm.
Since an average layer thickness up to m is sufficient, the average layer thickness was determined to be 1 to 5 μm.

【0011】(5) 硬質被覆層の平均層厚 その平均層厚が5μm未満では、所望のすぐれた耐摩耗
性を確保することができず、一方その平均層厚が20μ
mを越えると、耐欠損性が低下し、切刃に欠損やチッピ
ング(微小欠け)などが発生し易くなることから、その
平均層厚を5〜20μmと定めた。
(5) Average Layer Thickness of Hard Coating Layer If the average layer thickness is less than 5 μm, the desired excellent abrasion resistance cannot be secured, while the average layer thickness is 20 μm.
If it exceeds m, the chipping resistance is reduced, and chipping (chip chipping) or the like is likely to occur on the cutting edge. Therefore, the average layer thickness is set to 5 to 20 μm.

【0012】(6) 熱処理温度 その温度が1350℃未満では、切刃稜線部における脱
β相帯域の形成が遅く、実用的でなく、一方その温度が
1500℃を越えると、基体が軟化し、短命化の原因と
なる変形を起し易くなることから、その温度を1350
〜1500℃と定めた。
(6) Heat treatment temperature If the temperature is lower than 1350 ° C., the formation of the β-phase zone at the edge of the cutting edge is slow and impractical. On the other hand, if the temperature exceeds 1500 ° C., the substrate softens, Since the deformation that causes a short life is likely to occur, the temperature is set to 1350.
℃ 1500 ° C.

【0013】[0013]

【発明の実施の形態】つぎに、この発明を実施例により
具体的に説明する。原料粉末として、いずれも1〜3μ
mの範囲内の平均粒径を有するTiC粉末、TaC粉
末、ZrC粉末、HfC粉末、TiN粉末、ZrN粉
末、TiCN粉末、(Ti,W)C(重量比で、以下同
じ、TiC/WC=30/70)粉末、(Ta,Nb)
C(TaC/NbC=90/10)粉末、(Ti,W)
CN(TiC/TiN/WC=24/20/56)粉
末、Co粉末、Ni粉末、VC粉末、およびCr32
粉末を用意し、これら原料粉末を表1に示される配合組
成に配合し、ボールミルで72時間湿式混合し、乾燥し
た後、所定形状の圧粉体にプレス成形し、この圧粉体を
0.05torrの真空中、1380〜1450℃の範
囲内の所定温度に1時間保持の条件で真空焼結すること
によりISO規格120408のスローアウエイチップ
形状をもった超硬合金基体A〜Fをそれぞれ製造した。
上記基体A〜Fの切刃部縦断面の光学顕微鏡写真にもと
づき(以下同じ)、基体表面部の脱β相帯域の平均層厚
を測定したところ、表1に示される結果を示した。
Next, the present invention will be specifically described with reference to examples. As raw material powder, each is 1-3μ
m, a TiC powder, a TaC powder, a ZrC powder, a HfC powder, a TiN powder, a ZrN powder, a TiCN powder, and a (Ti, W) C (TiC / WC = 30 by weight ratio) / 70) Powder, (Ta, Nb)
C (TaC / NbC = 90/10) powder, (Ti, W)
CN (TiC / TiN / WC = 24/20/56) powder, Co powder, Ni powder, VC powder, and Cr 3 C 2
Powders are prepared, and these raw material powders are blended in the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact having a predetermined shape. Cemented carbide substrates A to F having a throw-away chip shape according to ISO standard 120408 were manufactured by vacuum sintering at a predetermined temperature in the range of 1380 to 1450 ° C. for 1 hour in a vacuum of 05 torr. .
The average layer thickness of the β-phase-free zone on the surface of the substrate was measured based on the optical micrographs of the longitudinal sections of the cutting edges of the substrates A to F (the same applies hereinafter). The results shown in Table 1 were obtained.

【0014】つぎに、上記基体A〜Fの表面に、化学蒸
着法を用い、通常の条件で、それぞれ表2に示される組
成および平均層厚の脱β相帯域の成長抑止硬質層を形成
した後、同じく表2に示される加工量のホーニング加工
を施し、この時点で基体表面部の脱β相帯域の平均層厚
を測定したところ表2に示される結果を示し、ついで、
0.01〜0.1torrの範囲内の所定の圧力の真空
中、1370〜1470℃の範囲内の所定の温度に0.
5〜2時間の範囲内の所定の時間保持の条件で熱処理を
施し、同様にこの時点でも基体表面部の脱β相帯域の平
均層厚を測定したところ表3に示される結果を示し、さ
らに、同じく化学蒸着法を用い、通常の条件で、それぞ
れ表3に示される組成および平均層厚の硬質被覆層を形
成することからなる本発明法1〜12を実施し、本発明
被覆超硬工具1〜12をそれぞれ製造した。また、比較
の目的で、表5、6に示される通り、脱β相帯域の成長
抑止硬質層の形成、および脱β相帯域形成のための熱処
理を行わない以外は同一の条件で従来法1〜12を行
い、従来被覆超硬工具1〜12をそれぞれ製造した。
Next, on the surfaces of the substrates A to F, a chemical vapor deposition method was used to form a growth-inhibiting hard layer having a composition and an average layer thickness shown in Table 2 in the de-beta phase zone under normal conditions. Thereafter, the same amount of honing as shown in Table 2 was performed, and at this time, the average layer thickness of the de-β-phase zone on the substrate surface was measured. The result shown in Table 2 was shown.
In a vacuum at a predetermined pressure in a range of 0.01 to 0.1 torr, a predetermined temperature in a range of 1370 to 1470 ° C. is set to 0.
Heat treatment was performed under the condition of holding for a predetermined time within the range of 5 to 2 hours. Similarly, at this time, the average layer thickness of the de-β-phase zone on the surface of the substrate was measured, and the results shown in Table 3 were obtained. In the same manner, using the chemical vapor deposition method, under normal conditions, the present invention methods 1 to 12 comprising forming a hard coating layer having the composition and the average layer thickness shown in Table 3, respectively, were carried out. 1 to 12 were produced respectively. Further, for comparison purposes, as shown in Tables 5 and 6, the conventional method 1 was used under the same conditions except that the formation of the hard layer for suppressing the growth of the β-free zone and the heat treatment for the formation of the β-free zone were not performed. To 12 were performed to produce conventional coated carbide tools 1 to 12, respectively.

【0015】この結果得られた各種の被覆超硬工具につ
いて、 被削材:SCM439(硬さ:Hb230)の角材、 切削速度:100m/min、 送り:0.375mm/rev、 切り込み:3mm、 切削時間:10分、 の条件で鋼の乾式高送り断続切削試験をおこない、切刃
の逃げ面摩耗幅を測定した。この測定結果を表6に示し
た。
Worked material: square material of SCM439 (hardness: Hb230), cutting speed: 100 m / min, feed: 0.375 mm / rev, cutting depth: 3 mm, cutting A dry high-feed intermittent cutting test of steel was performed under the following conditions: 10 minutes, and the flank wear width of the cutting edge was measured. Table 6 shows the measurement results.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【発明の効果】表2〜6に示される通り、本発明法1〜
12で製造された本発明被覆超硬工具1〜12は、いず
れも基体表面部に、すくい面、切刃稜線部、および逃げ
面にかけて実質的に同じ厚さの脱β相帯域が存在し、こ
れによって鋼の高送り断続切削でも切刃に欠損の発生な
く、すぐれた耐摩耗性を示すのに対して、従来法1〜1
2で製造された従来被覆超硬工具1〜12においては、
特に基体表面部の切刃稜線部に脱β相帯域が存在せず、
これが原因で上記の苛酷な条件での切削では切刃に欠損
の発生が避けられず、比較的短時間で使用寿命に至るこ
とが明らかである。上述のように、この発明の方法によ
れば、すぐれた耐摩耗性を保持した状態で、耐欠損性の
すぐれた被覆超硬工具を製造することができ、したがっ
てこの結果得られた被覆超硬工具は、通常の条件での連
続切削および断続切削は勿論のこと、一段と苛酷な条件
での切削となる断続切削を重切削で行っても切刃に欠損
の発生なく、すぐれた切削性能を長期に亘って発揮する
のである。
As shown in Tables 2 to 6, the methods 1 to 5 of the present invention are shown.
Each of the coated carbide tools 1 to 12 of the present invention manufactured in No. 12 has a rake surface, a cutting edge ridge portion, and a β-phase zone having substantially the same thickness over the flank on the surface of the substrate, As a result, the cutting edge is not broken even at high feed interrupted cutting of steel and shows excellent wear resistance.
In the conventional coated carbide tools 1 to 12 manufactured in 2,
In particular, there is no β-phase zone at the cutting edge ridge on the surface of the base,
For this reason, it is apparent that in the cutting under the above-mentioned severe conditions, the occurrence of chipping of the cutting edge is inevitable, and the service life is relatively short. As described above, according to the method of the present invention, it is possible to produce a coated carbide tool having excellent fracture resistance while maintaining excellent wear resistance. The tool is capable of continuous cutting and intermittent cutting under normal conditions, as well as heavy cutting for intermittent cutting, which is cutting under more severe conditions. It is exerted over.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を示す概略工程図である。FIG. 1 is a schematic process drawing showing the method of the present invention.

【図2】従来方法を示す概略工程図である。FIG. 2 is a schematic process diagram showing a conventional method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 16/30 C23C 16/30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C23C 16/30 C23C 16/30

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Coおよび/またはNiを主成分とする
結合相形成成分:5〜15重量%、Ti、Ta、Nb、
Zr、およびHfの窒化物および炭窒化物、並びにこれ
らの2種以上の固溶体のうちの1種または2種以上から
なるβ相形成成分:1〜10重量%を含有する炭化タン
グステン基超硬合金で構成された基体の表面部に、切刃
部縦断面を光学顕微鏡で観察した組織で、すくい面、す
くい面と逃げ面の交わる切刃稜線部、および逃げ面にか
けて実質的に同じ厚さにして、平均層厚が5〜30μm
のβ相が存在しない脱β相帯域が存在し、 また、基体表面上の切刃稜線部を除くすくい面と逃げ面
には、化学蒸着法および/または物理蒸着法にて1〜5
μmの平均層厚で形成された、Ti、Zr、およびHf
の炭化物および炭窒化物のうちの1種の単層または2種
以上の複層からなる脱β相帯域の成長抑止硬質層が存在
し、 さらに、成長抑止硬質層および基体切刃稜線部の全面に
亘って、同じく化学蒸着法および/または物理蒸着法に
て形成された、Tiの炭化物、窒化物、炭窒化物、炭酸
化物、および炭窒酸化物、さらに酸化アルミニウムのう
ちの1種の単層または2種以上の複層からなる硬質被覆
層が5〜20μmの平均層厚で存在する表面被覆超硬合
金で構成したことを特徴とする耐欠損性のすぐれた表面
被覆超硬合金製切削工具。
1. A binder phase forming component containing Co and / or Ni as a main component: 5 to 15% by weight, Ti, Ta, Nb,
Nitride and carbonitride of Zr and Hf, and a β-phase forming component consisting of one or more of two or more of these solid solutions: a tungsten carbide-based cemented carbide containing 1 to 10% by weight On the surface of the base body composed of, the rake face, the cutting edge ridge line where the rake face and the flank intersect, and the flank have substantially the same thickness, And the average layer thickness is 5 to 30 μm
And a rake face and a flank except for a cutting edge on the surface of the base are 1 to 5 by chemical vapor deposition and / or physical vapor deposition.
Ti, Zr, and Hf formed with an average layer thickness of μm
A single layer of at least one of carbides and carbonitrides of the above, and a growth-inhibiting hard layer in the de-β-phase zone comprising a multilayer of two or more types. Over one another, also formed by a chemical vapor deposition method and / or a physical vapor deposition method, comprising a carbide, a nitride, a carbonitride, a carbonate and a carbonitride of Ti, and one of aluminum oxide. Characterized in that the hard coating layer composed of one or more layers is composed of a surface-coated cemented carbide having an average layer thickness of 5 to 20 μm, and the surface-coated cemented carbide cutting having excellent fracture resistance. tool.
【請求項2】 (a) Coおよび/またはNiを主成
分とする結合相形成成分:5〜15重量%、Ti、T
a、Nb、Zr、およびHfの窒化物および炭窒化物、
並びにこれらの2種以上の固溶体のうちの1種または2
種以上からなるβ相形成成分:1〜10重量%を含有す
る炭化タングステン基超硬合金で構成され、かつ表面部
に、切刃部縦断面を光学顕微鏡で観察した組織で、すく
い面、すくい面と逃げ面の交わる切刃稜線部、および逃
げ面にかけて層厚が5〜30μmのβ相が存在しない脱
β相帯域が存在する基体を用意し、 (b) 上記基体の表面に、Ti、Zr、およびHfの
炭化物および炭窒化物のうちの1種の単層または2種以
上の複層からなる脱β相帯域の成長抑止硬質層を化学蒸
着法および/または物理蒸着法にて1〜5μmの平均層
厚で形成し、(c) 上記成長抑止硬質層形成の基体の
切刃稜線部にホーニング加工を施し て所定寸法とし、 (d) 上記ホーニング加工によって切刃稜線部の成長
抑止硬質層および脱β相帯域の少くとも一部が除去され
た基体に、真空中、1350〜1500℃の温度に加熱
の熱処理を施して、真空雰囲気に直接さらされる切刃稜
線部での基体から真空雰囲気への脱窒を行って切刃稜線
部だけの脱β相帯域の厚さ方向の形成をはかることによ
り、基体表面部にすくい面、切刃稜線部、および逃げ面
にかけて実質的に同じ厚さにして、平均層厚が5〜30
μmの脱β相帯域を形成し、 (e) 上記熱処理後の基体の全面に亘って、Tiの炭
化物、窒化物、炭窒化物、炭酸化物、および炭窒酸化
物、さらに酸化アルミニウムのうちの1種の単層または
2種以上の複層からなる硬質被覆層を、同じく化学蒸着
法および/または物理蒸着法にて5〜20μmの平均層
厚で形成する、以上(a)〜(e)の基本工程からなる
ことを特徴とする耐欠損性のすぐれた表面被覆超硬合金
製切削工具の製造法。
2. (a) A bonding phase forming component containing Co and / or Ni as a main component: 5 to 15% by weight, Ti, T
nitrides and carbonitrides of a, Nb, Zr, and Hf;
And one or two of these two or more solid solutions
Β-phase forming component composed of at least one species: a tungsten carbide-based cemented carbide containing 1 to 10% by weight, and a rake face and a rake on its surface with a structure obtained by observing a longitudinal section of a cutting edge with an optical microscope. A substrate having a cutting edge ridge line where the surface and the flank intersect, and a β-phase free zone having a layer thickness of 5 to 30 μm over the flank where there is no β-phase; (b) Ti, The growth-inhibiting hard layer in the β-phase removal zone composed of one kind of single layer or two or more kinds of carbides and carbonitrides of Zr and Hf is formed by chemical vapor deposition and / or physical vapor deposition. (C) Honing is applied to the cutting edge ridge of the substrate on which the above-mentioned growth-inhibiting hard layer is formed to a predetermined size, and (d) The growth inhibiting hard of the cutting edge ridge is formed by the above-mentioned honing. Layer and at least part of the de-beta phase zone The removed substrate is subjected to a heat treatment of heating to a temperature of 1350 to 1500 ° C. in a vacuum, and denitrification from the substrate to the vacuum atmosphere is performed at the cutting edge ridge portion directly exposed to the vacuum atmosphere, thereby performing the cutting edge ridge portion. Only the thickness of the de-β-phase zone is measured in the thickness direction, so that the rake face, the cutting edge ridge, and the flank face are substantially the same thickness on the substrate surface portion, and the average layer thickness is 5 to 30.
(e) Ti carbides, nitrides, carbonitrides, carbonates, carbonitrides, and aluminum oxides are formed over the entire surface of the substrate after the heat treatment. A hard coating layer composed of one kind of single layer or two or more kinds of multiple layers is similarly formed by chemical vapor deposition and / or physical vapor deposition with an average layer thickness of 5 to 20 μm. A method for producing a surface-coated cemented carbide cutting tool with excellent fracture resistance, comprising the basic steps of (1).
JP9026498A 1997-02-10 1997-02-10 Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor Withdrawn JPH10225804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9026498A JPH10225804A (en) 1997-02-10 1997-02-10 Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9026498A JPH10225804A (en) 1997-02-10 1997-02-10 Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH10225804A true JPH10225804A (en) 1998-08-25

Family

ID=12195163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9026498A Withdrawn JPH10225804A (en) 1997-02-10 1997-02-10 Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH10225804A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797369B2 (en) * 2001-09-26 2004-09-28 Kyocera Corporation Cemented carbide and cutting tool
US6872234B2 (en) * 1999-12-24 2005-03-29 Kyocera Corporation Cutting member
WO2006104004A1 (en) * 2005-03-28 2006-10-05 Kyocera Corporation Super hard alloy and cutting tool
JP2008246664A (en) * 2007-02-01 2008-10-16 Seco Tools Ab CUTTING TOOL INSERT COVERED WITH alpha-ALUMINA HARDENED BY TEXTURE
EP1803514A3 (en) * 2005-12-30 2009-02-25 Sandvik Intellectual Property AB Cutting tool insert
WO2010068168A1 (en) * 2008-12-10 2010-06-17 Seco Tools Ab Method of making cutting tool inserts with high demands on dimensional accuracy
JP2015182154A (en) * 2014-03-20 2015-10-22 三菱マテリアル株式会社 Surface-coated cutting tool having superior chipping resistance
DE102015213755A1 (en) * 2015-07-21 2017-01-26 Kennametal Inc. Method for producing a cutting tool and cutting tool
CN106604796A (en) * 2014-09-03 2017-04-26 三菱综合材料株式会社 Surface-coated cutting tool and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872234B2 (en) * 1999-12-24 2005-03-29 Kyocera Corporation Cutting member
US7018726B2 (en) 2001-09-26 2006-03-28 Kyocera Corporation Cemented carbide and cutting tool
US6797369B2 (en) * 2001-09-26 2004-09-28 Kyocera Corporation Cemented carbide and cutting tool
US7972409B2 (en) 2005-03-28 2011-07-05 Kyocera Corporation Cemented carbide and cutting tool
WO2006104004A1 (en) * 2005-03-28 2006-10-05 Kyocera Corporation Super hard alloy and cutting tool
JPWO2006104004A1 (en) * 2005-03-28 2008-09-04 京セラ株式会社 Cemented carbide and cutting tools
JP5221951B2 (en) * 2005-03-28 2013-06-26 京セラ株式会社 Cemented carbide and cutting tools
KR100996838B1 (en) 2005-03-28 2010-11-26 쿄세라 코포레이션 Super hard alloy and cutting tool
JP2011080153A (en) * 2005-03-28 2011-04-21 Kyocera Corp Hard metal and cutting tool
JP2011099164A (en) * 2005-03-28 2011-05-19 Kyocera Corp Cemented carbide and cutting tool
EP1803514A3 (en) * 2005-12-30 2009-02-25 Sandvik Intellectual Property AB Cutting tool insert
US7736734B2 (en) 2005-12-30 2010-06-15 Sandvik Intellectual Property Ab Cutting tool insert
JP2008246664A (en) * 2007-02-01 2008-10-16 Seco Tools Ab CUTTING TOOL INSERT COVERED WITH alpha-ALUMINA HARDENED BY TEXTURE
JP2013107200A (en) * 2007-02-01 2013-06-06 Seco Tools Ab CUTTING TOOL INSERT COATED WITH TEXTURE-CURED α-ALUMINA
WO2010068168A1 (en) * 2008-12-10 2010-06-17 Seco Tools Ab Method of making cutting tool inserts with high demands on dimensional accuracy
US8512807B2 (en) 2008-12-10 2013-08-20 Seco Tools Ab Method of making cutting tool inserts with high demands on dimensional accuracy
JP2015182154A (en) * 2014-03-20 2015-10-22 三菱マテリアル株式会社 Surface-coated cutting tool having superior chipping resistance
CN106604796A (en) * 2014-09-03 2017-04-26 三菱综合材料株式会社 Surface-coated cutting tool and manufacturing method thereof
US10358712B2 (en) 2014-09-03 2019-07-23 Mitsubishi Materials Corporation Surface-coated cutting tool and method of manufacturing the same
DE102015213755A1 (en) * 2015-07-21 2017-01-26 Kennametal Inc. Method for producing a cutting tool and cutting tool

Similar Documents

Publication Publication Date Title
EP2638993B1 (en) Surface-coated cutting tool
JP3001849B2 (en) Coated hard tool
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JPH10225804A (en) Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP3331929B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer
EP1043414B1 (en) Cermet cutting insert
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP3358530B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4761136B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting
JPH11277304A (en) Milling tool excellent in wear resistance
KR102629997B1 (en) Cutting insert having hard film with excellent wear resistance
JP2734311B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP3109272B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP2000246511A (en) Throw-away cutting tip made of surface coated super hard alloy exhibiting excellent initial conformity at its hard coated layer
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP7373110B2 (en) Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance
JP3391264B2 (en) Milling tool with excellent fracture resistance
JPH11236671A (en) Throw away cutting tip made of surface-coated cemented carbide excellent in chipping resistance
JP3208981B2 (en) Surface-coated titanium carbonitride cermet cutting tool with hard coating layer with excellent adhesion
JP2564898B2 (en) Manufacturing method for surface coated tungsten carbide based cemented carbide cutting tools
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511