JP3972299B2 - Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting - Google Patents

Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting Download PDF

Info

Publication number
JP3972299B2
JP3972299B2 JP2002288269A JP2002288269A JP3972299B2 JP 3972299 B2 JP3972299 B2 JP 3972299B2 JP 2002288269 A JP2002288269 A JP 2002288269A JP 2002288269 A JP2002288269 A JP 2002288269A JP 3972299 B2 JP3972299 B2 JP 3972299B2
Authority
JP
Japan
Prior art keywords
layer
type
cutting
crystal structure
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002288269A
Other languages
Japanese (ja)
Other versions
JP2004122269A (en
Inventor
稔晃 植田
拓也 早樋
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002288269A priority Critical patent/JP3972299B2/en
Publication of JP2004122269A publication Critical patent/JP2004122269A/en
Application granted granted Critical
Publication of JP3972299B2 publication Critical patent/JP3972299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層を構成するα型結晶構造の酸化アルミニウム(以下、α型Al23で示す)層における引張残留応力がきわめて小さく、したがって、各種の鋼や鋳鉄などの切削加工を、前記α型Al23層を厚膜化した状態で、高い熱的機械的衝撃を伴なう高速重切削条件で行なった場合にも切刃部がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体の表面に、
(a)いずれも0.5〜15μmの平均層厚を有し、かつ蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層(以下、これらを総称してTi化合物層という)と、
(b)1〜5μmの平均層厚を有し、蒸着形成した状態でα型の結晶構造を有する蒸着α型酸化アルミニウム層(以下、蒸着α型Al23層という)、
で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている(例えば、特許文献1参照)。
【0003】
また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層や蒸着α型Al23 層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の靭性向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている(特許文献2、3参照)。
【0004】
【特許文献1】
特開平6−31503号公報
【特許文献2】
特開平6−8010号公報
【特許文献3】
特開平7−328808号公報
【0005】
【発明が解決しようとする課題】
一方、近年の切削加工の省力化および省エネ化、さらに低コスト化に対する要求は強く、これに伴い、切削加工装置の高性能化と相俟って、硬質被覆層を構成する蒸着α型Al23層は一段と厚膜化の傾向を深めるばかりでなく、切削加工は高速で、かつ高切り込みや高送りなどの重切削条件で行なわれる傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、これを特に前記蒸着α型Al23層を厚膜化した状態で、高速重切削加工条件で用いると、前記蒸着α型Al23層における引張残留応力がきわめて高いために、切削時に発生する高い熱的機械的衝撃によって、切刃部にチッピング(微少欠け)が発生し易くなり、この結果摩耗進行が促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、硬質被覆層のα型Al23層を厚膜化した状態で、高速重切削加工に用いても、切刃部がすぐれた耐チッピング性を発揮する被覆サーメット工具を開発すべく、研究を行った結果、
被覆サーメット工具の硬質被覆層を構成するα型Al23層の全体平均層厚を5〜20μmに厚膜化した状態で、その層厚方向の上方部および下方部は、通常の条件で蒸着形成した蒸着α型Al23で構成し、その層厚方向の中間部を、前記α型Al23層の全体平均層厚に占める割合で、25〜55%に相当する厚さに亘って、加熱変態α型Al23、すなわち通常の条件で蒸着形成したκ型またはθ型の結晶構造を有するAl23に、加熱処理、望ましくはAr雰囲気中、温度:1000℃以上で所定時間保持の条件で加熱処理を施して、前記κ型またはθ型の結晶構造をα型結晶構造に変態してなる加熱変態α型Al23で構成すると、この結果の厚膜化したα型Al23層は、これを構成する前記加熱変態α型Al23によって、引張残留応力が著しく低減したものになり、したがって硬質被覆層のα型Al23層が前記の加熱変態α型Al23と蒸着α型Al23で構成された被覆サーメット工具においては、前記α型Al23層を厚膜化した状態で、高速重切削加工条件で用いても切刃部にチッピングの発生が著しく抑制されることから、長期に亘ってすぐれた切削性能を発揮するようになる、という研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、サーメット基体の表面に、
(a)TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなるTi化合物層と、
(b)α型Al23層、
で構成された硬質被覆層を10〜35μmの全体平均層厚で蒸着形成してなる被覆サーメット工具において、
上記α型Al23層の平均層厚を5〜20μmとし、その層厚方向の中間部を、前記α型Al23層の平均層厚に占める割合で、25〜55%に相当する厚さを、蒸着形成した状態でκ型またはθ型の結晶構造を有する酸化アルミニウム(以下、Al23で示す)に加熱変態処理を施して結晶構造をα型結晶構造とした加熱変態α型Al23で構成し、残りの層厚方向上方部および下方部を、蒸着形成した状態でα型の結晶構造を有する蒸着α型Al23で構成してなる、
高速重切削ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
【0008】
なお、この発明の被覆サーメット工具の硬質被覆層の構成層の平均層厚を上記の通りに限定したのは以下に示す理由によるものである。
(a)α型Al23層の平均層厚
その平均層厚が5μm未満では、厚膜化が不十分で、満足な使用寿命の延命化を図ることができず、一方その平均層厚が20μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を5〜20μmと定めた。
【0009】
(b)加熱変態α型Al23のα型Al23層に占める割合
加熱変態α型Al23には、上記の通りこれの存在によって上記α型Al23層全体を蒸着α型Al23で構成した場合に比して引張残留応力を低減する作用があるが、その厚さ割合が前記α型Al23層の平均層厚に対する割合で、25%未満では所望のすぐれた引張残留応力低減効果を確保することができず、その厚さ割合が同55%を越えると、層自体の強度が急激に低下し、これが原因で切刃部にチッピングが発生し易くなることから、その厚さ割合を前記α型Al23層の平均層厚に占める割合で25〜55%と定めた。
【0010】
(c)硬質被覆層の平均層厚
その平均層厚が10μm未満では、十分な使用寿命を確保することができず、一方その平均層厚が35μmを越えて厚くなりすぎると、切刃部にチッピングが発生し易くなることから、その平均層厚を10〜35μmと定めた。
【0011】
【発明の実施の形態】
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも0.5〜4μmの範囲内の所定の平均粒径を有するWC粉末、(Ti,W)C(質量比で、以下同じ、TiC/WC=30/70)粉末、(Ti,W)CN(TiC/TiN/WC=24/20/56)粉末、(Ta,Nb)C(TaC/NbC=90/10)粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1410℃に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.08mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金で構成されたサーメット基体A〜Fをそれぞれ製造した。
【0012】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.08mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメットで構成されたサーメット基体a〜fを形成した。
【0013】
ついで、これらのサーメット基体A〜Fおよびサーメット基体a〜fの表面に、アセトン中で超音波洗浄し、乾燥した状態で、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは例えば特開平6−8008号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、それぞれ表4,5に示される組み合わせで、同じく表4,5に示される目標層厚のTi化合物層、および加熱変態α型Al23と蒸着α型Al23で構成されたα型Al23層からなる硬質被覆層を蒸着形成(この場合前記加熱変態α型Al23は、まず表3に示される条件で結晶構造がκ型またはθ型のAl23を蒸着形成し、これにAr雰囲気中、温度:1050℃に1〜8時間の範囲内の所定時間保持の条件で加熱処理を施して、前記κ型またはθ型の結晶構造をα型に変態させることにより形成したものである)することにより本発明被覆サーメット工具1〜16をそれぞれ製造した。
また、比較の目的で、表6,7に示される通り、硬質被覆層のα型Al23層全体を同じく表6に示される平均層厚の蒸着α型Al23層とする以外は同一の条件で従来被覆サーメット工具1〜16をそれぞれ製造した。
【0014】
なお、この結果得られた本発明被覆サーメット工具1〜16および従来被覆サーメット工具1〜16について、これの硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(層の縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0015】
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜8および従来被覆サーメット工具1〜8については
被削材:JIS・SCM440の丸棒、
切削速度:350m/min、
切り込み:6.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件での合金鋼の乾式高速高切り込み連続切削試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.7mm/rev、
切削時間:3分、
の条件での炭素鋼の乾式高速高送り断続切削試験を行なった。
【0016】
さらに、本発明被覆サーメット工具9〜16および従来被覆サーメット工具9〜16については、
被削材:JIS・SCM440の丸棒、
切削速度:400m/min、
切り込み:1.0mm、
送り:0.7mm/rev、
切削時間:5分、
の条件での合金鋼の乾式高速高送り連続切削試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:5.5mm、
送り:0.25mm/rev、
切削時間:3分、
の条件での炭素鋼の乾式高速高切り込み断続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8,9に示した。
【0017】
【表1】

Figure 0003972299
【0018】
【表2】
Figure 0003972299
【0019】
【表3】
Figure 0003972299
【0020】
【表4】
Figure 0003972299
【0021】
【表5】
Figure 0003972299
【0022】
【表6】
Figure 0003972299
【0023】
【表7】
Figure 0003972299
【0024】
【表8】
Figure 0003972299
【0025】
【表9】
Figure 0003972299
【0026】
【発明の効果】
表4〜9に示される結果から、本発明被覆サーメット工具1〜16は、いずれも硬質被覆層のα型Al23層を厚膜化した状態で、高い熱的機械的衝撃を伴なう高速重切削加工条件で、鋼や鋳鉄の切削加工を行なっても前記α型Al23層における加熱変態α型Al23の存在によって前記α型Al23層は引張残留応力のきわめて低い状態となっているので、切刃部にチッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層のα型Al23層全体が蒸着α型Al23層で構成された従来被覆サーメット工具1〜16においては、前記蒸着α型Al23層が具備する高い引張残留応力によって切刃部にチッピングが発生し易くなり、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削や断続切削加工は勿論のこと、特に高い熱的機械的衝撃を伴なう高速重切削加工に用いた場合にも、切刃部にチッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するものであるから、切削加工装置の高性能化に十分満足に対応でき、かつ切削加工の一段の省力化および省エネ化、さらに低コスト化にも寄与するものである。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the tensile residual stress in the aluminum oxide (hereinafter referred to as α-type Al 2 O 3 ) layer of the α-type crystal structure constituting the hard coating layer is extremely small, so that various steels and cast irons can be cut. A surface that exhibits excellent chipping resistance even when the α-type Al 2 O 3 layer is thickened and the cutting edge is excellent even under high-speed heavy cutting conditions with high thermal mechanical impact The present invention relates to a coated cermet cutting tool (hereinafter referred to as a coated cermet tool).
[0002]
[Prior art]
Conventionally, in general, on the surface of a cermet base composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
(A) All of Ti carbide layers (hereinafter referred to as TiC), nitride (hereinafter also referred to as TiN) layers, carbonitrides formed by vapor deposition and having an average layer thickness of 0.5 to 15 μm A Ti compound layer (hereinafter referred to as “TiCN”), a carbon oxide (hereinafter referred to as “TiCO”) layer, and a carbonitride oxide (hereinafter referred to as “TiCNO”) layer. These are collectively referred to as the Ti compound layer),
(B) a vapor-deposited α-type aluminum oxide layer (hereinafter referred to as a vapor-deposited α-type Al 2 O 3 layer) having an average layer thickness of 1 to 5 μm and having an α-type crystal structure in a vapor-deposited state;
It is also known that a coated cermet tool formed by forming a hard coating layer composed of the above is used for continuous cutting and intermittent cutting of various types of steel and cast iron, for example. (For example, refer to Patent Document 1).
[0003]
In general, the Ti compound layer and vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above coated cermet tool have a granular crystal structure, and the TiCN layer constituting the Ti compound layer is For the purpose of improving its own toughness, it is formed by using a gas mixture containing organic carbonitrides as a reaction gas in a normal chemical vapor deposition system, and by chemical vapor deposition in the middle temperature range of 700 to 950 ° C, and growing vertically. It is also known to have a crystal structure (see Patent Documents 2 and 3).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-31503 [Patent Document 2]
Japanese Patent Laid-Open No. 6-8010 [Patent Document 3]
Japanese Patent Laid-Open No. 7-328808
[Problems to be solved by the invention]
On the other hand, there is a strong demand for labor saving and energy saving and cost reduction of cutting work in recent years. Along with this, in combination with the improvement of the performance of the cutting apparatus, the evaporated α-type Al 2 constituting the hard coating layer. In addition to deepening the tendency of thickening the O 3 layer, cutting tends to be performed at high speed and heavy cutting conditions such as high cutting and high feed. In the above-mentioned conventional coated cermet tool, There is no problem when this is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but this is particularly important in the state where the deposited α-type Al 2 O 3 layer is thickened. When used under cutting conditions, the tensile residual stress in the vapor-deposited α-type Al 2 O 3 layer is so high that chipping (small chipping) occurs at the cutting edge due to the high thermal mechanical impact that occurs during cutting. As a result, wear progresses From becoming to be promoted, at present, leading to a relatively short time service life.
[0006]
[Means for Solving the Problems]
Therefore, from the above viewpoint, the present inventors have excellent resistance to cutting edges even when used in high-speed heavy cutting with the α-type Al 2 O 3 layer of the hard coating layer thickened. As a result of research to develop a coated cermet tool that exhibits chipping properties,
In the state where the total average layer thickness of the α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool is increased to 5 to 20 μm, the upper part and the lower part in the layer thickness direction are under normal conditions. It is composed of vapor-deposited α-type Al 2 O 3 formed by vapor deposition, and the thickness corresponding to 25 to 55% in the ratio of the middle part in the layer thickness direction to the total average layer thickness of the α-type Al 2 O 3 layer Then, heat-transformed α-type Al 2 O 3 , that is, Al 2 O 3 having a κ-type or θ-type crystal structure formed by vapor deposition under normal conditions, is subjected to heat treatment, preferably in an Ar atmosphere, at a temperature of 1000 ° C. When the heat treatment is performed under the condition of holding for a predetermined time as described above and the heat-transformed α-type Al 2 O 3 formed by transforming the κ-type or θ-type crystal structure into an α-type crystal structure is obtained, the resulting thick film The converted α-type Al 2 O 3 layer is formed by the heat-transformed α-type Al 2 O 3 constituting the layer, In the coated cermet tool in which the α type Al 2 O 3 layer of the hard coating layer is composed of the above-mentioned heat-transformed α type Al 2 O 3 and vapor deposited α type Al 2 O 3 . In the state where the α-type Al 2 O 3 layer is thickened, the occurrence of chipping at the cutting edge is remarkably suppressed even when used under high-speed heavy cutting conditions. The research result that it came to demonstrate.
[0007]
This invention was made based on the above research results, and on the surface of the cermet substrate,
(A) a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer;
(B) α-type Al 2 O 3 layer,
In a coated cermet tool formed by vapor-depositing a hard coating layer composed of 10 to 35 μm in total average layer thickness,
The average layer thickness of the α-type Al 2 O 3 layer is 5 to 20 μm, and the intermediate portion in the layer thickness direction corresponds to 25 to 55% in the ratio of the average layer thickness of the α-type Al 2 O 3 layer. Heat transformation to form an α-type crystal structure by subjecting aluminum oxide having a κ-type or θ-type crystal structure (hereinafter referred to as Al 2 O 3 ) to a heat transformation treatment in a vapor-deposited state. It is composed of α-type Al 2 O 3 , and the remaining upper part and lower part in the layer thickness direction are composed of vapor-deposited α-type Al 2 O 3 having an α-type crystal structure in a vapor-deposited state.
It is characterized by a coated cermet tool that exhibits excellent chipping resistance in high-speed heavy cutting.
[0008]
In addition, the reason why the average layer thickness of the constituent layers of the hard coating layer of the coated cermet tool of the present invention is limited as described above is as follows.
(A) The average layer thickness of the α-type Al 2 O 3 layer If the average layer thickness is less than 5 μm, it is not possible to increase the film thickness, and the life of the satisfactory service life cannot be extended. When the thickness exceeds 20 μm, chipping is likely to occur at the cutting edge, so the average layer thickness is set to 5 to 20 μm.
[0009]
(B) the percentage heating transformation α-type Al 2 O 3 accounts for α type the Al 2 O 3 layer of heat transformation α-type Al 2 O 3 is the α type the Al 2 O 3 layer generally by the presence of this as above Compared to the case of using vapor-deposited α-type Al 2 O 3 , it has the effect of reducing the tensile residual stress, but the thickness ratio is a ratio to the average layer thickness of the α-type Al 2 O 3 layer and is less than 25%. However, if the thickness ratio exceeds 55%, the strength of the layer itself is drastically decreased, and this causes chipping at the cutting edge. Therefore, the thickness ratio was determined to be 25 to 55% as a ratio to the average layer thickness of the α-type Al 2 O 3 layer.
[0010]
(C) If the average layer thickness of the hard coating layer is less than 10 μm, a sufficient service life cannot be ensured. On the other hand, if the average layer thickness exceeds 35 μm, Since chipping easily occurs, the average layer thickness is determined to be 10 to 35 μm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder having a predetermined average particle diameter in the range of 0.5 to 4 μm, (Ti, W) C (mass ratio, hereinafter the same, TiC / WC = 30/70) powder, ( Ti, W) CN (TiC / TiN / WC = 24/20/56) powder, (Ta, Nb) C (TaC / NbC = 90/10) powder, Cr 3 C 2 powder, and Co powder are prepared, These raw material powders were blended in the composition shown in Table 1, wet-mixed for 72 hours with a ball mill, dried, and pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuumed at 5 Pa. WC with a slow-away tip shape specified in ISO / CNMG120408 by sintering in vacuum at 1410 ° C. for 1 hour, and then performing a honing process of R: 0.08 mm on the cutting edge after sintering. Basic cemented carbide The formed cermet substrates A to F were produced.
[0012]
In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.08 mm. Cermet substrates a to f composed of TiCN-based cermets having a standard / CNMG120212 chip shape were formed.
[0013]
Next, the surfaces of these cermet substrates A to F and cermet substrates a to f were ultrasonically cleaned in acetone and dried, using a normal chemical vapor deposition apparatus, using Table 3 (l-TiCN in Table 3). Shows, for example, the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8008, and the other conditions indicate the conditions for forming a normal granular crystal structure). Depending on the conditions, the combinations shown in Tables 4 and 5, respectively, consisted of Ti compound layers having the target layer thicknesses also shown in Tables 4 and 5, and heat-transformed α-type Al 2 O 3 and vapor-deposited α-type Al 2 O 3 The hard coating layer made of the α-type Al 2 O 3 layer formed by vapor deposition is formed (in this case, the heat-transformed α-type Al 2 O 3 is first formed under the conditions shown in Table 3 in the crystal structure of κ-type or θ-type Al 2 O 3 is vapor-deposited, and this is heated in an Ar atmosphere. Degree: formed by transforming the κ-type or θ-type crystal structure to α-type by performing heat treatment at 1050 ° C. for 1 hour to 8 hours. The coated cermet tools 1 to 16 of the present invention were produced respectively.
For comparison purposes, as shown in Tables 6 and 7, the whole α-type Al 2 O 3 layer of the hard coating layer was changed to a vapor-deposited α-type Al 2 O 3 layer having the average layer thickness shown in Table 6 as well. Produced the conventional coated cermet tools 1 to 16 under the same conditions.
[0014]
In addition, about this invention coated cermet tool 1-16 obtained as a result, and the conventional coated cermet tool 1-16, the thickness of the structural layer of this hard coating layer was measured using the scanning electron microscope (longitudinal section of a layer) Surface measurement), all showed an average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness.
[0015]
Next, with respect to the present invention coated cermet tools 1 to 8 and the conventional coated cermet tools 1 to 8 in a state where any of the above various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig. Work material: JIS / SCM440 round bar,
Cutting speed: 350 m / min,
Incision: 6.5 mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Dry high-speed high-cut continuous cutting test of alloy steel under the conditions of
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 350 m / min,
Incision: 1.5mm,
Feed: 0.7mm / rev,
Cutting time: 3 minutes
A dry high-speed high-feed intermittent cutting test was performed on carbon steel under the following conditions.
[0016]
Furthermore, about this invention coated cermet tool 9-16 and conventional coated cermet tool 9-16,
Work material: JIS / SCM440 round bar,
Cutting speed: 400 m / min,
Cutting depth: 1.0 mm,
Feed: 0.7mm / rev,
Cutting time: 5 minutes
Dry high-speed high-feed continuous cutting test of alloy steel under the conditions of
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 400 m / min,
Cutting depth: 5.5 mm,
Feed: 0.25mm / rev,
Cutting time: 3 minutes
The dry high-speed, high-cut intermittent cutting test of carbon steel under the conditions described above was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Tables 8 and 9.
[0017]
[Table 1]
Figure 0003972299
[0018]
[Table 2]
Figure 0003972299
[0019]
[Table 3]
Figure 0003972299
[0020]
[Table 4]
Figure 0003972299
[0021]
[Table 5]
Figure 0003972299
[0022]
[Table 6]
Figure 0003972299
[0023]
[Table 7]
Figure 0003972299
[0024]
[Table 8]
Figure 0003972299
[0025]
[Table 9]
Figure 0003972299
[0026]
【The invention's effect】
From the results shown in Tables 4 to 9, all of the coated cermet tools 1 to 16 of the present invention are accompanied by high thermal mechanical impact in the state where the α-type Al 2 O 3 layer of the hard coating layer is thickened. cormorant fast heavy cutting conditions, the α type the Al 2 O 3 layer is tensile residual stress by the presence of heat transformation α-type Al 2 O 3 be subjected to machining of steel and cast iron in the α-type the Al 2 O 3 layer Therefore, the entire α-type Al 2 O 3 layer of the hard coating layer is vapor-deposited α-type Al 2 , while chipping does not occur at the cutting edge and excellent wear resistance is exhibited. In the conventional coated cermet tools 1 to 16 composed of the O 3 layer, chipping tends to occur at the cutting edge due to the high tensile residual stress of the vapor-deposited α-type Al 2 O 3 layer. It is clear that the service life is reached.
As described above, the coated cermet tool of the present invention is not only continuous cutting and interrupted cutting under normal conditions such as various steels and cast irons, but also high-speed heavy cutting with particularly high thermal mechanical impact. Even when used for machining, the cutting edge does not generate chipping and exhibits excellent cutting performance over a long period of time. This contributes to further labor saving, energy saving, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層と、
(b)結晶構造がα型の酸化アルミニウム層、
で構成された硬質被覆層を10〜35μmの全体平均層厚で蒸着形成してなる表面被覆サーメット製切削工具において、
上記α型結晶構造の酸化アルミニウム層の平均層厚を5〜20μmとし、その層厚方向の中間部を、前記α型酸化アルミニウム層の平均層厚に占める割合で、25〜55%に相当する厚さを、蒸着形成した状態でκ型またはθ型の結晶構造を有する酸化アルミニウムに加熱変態処理を施して結晶構造をα型結晶構造とした加熱変態α型酸化アルミニウムで構成し、残りの層厚方向上方部および下方部を、蒸着形成した状態でα型の結晶構造を有する蒸着α型酸化アルミニウムで構成したこと、
を特徴とする、高速重切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the cermet substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) a Ti compound layer composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer;
(B) an aluminum oxide layer having an α-type crystal structure;
In the surface-coated cermet cutting tool formed by vapor-depositing a hard coating layer composed of 10 to 35 μm in total average layer thickness,
The average layer thickness of the α-type crystal structure aluminum oxide layer is 5 to 20 μm, and the middle portion in the layer thickness direction corresponds to 25 to 55% in the ratio of the average layer thickness of the α-type aluminum oxide layer. Heat-transformed aluminum oxide having a κ-type or θ-type crystal structure in a vapor-deposited state to form an α-type crystal structure by subjecting it to a heat-transformed α-type aluminum oxide, and the remaining layers The upper part and the lower part in the thickness direction are composed of vapor-deposited α-type aluminum oxide having an α-type crystal structure in a vapor-deposited state,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed heavy cutting.
JP2002288269A 2002-10-01 2002-10-01 Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting Expired - Fee Related JP3972299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288269A JP3972299B2 (en) 2002-10-01 2002-10-01 Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288269A JP3972299B2 (en) 2002-10-01 2002-10-01 Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2004122269A JP2004122269A (en) 2004-04-22
JP3972299B2 true JP3972299B2 (en) 2007-09-05

Family

ID=32280812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288269A Expired - Fee Related JP3972299B2 (en) 2002-10-01 2002-10-01 Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting

Country Status (1)

Country Link
JP (1) JP3972299B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730702B2 (en) * 2005-04-26 2011-07-20 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4730703B2 (en) * 2005-04-27 2011-07-20 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4666211B2 (en) * 2005-04-28 2011-04-06 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4720283B2 (en) * 2005-05-16 2011-07-13 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4716253B2 (en) * 2005-05-24 2011-07-06 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4716252B2 (en) * 2005-05-24 2011-07-06 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4730522B2 (en) * 2005-05-25 2011-07-20 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4811781B2 (en) * 2005-06-02 2011-11-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4756454B2 (en) * 2005-06-02 2011-08-24 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4811782B2 (en) * 2005-06-06 2011-11-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4747387B2 (en) * 2005-06-07 2011-08-17 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Also Published As

Publication number Publication date
JP2004122269A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4330100B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4863071B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2000126905A (en) Surface-covered tungsten carbide group cemented carbide cutting tool excellent in chipping resistance
JP2004299021A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2002239807A (en) Surface-covered thermet made cutting tool hard covered layer of which has excellent thermal shock resistance
JP4761136B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting
JP4329969B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent heat-resistant plastic deformation in high-speed cutting of difficult-to-cut materials
JP3912494B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer
JP2009056560A (en) Surface-coated cutting tool
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP2734311B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5088481B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in heavy cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP4210932B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material
JP2002187005A (en) Throwaway tip made of surface-coated cemented carbide excellent in wear resistance in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Ref document number: 3972299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees