JPH10213621A - Detecting method for generation of failure in transmission line, transmission method for information on generation of failure and locating system for failure section - Google Patents

Detecting method for generation of failure in transmission line, transmission method for information on generation of failure and locating system for failure section

Info

Publication number
JPH10213621A
JPH10213621A JP9016470A JP1647097A JPH10213621A JP H10213621 A JPH10213621 A JP H10213621A JP 9016470 A JP9016470 A JP 9016470A JP 1647097 A JP1647097 A JP 1647097A JP H10213621 A JPH10213621 A JP H10213621A
Authority
JP
Japan
Prior art keywords
value
failure
instantaneous value
fault
occurrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9016470A
Other languages
Japanese (ja)
Inventor
Kenichi Fujikura
健一 藤倉
Kyuichi Sasahara
久一 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9016470A priority Critical patent/JPH10213621A/en
Publication of JPH10213621A publication Critical patent/JPH10213621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a detecting method in which the generation of a failure can be detected even when a ground-wire current is not increased in the failure by a method wherein the deviation value between a present instantaneous value and an instantaneous value at the immediately preceding cycle of an AC cycle is found, instantaneous values are totaled retrospectively and a moment in which their totaled value exceeds a threshold value is detected as a moment in which the failure is generated. SOLUTION: An instantaneous value which is converted by an A/D converter 31 is converted into a light signal by an E/O conversion part 32 so as to be converted into an electric signal by an O/E conversion part 44. The instantaneous value is stored in a first memory 46. A stored instantaneous value which is at an immediately preceding cycle from a present cycle is fetched, and the deviation value between the present instantaneous value and the instantaneous value at the immediately preceding cycle is stored temporarily in a second memory 47. Values which are stored in the second memory 47 are totaled so as to retrospect prescribed sampled values from the present instantaneous value. When a failure is generated, a difference is generated by the present instantaneous value and the instantaneous value at the immediately preceding cycle. The sum of the absolute values of differences becomes larger than a prescribed threshold value. Even when a system is a complicated line and a ground-wire current is not changed largely in a failure, the deviation of a waveform is evaluated, and the generation of the failure can be detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送電線の架空地線
に流れる電流により故障区間を標定するシステムに係
り、特に、故障時に地線電流が増加しない場合にも対応
できる故障発生検出方法と、各箇所で個別に故障発生を
検出する場合に適した故障発生情報伝送方法と、これら
方法を用いた実用的な故障区間標定システムに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for locating a fault section by a current flowing through an overhead ground wire of a transmission line, and more particularly to a fault occurrence detecting method capable of coping with a case where the ground wire current does not increase at the time of a fault. The present invention relates to a method for transmitting fault occurrence information suitable for individually detecting a fault occurrence at each location, and a practical fault section locating system using these methods.

【0002】[0002]

【従来の技術】送電線の故障発生検出或いは故障区間標
定のために、従来、次のようなシステムが用いられてい
る。即ち、図5に示されるように、OPGW(光ファイ
バ複合架空地線)からなる架空地線1を支持する鉄塔の
うち、標定区間を形成する各鉄塔6(6a,6b,6
c,…)には架空地線1に流れる電流(地線電流)の誘
導電流を取り出すCTが電流センサ2として取り付けら
れていると共に、E/O変換装置3、データ多重伝送装
置4がそれぞれ設置されている。電流センサ2にて抽出
された電流波形情報は、E/O変換装置3にて電気光変
換され、光ファイバケーブル5を介してデータ多重伝送
装置4に送られ、時分割多重されてOPGWを介して次
の鉄塔6又は中央装置7に伝送される。
2. Description of the Related Art Conventionally, the following system has been used for detecting the occurrence of a fault in a transmission line or locating a fault section. That is, as shown in FIG. 5, among the steel towers supporting the overhead ground wire 1 made of OPGW (optical fiber composite overhead ground wire), each of the steel towers 6 (6a, 6b, 6
c,...), a CT for extracting an induced current of a current flowing through the overhead ground wire 1 (ground wire current) is attached as a current sensor 2, and an E / O conversion device 3 and a data multiplex transmission device 4 are installed respectively. Have been. The current waveform information extracted by the current sensor 2 is electro-optically converted by the E / O converter 3 and sent to the data multiplex transmission device 4 via the optical fiber cable 5, time-division multiplexed and transmitted via the OPGW. And transmitted to the next tower 6 or central device 7.

【0003】比較的簡単な系統での送電線の故障時に
は、一般的に図6に示すように架空地線に大きな電流が
流れる。従って、この地線電流を常時監視することによ
り故障の発生を検出することができる。故障区間標定シ
ステムでは、多箇所に電流センサを配置し、故障発生時
には各電流センサで抽出された電流波形を解析すること
により、電流センサを配置した区間を標定単位として故
障区間を標定することができる。
When a transmission line fails in a relatively simple system, a large current generally flows through an overhead ground wire as shown in FIG. Therefore, the occurrence of a failure can be detected by constantly monitoring the ground wire current. In the fault section location system, current sensors are arranged at multiple locations, and when a fault occurs, the current waveform extracted by each current sensor is analyzed, and the fault section can be located using the section where the current sensor is located as the unit of location. it can.

【0004】故障区間の標定方法には、抽出された地線
電流の電流実効値の大小関係から標定を行う方法と、故
障点を境に地線電流の位相が180°反転するという特
性を利用して位相差をもとに標定する方法とがある。こ
のために、電流波形を解析して各電流センサ毎の故障発
生前後の実効値や各電流センサ間の位相差を算出する必
要がある。
A method of locating a fault section utilizes a method of locating the ground current from the magnitude of the effective current value of the ground wire current and a characteristic that the phase of the ground wire current is inverted by 180 ° at the boundary of the fault point. Then, there is a method of locating based on the phase difference. For this purpose, it is necessary to analyze the current waveform and calculate the effective value before and after the occurrence of a failure for each current sensor and the phase difference between the current sensors.

【0005】従来のOPGWを使用した故障区間標定シ
ステムでは、各電流センサにて抽出された電流波形情報
が時分割多重により中央装置に伝送されているため、時
間的に同期がとれている。従って、故障発生を検出しさ
えすれば、各電流センサにて抽出された電流の実行値や
位相差を算出するのは容易である。従来のOPGWを使
用した故障区間標定システムにおける故障発生検出の方
法は、図6に示されるように、電流センサから伝送され
てくる電流波形61の瞬時値を中央装置にて常時監視
し、その瞬時値が予め設定されているしきい値62を越
えた瞬間に故障が発生したものと検出する方法であり、
この故障発生検出に従い電流波形を解析して故障区間を
標定していた。
In the conventional fault section locating system using the OPGW, current waveform information extracted by each current sensor is transmitted to the central unit by time division multiplexing, so that time synchronization is established. Therefore, it is easy to calculate the execution value and the phase difference of the current extracted by each current sensor as long as the failure occurrence is detected. As shown in FIG. 6, a conventional method for detecting a fault in a fault zone locating system using an OPGW is to constantly monitor an instantaneous value of a current waveform 61 transmitted from a current sensor by a central device, and to monitor the instantaneous value. A method for detecting that a failure has occurred at the moment when the value exceeds a preset threshold value 62,
According to the detection of the occurrence of the failure, the current waveform is analyzed to locate the failure section.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図7に
示されるように、多回線併用架線路での下回線故障など
では、故障時に地線電流が増加しない場合がある。この
ような場合、上述の方法では故障発生を検出することが
できず、故障区間標定システムの適用が不可能であっ
た。
However, as shown in FIG. 7, in the case of a lower line failure in a multi-line overhead line, the ground wire current may not increase at the time of the failure. In such a case, the above-mentioned method cannot detect the occurrence of a failure, and it is impossible to apply the failure section locating system.

【0007】また、従来は、各電流センサにて抽出され
た電流波形情報がそのまま中央装置に伝送され、中央装
置で故障発生検出及び故障区間標定が行われていた。し
かし、多箇所からの電流波形情報を全て中央装置で集中
処理するのは中央装置の負荷が大きい。従って、処理の
分散化を図るのがよいが、仮に故障発生検出を各電流セ
ンサ設置箇所で行うとすれば、その検出結果である故障
発生情報を中央装置に伝送しなければならず、このため
に時分割多重伝送の時間枠を新たに割り付ける必要があ
る。
Conventionally, current waveform information extracted by each current sensor is transmitted as it is to a central unit, and the central unit performs fault occurrence detection and fault section localization. However, central processing of all current waveform information from multiple locations in the central device imposes a heavy load on the central device. Therefore, it is better to decentralize the processing, but if the failure occurrence detection is performed at each current sensor installation point, the failure occurrence information as the detection result must be transmitted to the central unit. , It is necessary to newly allocate a time frame of time division multiplex transmission.

【0008】そこで、本発明の目的は、上記課題を解決
し、故障時に地線電流が増加しない場合にも対応できる
故障発生検出方法と、各箇所で個別に故障発生を検出す
る場合に適した故障発生情報伝送方法と、これら方法を
用いた実用的な故障区間標定システムを提供することに
ある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a failure detection method capable of coping with a case where the ground wire current does not increase at the time of a failure, and a method suitable for detecting a failure occurrence individually at each location. It is an object of the present invention to provide a method for transmitting fault occurrence information and a practical fault section locating system using these methods.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明の故障発生検出方法は、送電線の複数箇所で架
空地線に流れる電流の瞬時値を計測し、この計測による
電流波形情報から送電線の故障発生を検出すると共に故
障区間を標定するに際し、現在の瞬時値と交流周期1周
期前の瞬時値とのずれの値を求め、このずれの値を現在
から所定期間までさかのぼって総和し、その総和値が所
定のしきい値を越えた瞬間を故障発生の瞬間として検出
するものである。
In order to achieve the above object, a fault occurrence detection method according to the present invention measures instantaneous values of current flowing through overhead ground wires at a plurality of points on a transmission line, and obtains current waveform information based on the measurement. When detecting the occurrence of a fault in the transmission line and locating the fault section, the value of the difference between the current instantaneous value and the instantaneous value one AC cycle before is obtained, and the value of this difference is traced back from the present to a predetermined period. The sum is calculated, and the moment when the sum exceeds a predetermined threshold value is detected as the moment when a failure occurs.

【0010】また、本発明の故障発生情報伝送方法は、
送電線の複数箇所で架空地線に流れる電流の瞬時値を計
測し、この計測による電流波形情報を各計測箇所から中
央装置に伝送し、この中央装置が各計測箇所の電流波形
情報から故障区間を標定するに際し、各計測箇所で個別
に故障発生を検出し、故障発生が検出された瞬間に上記
瞬時値を特定値に置き換えて伝送し、上記中央装置がこ
の特定値により故障発生を認識するものである。
Further, the method for transmitting failure occurrence information according to the present invention comprises:
The instantaneous value of the current flowing in the overhead ground wire is measured at multiple points on the transmission line, and the current waveform information based on this measurement is transmitted from each measurement point to the central unit. In locating the fault, the occurrence of a failure is individually detected at each measurement point, and the instantaneous value is replaced with a specific value and transmitted at the moment when the occurrence of the failure is detected, and the central device recognizes the occurrence of the failure based on the specific value. Things.

【0011】上記中央装置は、上記瞬時値が所定値を越
えた瞬間を故障発生の瞬間として検出するものとし、上
記特定値として上記所定値を越える値を用いてもよい。
The central device may detect a moment when the instantaneous value exceeds a predetermined value as a moment when a failure occurs, and may use a value exceeding the predetermined value as the specific value.

【0012】本発明の故障区間標定システムは、送電線
の複数箇所に架空地線に流れる電流波形を抽出する電流
センサを配置し、抽出された電流波形情報を上記架空地
線に複合された光ファイバで伝送させて収集し、各計測
箇所の電流波形情報から故障区間を標定する中央装置を
設けた送電線の故障区間標定システムにおいて、上記電
流センサの出力を所定サンプリング間隔でA/D変換す
るA/D変換器と、この瞬時値を少なくとも交流周期1
周期分記憶するための第1のメモリと、瞬時値同士の差
の絶対値を複数個記憶するための第2のメモリと、A/
D変換された瞬時値を上記第1のメモリに記憶させ、こ
の瞬時値と交流周期1周期前の瞬時値との差の絶対値を
求めて上記第2のメモリに記憶させ、この絶対値を現在
から所定サンプリング分さかのぼって総和し、その総和
値が所定のしきい値を越えた瞬間を故障発生の瞬間とし
て検出する故障発生検出部とを備えたものである。
In the fault section locating system of the present invention, a current sensor for extracting a current waveform flowing through an overhead ground wire is arranged at a plurality of points on a transmission line, and the extracted current waveform information is combined with the optical ground wire. In a transmission line fault section locating system provided with a central device for collecting and transmitting by a fiber and locating a fault section from current waveform information at each measurement point, the output of the current sensor is A / D converted at a predetermined sampling interval. An A / D converter, and the instantaneous value is converted into at least an AC cycle 1
A first memory for storing the number of cycles, a second memory for storing a plurality of absolute values of the difference between the instantaneous values,
The D-converted instantaneous value is stored in the first memory, the absolute value of the difference between this instantaneous value and the instantaneous value one cycle before the AC cycle is obtained and stored in the second memory. A failure occurrence detection unit that sums up a predetermined number of samplings from the present time and detects a moment when the total value exceeds a predetermined threshold value as a failure occurrence moment.

【0013】各計測箇所のそれぞれに、上記A/D変換
器、第1、第2のメモリ及び故障発生検出部を配置する
と共に故障発生が検出されるまでは上記A/D変換によ
る瞬時値を上記中央装置に伝送し、故障発生が検出され
たときには上記瞬時値をA/D変換で表現できる正又は
負の最大値に置き換えて伝送する故障発生情報伝送部を
設けてもよい。
The A / D converter, the first and second memories, and the failure occurrence detecting section are arranged at each of the measurement points, and the instantaneous value by the A / D conversion is detected until a failure is detected. A failure occurrence information transmission unit may be provided that transmits the instantaneous value to the central device and replaces the instantaneous value with a maximum positive or negative value that can be expressed by A / D conversion when the occurrence of a failure is detected.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて詳述する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0015】本発明による送電線の故障区間標定システ
ムの装置概要は、従来同様に図5によって示される。即
ち、計測箇所となる各鉄塔には、変流器(CT)からな
る電流センサ2が取り付けられている。変流器は、架空
地線1に流れる電流の誘導電流を取り出すものである
が、以下では電流センサ2の電流値を地線電流の電流値
に換算して扱う。E/O変換装置3、データ多重伝送装
置4がそれぞれ設置されている。鉄塔部の詳細を図1に
示す。
FIG. 5 shows an outline of the apparatus of the transmission line fault zone locating system according to the present invention, similarly to the conventional system. That is, a current sensor 2 composed of a current transformer (CT) is attached to each of the steel towers serving as measurement points. The current transformer extracts the induced current of the current flowing through the overhead ground wire 1. Hereinafter, the current value of the current sensor 2 is converted into the current value of the ground wire current. An E / O conversion device 3 and a data multiplex transmission device 4 are provided respectively. The details of the tower are shown in FIG.

【0016】図1に示されるように、E/O変換装置3
は、A/D変換器31とE/O変換部32とからなり、
電流センサ2の出力は所定のサンプリング間隔でA/D
変換されてから光信号に変換されるようになっている。
As shown in FIG. 1, the E / O converter 3
Consists of an A / D converter 31 and an E / O converter 32,
The output of the current sensor 2 is A / D at a predetermined sampling interval.
After being converted, it is converted into an optical signal.

【0017】データ多重伝送装置4は、光受信装置41
と伝送基本部42と電源部43とからなる。光受信装置
41には、上記光信号を受信して電気信号に変換するO
/E変換部44と、本発明の故障発生方法による各処理
を実行する故障発生検出部45と、そのための処理デー
タを一時記憶する第1メモリ46及び第2メモリ47
と、バスライン48を介して伝送データを伝送基本部4
2に送る出力部49とが設けられている。この出力部4
9は、本発明の故障発生情報伝送方法による各処理を実
行する故障発生情報伝送部に相当する。伝送基本部42
は、前鉄塔からのデータに自鉄塔のデータを時分割多重
して次の鉄塔へ伝送する機能を有するものである。ここ
では、伝送基本部42が2.5m秒周期で時分割多重を
行っているので、A/D変換器31におけるサンプリン
グ間隔も2.5m秒となっている。電源部43は、デー
タ多重伝送装置4内の各部に電源を供給するものであ
る。
The data multiplex transmission device 4 includes an optical receiving device 41
And a transmission basic unit 42 and a power supply unit 43. The optical receiver 41 receives the optical signal and converts it into an electric signal.
/ E conversion unit 44, a failure occurrence detection unit 45 that executes each process according to the failure occurrence method of the present invention, and a first memory 46 and a second memory 47 that temporarily store processing data therefor.
And the transmission data transmitted via the bus line 48.
And an output unit 49 for sending the data to the output unit 2. This output unit 4
Reference numeral 9 corresponds to a failure occurrence information transmission unit that executes each process according to the failure occurrence information transmission method of the present invention. Transmission basic unit 42
Has the function of time-division multiplexing the data of the own tower with the data from the previous tower and transmitting it to the next tower. Here, since the transmission basic unit 42 performs time division multiplexing at a cycle of 2.5 ms, the sampling interval in the A / D converter 31 is also 2.5 ms. The power supply unit 43 supplies power to each unit in the data multiplex transmission device 4.

【0018】さて、本発明の故障発生方法によると、E
/O変換装置3においてA/D変換器31でA/D変換
された瞬時値は、E/O変換部32で光信号に変換され
光ファイバケーブル5を介してデータ多重伝送装置4内
の光受信装置41においてO/E変換部44で電気信号
に変換される。この瞬時値は、故障発生検出部45の働
きにより、第1メモリ46に一時記憶される。この第1
メモリ46には、少なくとも交流周期1周期分の瞬時値
が順次更新されて記憶される。また、第1メモリ46に
記憶されている現在より1周期前の瞬時値が取り出さ
れ、現在の瞬時値とのずれの値が両者の差の絶対値とし
て算出され、この値は第2メモリ47に一時記憶され
る。さらに、第2メモリ47に記憶されている値が現在
から所定サンプリング分さかのぼって総和される。
According to the fault occurrence method of the present invention, E
The instantaneous value A / D-converted by the A / D converter 31 in the I / O converter 3 is converted into an optical signal by the E / O converter 32 and converted into an optical signal in the data multiplex transmission device 4 via the optical fiber cable 5. The signal is converted into an electric signal by the O / E converter 44 in the receiving device 41. This instantaneous value is temporarily stored in the first memory 46 by the function of the failure occurrence detection unit 45. This first
In the memory 46, instantaneous values of at least one AC cycle are sequentially updated and stored. Further, the instantaneous value one cycle before the present time stored in the first memory 46 is taken out, and the value of the deviation from the current instantaneous value is calculated as the absolute value of the difference between them, and this value is stored in the second memory 47. Is temporarily stored. Further, the values stored in the second memory 47 are summed up from the present time by a predetermined sampling.

【0019】ここで、瞬時値と1周期前の瞬時値とのず
れについて、図2及び図3を用いて説明する。送電線に
故障のないときでも架空地線1には誘導電流が流れてい
る。この状態では、図2に示されるように、波形が乱れ
ていないので電流の瞬時値in とその1周期(1サイク
ル)前の瞬時値i’n とはほぼ一致する。従って、両者
の差はほとんど零であり、この差の絶対値を数サンプリ
ング間に亘って総和しても零に近い値になる。図2の現
在の瞬時値i0 から4サンプリング分さかのぼった瞬時
値i4 までについて、それぞれ1周期前の瞬時値i’0
〜i’4 との差の絶対値を総和すると、適宜に定めたし
きい値ITLより小さくなる。
Here, the difference between the instantaneous value and the instantaneous value one cycle before will be described with reference to FIGS. An induced current flows through the overhead ground wire 1 even when there is no failure in the transmission line. In this state, as shown in FIG. 2, substantially coincide Waveform is not disturbed the instantaneous value i n the current and one cycle (1 cycle) before the instantaneous value i 'n. Accordingly, the difference between the two is almost zero, and the absolute value of the difference becomes a value close to zero even when summed over several samplings. For the current instantaneous value i 0 to 4 instantaneous value i 4 retroactive samplings in FIG 2, each one period before the instantaneous value i '0
The sum of the absolute values of the differences from 〜i ′ 4 becomes smaller than the threshold value ITL appropriately determined.

【0020】[0020]

【数1】 (Equation 1)

【0021】一方、故障が発生したために地線電流が増
加又は減少、或いは位相変化したときには、図3に示さ
れるように、瞬時値i0 と1周期(1サイクル)前の瞬
時値i’0 とに違いが生じる。そして、差の絶対値の総
和は、適宜に定めたしきい値ITLより大きくなる。
On the other hand, when the ground wire current increases or decreases or the phase changes due to the occurrence of a fault, as shown in FIG. 3, the instantaneous value i 0 and the instantaneous value i ′ 0 one cycle (one cycle) earlier. Is different. Then, the sum of the absolute values of the differences becomes larger than the threshold value ITL appropriately determined.

【0022】[0022]

【数2】 (Equation 2)

【0023】瞬時値と1周期前の瞬時値とのずれの値の
評価を、複数サンプリング分の総和で行い、かつしきい
値ITLを適切に設定することでノイズ等の要因による誤
検出を防ぐことができる。
The value of the deviation between the instantaneous value and the instantaneous value one cycle before is evaluated based on the sum of a plurality of samplings, and the threshold value ITL is appropriately set so that erroneous detection due to noise or the like can be performed. Can be prevented.

【0024】以上の故障発生方法によれば、系統が複雑
な線路等で故障時に地線電流が大きく変化しない場合で
も、波形の乱れによる瞬時値のずれを評価しているため
故障発生を検出することができる。
According to the above fault occurrence method, even if the ground wire current does not change greatly at the time of a fault due to a complicated line or the like, a fault occurrence is detected because the instantaneous value deviation due to waveform disturbance is evaluated. be able to.

【0025】出力部49は、伝送基本部42からの要求
に応じて伝送データをバスライン48に出力するが、故
障発生が検出されるまではO/E変換部44で電気信号
に変換された瞬時値をそのままバスライン48に出力
し、故障発生が検出されたときには、瞬時値に代えて、
予め決められている特定値を連続数回にわたってバスラ
イン48に出力する。
The output unit 49 outputs the transmission data to the bus line 48 in response to a request from the transmission basic unit 42. The output data is converted to an electric signal by the O / E conversion unit 44 until a failure is detected. The instantaneous value is output to the bus line 48 as it is, and when a failure is detected, the instantaneous value is replaced with the instantaneous value.
A predetermined specific value is output to the bus line 48 several times in succession.

【0026】ここで、便宜上、バスライン48中のデー
タバスが8ビットとし、電流値がこの8ビットからなる
1データ語により負の補数で表現され、ビット分解能が
1A/bitとすると、−128A〜+127Aの電流
値がA/D変換で表現可能となる。このとき上記特定値
として−128Aを採用する。この特定値−128Aを
除く−127A〜+127Aの範囲平常時の電流波形情
報を伝送することができるので、このような特定値を伝
送データに含めても実用上問題はなく、電流波形解析に
必要なダイナミックレンジが確保される。
Here, for convenience, the data bus in the bus line 48 has 8 bits, the current value is expressed by a negative complement using one data word composed of the 8 bits, and the bit resolution is 1 A / bit. A current value of +127 A can be represented by A / D conversion. At this time, -128A is adopted as the specific value. Since the current waveform information in the normal range of -127A to + 127A excluding this specific value -128A can be transmitted, there is no practical problem even if such a specific value is included in the transmission data, and it is necessary for current waveform analysis. Dynamic range is secured.

【0027】これに対し、中央装置7は、時々刻々の各
鉄塔6からの伝送データを収集し、故障発生の検出及び
故障区間の標定に備える。図4には、電流センサの出力
波形(センサ波形;上段)と中央装置7で収集したデー
タによる電流波形(データ波形;下段)とが時間を合わ
せて示されている。即ち、故障発生以前はセンサ波形と
データ波形とが一致し、センサ波形の乱れにより故障発
生が検出された直後はデータ波形が所定時間だけ特定値
(この図の場合、正の最大値)51に置き代っている。
その後はセンサ波形とデータ波形とが一致する。
On the other hand, the central unit 7 collects the transmission data from each of the towers 6 at every moment, and prepares for the detection of the occurrence of the failure and the localization of the failure section. FIG. 4 shows the output waveform of the current sensor (sensor waveform; upper row) and the current waveform (data waveform; lower row) based on the data collected by the central device 7 in time. That is, before the occurrence of the failure, the sensor waveform matches the data waveform, and immediately after the occurrence of the failure is detected due to the disturbance of the sensor waveform, the data waveform is changed to a specific value (a positive maximum value in this case) 51 for a predetermined time. Has been replaced.
After that, the sensor waveform and the data waveform match.

【0028】中央装置7は、従来から使用されている、
瞬時値が予め設定されているしきい値を越えた瞬間に故
障が発生したものと検出する方法を採用している。この
しきい値に−128Aを設定しておくと、鉄塔6から伝
送されてくる瞬時値が−128Aのとき故障発生を認識
することができる。従って、鉄塔6から故障発生情報を
中央装置7に伝送するために特別な時分割多重伝送の時
間枠は必要ないことになる。
The central device 7 has been conventionally used,
A method of detecting that a failure has occurred at the moment when the instantaneous value exceeds a preset threshold value is adopted. If the threshold value is set to -128A, the occurrence of a failure can be recognized when the instantaneous value transmitted from the tower 6 is -128A. Therefore, a special time-division multiplex transmission time frame is not required to transmit the failure occurrence information from the tower 6 to the central unit 7.

【0029】中央装置7は、故障発生を認識すると、波
形解析による故障区間標定を開始する。波形解析のため
には各鉄塔6での故障発生前後の実効値や各鉄塔6間の
位相差を必要とする。そこで、図4に示すデータ波形の
うち(イ)の部分と(ロ)の部分とをそれぞれFFT
(高速フーリエ変換)などにより解析し、電流実効値や
位相差を求める。特定値51の時間帯のデータ波形は使
用しないので、この時間帯のデータ波形がセンサ波形に
忠実でないことは何等問題とならない。
When recognizing the occurrence of a fault, the central unit 7 starts fault section locating by waveform analysis. For waveform analysis, an effective value before and after the occurrence of a failure in each tower 6 and a phase difference between each tower 6 are required. Therefore, the portions (a) and (b) of the data waveform shown in FIG.
(Fast Fourier Transform) and the like to obtain the current effective value and phase difference. Since the data waveform in the time zone of the specific value 51 is not used, there is no problem that the data waveform in this time zone is not faithful to the sensor waveform.

【0030】なお、上記の実施形態では、各鉄塔で故障
発生を検出して中央装置に故障発生情報を伝送するもの
としたが、中央装置の負荷軽減を考慮したものである。
中央装置の処理能力が十分であれば、中央装置が独自に
故障発生を検出するようにしてもよい。このとき、瞬時
値とその1周期前の瞬時値とのずれの値を検出に使用す
る本発明の方法は、もちろん中央装置で実施することが
できる。
In the above-described embodiment, the occurrence of a failure is detected in each of the towers and the failure occurrence information is transmitted to the central unit. However, the load on the central unit is reduced.
If the processing capability of the central device is sufficient, the central device may independently detect the occurrence of a failure. At this time, the method of the present invention in which the difference between the instantaneous value and the instantaneous value one cycle before the instantaneous value is used for detection can of course be performed by the central device.

【0031】[0031]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0032】(1)故障時に地線電流が増加しない場合
にも故障発生を検出することができるので、故障区間標
定システムの適用範囲が拡がる。
(1) Since the occurrence of a fault can be detected even when the ground wire current does not increase at the time of a fault, the applicable range of the fault section locating system is expanded.

【0033】(2)伝送する瞬時値を特定値に置き換え
て故障発生情報を表したので、特別な時分割多重伝送の
時間枠が必要ない。
(2) Since the instantaneous value to be transmitted is replaced with a specific value to represent the failure occurrence information, no special time-division multiplex transmission time frame is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す故障区間標定システ
ムの鉄塔部における詳細構成図である。
FIG. 1 is a detailed configuration diagram of a tower section of a fault section locating system according to an embodiment of the present invention.

【図2】本発明の故障発生検出方法を説明するための架
空地線に流れる電流の電流波形図である。
FIG. 2 is a current waveform diagram of a current flowing through an overhead ground wire for explaining a failure occurrence detection method of the present invention.

【図3】本発明の故障発生検出方法を説明するための架
空地線に流れる電流の電流波形図である。
FIG. 3 is a current waveform diagram of a current flowing through an overhead ground wire for explaining the failure occurrence detection method of the present invention.

【図4】本発明の故障発生情報伝送方法を説明するため
のセンサ波形及びデータ波形図である。
FIG. 4 is a diagram showing sensor waveforms and data waveforms for explaining the method for transmitting failure occurrence information according to the present invention.

【図5】本発明及び従来の故障区間標定システムの概要
構成図である。
FIG. 5 is a schematic configuration diagram of the present invention and a conventional fault section locating system.

【図6】従来の故障発生検出方法を説明するための架空
地線に流れる電流の電流波形図である。
FIG. 6 is a current waveform diagram of a current flowing through an overhead ground wire for describing a conventional failure occurrence detection method.

【図7】従来の故障発生検出方法を説明するための架空
地線に流れる電流の電流波形図である。
FIG. 7 is a current waveform diagram of a current flowing through an overhead ground wire for explaining a conventional failure occurrence detection method.

【符号の説明】[Explanation of symbols]

1 架空地線 2 電流センサ 45 故障発生検出部 46 第1メモリ 47 第2メモリ 49 出力部(故障発生情報伝送部) DESCRIPTION OF SYMBOLS 1 Overhead ground wire 2 Current sensor 45 Failure detection part 46 First memory 47 Second memory 49 Output part (fault occurrence information transmission part)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 送電線の複数箇所で架空地線に流れる電
流の瞬時値を計測し、この計測による電流波形情報から
送電線の故障発生を検出すると共に故障区間を標定する
に際し、現在の瞬時値と交流周期1周期前の瞬時値との
ずれの値を求め、このずれの値を現在から所定期間まで
さかのぼって総和し、その総和値が所定のしきい値を越
えた瞬間を故障発生の瞬間として検出することを特徴と
する送電線の故障発生検出方法。
1. An instantaneous value of a current flowing through an overhead ground line at a plurality of points on a transmission line is measured, and a current instantaneous value is detected when detecting a fault of the transmission line and locating a fault section from current waveform information obtained by the measurement. The value of the difference between the value and the instantaneous value one cycle before the AC cycle is obtained, and the value of the difference is summed up from the present time to a predetermined period, and the moment when the total value exceeds a predetermined threshold value is defined as the occurrence of a failure. A method for detecting the occurrence of a fault in a transmission line, characterized by detecting the moment as an instant.
【請求項2】 送電線の複数箇所で架空地線に流れる電
流の瞬時値を計測し、この計測による電流波形情報を各
計測箇所から中央装置に伝送し、この中央装置が各計測
箇所の電流波形情報から故障区間を標定するに際し、各
計測箇所で個別に故障発生を検出し、故障発生が検出さ
れた瞬間に上記瞬時値を特定値に置き換えて伝送し、上
記中央装置がこの特定値により故障発生を認識すること
を特徴とする送電線の故障発生情報伝送方法。
2. An instantaneous value of a current flowing through an overhead ground line at a plurality of points on a transmission line is measured, and current waveform information based on the measurement is transmitted from each measurement point to a central unit. In locating the fault section from the waveform information, the fault occurrence is individually detected at each measurement point, and at the moment when the fault occurrence is detected, the instantaneous value is replaced with a specific value and transmitted. A method for transmitting fault occurrence information of a transmission line, characterized in that a fault occurrence is recognized.
【請求項3】 上記中央装置は、上記瞬時値が所定値を
越えた瞬間を故障発生の瞬間として検出するものとし、
上記特定値として上記所定値を越える値を用いることを
特徴とする請求項2記載の送電線の故障発生情報伝送方
法。
3. The central device detects an instant when the instantaneous value exceeds a predetermined value as an instant of occurrence of a failure,
3. The method according to claim 2, wherein a value exceeding the predetermined value is used as the specific value.
【請求項4】 送電線の複数箇所に架空地線に流れる電
流波形を抽出する電流センサを配置し、抽出された電流
波形情報を上記架空地線に複合された光ファイバで伝送
させて収集し、各計測箇所の電流波形情報から故障区間
を標定する中央装置を設けた送電線の故障区間標定シス
テムにおいて、上記電流センサの出力を所定サンプリン
グ間隔でA/D変換するA/D変換器と、この瞬時値を
少なくとも交流周期1周期分記憶するための第1のメモ
リと、瞬時値同士の差の絶対値を複数個記憶するための
第2のメモリと、A/D変換された瞬時値を上記第1の
メモリに記憶させ、この瞬時値と交流周期1周期前の瞬
時値との差の絶対値を求めて上記第2のメモリに記憶さ
せ、この絶対値を現在から所定サンプリング分さかのぼ
って総和し、その総和値が所定のしきい値を越えた瞬間
を故障発生の瞬間として検出する故障発生検出部とを備
えたことを特徴とする送電線の故障区間標定システム。
4. A current sensor for extracting a current waveform flowing through an overhead ground line at a plurality of locations on a transmission line, and the extracted current waveform information is transmitted and collected by an optical fiber combined with the overhead ground line. An A / D converter for A / D converting an output of the current sensor at a predetermined sampling interval in a transmission line fault section locating system provided with a central device for locating a fault section from current waveform information at each measurement point; A first memory for storing the instantaneous value for at least one AC cycle, a second memory for storing a plurality of absolute values of a difference between the instantaneous values, and an A / D-converted instantaneous value. The absolute value of the difference between this instantaneous value and the instantaneous value one cycle before the AC cycle is obtained and stored in the second memory, and this absolute value is traced back from the present time by a predetermined sampling. Sum up and the sum A fault detection unit for detecting a moment when the sum exceeds a predetermined threshold value as a moment when a fault occurs, the fault section locating system for a transmission line.
【請求項5】 各計測箇所のそれぞれに、上記A/D変
換器、第1、第2のメモリ及び故障発生検出部を配置す
ると共に故障発生が検出されるまでは上記A/D変換に
よる瞬時値を上記中央装置に伝送し、故障発生が検出さ
れたときには上記瞬時値をA/D変換で表現できる正又
は負の最大値に置き換えて伝送する故障発生情報伝送部
を設けたことを特徴とする送電線の故障区間標定システ
ム。
5. An A / D converter, first and second memories and a failure occurrence detecting section are arranged at each of the measurement points, and the instantaneous A / D conversion is performed until a failure is detected. A failure occurrence information transmission unit that transmits the value to the central device and, when a failure occurrence is detected, replaces the instantaneous value with a positive or negative maximum value that can be expressed by A / D conversion and transmits the failure value. Fault line location system for transmission lines.
JP9016470A 1997-01-30 1997-01-30 Detecting method for generation of failure in transmission line, transmission method for information on generation of failure and locating system for failure section Pending JPH10213621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9016470A JPH10213621A (en) 1997-01-30 1997-01-30 Detecting method for generation of failure in transmission line, transmission method for information on generation of failure and locating system for failure section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9016470A JPH10213621A (en) 1997-01-30 1997-01-30 Detecting method for generation of failure in transmission line, transmission method for information on generation of failure and locating system for failure section

Publications (1)

Publication Number Publication Date
JPH10213621A true JPH10213621A (en) 1998-08-11

Family

ID=11917159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9016470A Pending JPH10213621A (en) 1997-01-30 1997-01-30 Detecting method for generation of failure in transmission line, transmission method for information on generation of failure and locating system for failure section

Country Status (1)

Country Link
JP (1) JPH10213621A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180062794A (en) * 2016-12-01 2018-06-11 한전케이디엔주식회사 Feeder remote terminal unit
JP2020012637A (en) * 2018-07-13 2020-01-23 東京電力ホールディングス株式会社 Short circuit point location system, short circuit point location method and program
JP2020537863A (en) * 2017-10-17 2020-12-24 フェイスブック,インク. Systems and methods for monitoring power line conductors with relevant fiber optic cables

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180062794A (en) * 2016-12-01 2018-06-11 한전케이디엔주식회사 Feeder remote terminal unit
JP2020537863A (en) * 2017-10-17 2020-12-24 フェイスブック,インク. Systems and methods for monitoring power line conductors with relevant fiber optic cables
JP2020012637A (en) * 2018-07-13 2020-01-23 東京電力ホールディングス株式会社 Short circuit point location system, short circuit point location method and program

Similar Documents

Publication Publication Date Title
KR100849920B1 (en) Automation system and method for automatically detecting phase of electric power distribution line
DK1250577T3 (en) Analysis system for distributed voltage waves
CN110793616A (en) All-fiber distributed cable safety and reliability monitoring system
WO2020060305A1 (en) Apparatus for detecting fault location of underground cable, and method therefor
CN110797981B (en) Power cable safety monitoring system in tunnel
CN114460411A (en) Fault positioning method, device and system for power transmission network, processor and electronic equipment
DE69726644D1 (en) Earth fault monitoring device for a device connected to an energy supply or power transmission network and method therefor
JPH10213621A (en) Detecting method for generation of failure in transmission line, transmission method for information on generation of failure and locating system for failure section
CN113363979B (en) Non-contact power load decomposition sensing method and system
US7138924B2 (en) Disturbance direction detection in a power monitoring system
JP2003172758A (en) Lightning strike detection section orientation method by transmission line failure section detection system
JP4891635B2 (en) Accident point location system and method
CN106340960A (en) Sudden emergency system based on grid platform
JP2580738B2 (en) Fault location device
CN111722064A (en) Fault positioning system of distribution line
WO2016208975A1 (en) Vibration measuring device for calculating frequency in real time
KR100238463B1 (en) Automatic measurement system
CN213689829U (en) Fault positioning system of power transmission network
JP2002311077A (en) Transmission line accident section standardization device
JP2768028B2 (en) Transmission line fault location system
CN115833939B (en) Optical cable same-route detection method, device, equipment and storage medium
CN218035120U (en) Concrete cable tower operation state early warning monitoring system
JPH0694779A (en) Measurement of current distribution of transmission line
JPH01119771A (en) Locating apparatus of faulty section of aerial transmission line
JP2722789B2 (en) Overhead transmission line fault location system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417