JPH10208620A - Thin film electron source - Google Patents

Thin film electron source

Info

Publication number
JPH10208620A
JPH10208620A JP1095297A JP1095297A JPH10208620A JP H10208620 A JPH10208620 A JP H10208620A JP 1095297 A JP1095297 A JP 1095297A JP 1095297 A JP1095297 A JP 1095297A JP H10208620 A JPH10208620 A JP H10208620A
Authority
JP
Japan
Prior art keywords
thin film
electron source
upper electrode
insulating layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1095297A
Other languages
Japanese (ja)
Inventor
Tomio Yaguchi
富雄 矢口
Mutsuzou Suzuki
睦三 鈴木
Toshiaki Kusunoki
敏明 楠
Susumu Sasaki
進 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1095297A priority Critical patent/JPH10208620A/en
Publication of JPH10208620A publication Critical patent/JPH10208620A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the voltage resistance so as to stabilize the operation of a thin film electron source, and to prolong the lifetime by using a zondoved diamond thin film for an insulating layer of a thin film electron source, which has the three-layered structure of lower electrode-insulating layer-upper electrode. SOLUTION: In a MIM type thin film electron source, a diamond thin film 5 is formed on a platinum metal base board 4 used as a lower electrode. The diamond thin film 5 is formed by using hydrogen gas, in which acetone at about 1% by weight is mixed, as a raw material gas, and performing a chemical vapor deposition method using microwave plasma. Film thickness of the diamond thin film 5 is set at about 3mm. A metal film 6 as an upper electrode is formed at about 5mm of thickness on the diamond thin film 5. Direct current voltage is applied between the upper electrode 6 and the lower electrode 4. With this thin film electron source, electric breakdown is not generated for 50 hours. Furthermore, electron is stably emitted, restraining the generation of noise.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下部電極−ダイヤ
モンド絶縁層−上部電極の三層構造を有する薄膜電子
源、同様の構造によりマトリクス構造を形成した薄膜電
子源およびこれを用いたフラットディスプレイに関す
る。
The present invention relates to a thin-film electron source having a three-layer structure of a lower electrode, a diamond insulating layer, and an upper electrode, a thin-film electron source having a matrix structure formed by a similar structure, and a flat display using the same. .

【0002】[0002]

【従来の技術】下部電極−絶縁層−上部電極の三層構造
を有し、上部下部の両電極として金属を用いた、いわゆ
るMIM型薄膜電子源としては、例えば特開平7−65710
号に示されている。このMIM型電子源の構造の概略を
図1に示す。
2. Description of the Related Art A so-called MIM type thin-film electron source having a three-layer structure of a lower electrode, an insulating layer and an upper electrode and using metal for both upper and lower electrodes is disclosed in, for example, JP-A-7-65710.
No. FIG. 1 schematically shows the structure of this MIM type electron source.

【0003】MIM型電子源は、下部電極2となるアル
ミニウムの表面を陽極酸化法により酸化させて形成した
薄い酸化アルミニウム層を絶縁層3として用い、絶縁層
3の上に厚さが3〜10nm程度であるような上部電極
1となる金薄膜を蒸着法等により形成している。この薄
膜電子源の上部電極1と下部電極2の間に上部電極1側
が相対的に正電位になるように電圧を印加する。その電
界が1〜10MV/cm以上にすると、絶縁層3が3〜1
0nm程度と薄いことにより、下部電極2内の電子が絶
縁層3をトンネル現象により透過して上部電極1に達す
る。絶縁層3を透過した電子の一部は上部電極1の仕事
関数以上のエネルギを維持したまま上部電極1表面に達
して、真空中に放出される。
The MIM type electron source uses a thin aluminum oxide layer formed by oxidizing the surface of aluminum serving as the lower electrode 2 by anodic oxidation as an insulating layer 3 and has a thickness of 3 to 10 nm on the insulating layer 3. A gold thin film serving as the upper electrode 1 is formed by a vapor deposition method or the like. A voltage is applied between the upper electrode 1 and the lower electrode 2 of the thin-film electron source so that the upper electrode 1 side has a relatively positive potential. When the electric field is 1 to 10 MV / cm or more, the insulating layer 3 becomes 3 to 1 MV / cm.
When the thickness is as small as about 0 nm, electrons in the lower electrode 2 pass through the insulating layer 3 by a tunnel phenomenon and reach the upper electrode 1. Some of the electrons transmitted through the insulating layer 3 reach the surface of the upper electrode 1 while maintaining energy equal to or higher than the work function of the upper electrode 1, and are emitted into a vacuum.

【0004】上記MIM型薄膜電子源を用いたフラット
パネルディスプレイの一例も上記従来例に記載されてい
る。これは、上述した薄膜電子源の上部電極および下部
電極をお互いに交差するような縞状電極とし、これらを
構成する線状電極を上部電極と下部電極の各々において
任意に選択して電圧を印加することにより、任意の交点
において電子放出が発生するようにしたアレイ状電子源
を用いている。さらに、アレイ状電子源と対向させた平
面電極である蛍光面に上部電極よりも高い電圧を印加す
ることにより、アレイ状電子源から放出された電子線を
上記蛍光面上に照射して、蛍光面上の任意の位置に輝点
を発生させることにより画像を表示する。
[0004] An example of a flat panel display using the MIM type thin film electron source is also described in the conventional example. In this method, the upper electrode and the lower electrode of the above-mentioned thin-film electron source are formed as striped electrodes that cross each other, and the linear electrodes constituting these are arbitrarily selected in each of the upper electrode and the lower electrode, and a voltage is applied. Thus, an array-shaped electron source that emits electrons at an arbitrary intersection is used. Further, by applying a voltage higher than that of the upper electrode to the fluorescent screen, which is a plane electrode opposed to the array-shaped electron source, the electron beam emitted from the array-shaped electron source is irradiated on the fluorescent screen, and An image is displayed by generating a bright spot at an arbitrary position on the surface.

【0005】[0005]

【発明が解決しようとする課題】上述したように、金属
(下部電極)−絶縁層−金属(上部電極)の三層構造を有す
るいわゆるMIM型薄膜電子源は、下部電極となるアル
ミニウムの表面を陽極酸化法により酸化させて形成した
極めて薄い酸化アルミニウム層を絶縁層として用い、こ
の絶縁層の上に上部電極となる金薄膜を蒸着法等により
形成している。上記絶縁膜は電子を透過させる必要があ
るため、その厚さはできるだけ薄い方が望ましいが、上
部電極と下部電極の間に印加される電圧により発生する
高電界に耐え得るものでなければならない。
SUMMARY OF THE INVENTION As described above, metal
A so-called MIM type thin-film electron source having a three-layer structure of (lower electrode) -insulating layer-metal (upper electrode) has an extremely thin aluminum oxide layer formed by oxidizing the surface of aluminum serving as a lower electrode by anodizing. A gold thin film serving as an upper electrode is formed on the insulating layer by an evaporation method or the like. Since the insulating film needs to transmit electrons, it is desirable that the thickness be as thin as possible. However, the insulating film must be able to withstand a high electric field generated by a voltage applied between the upper electrode and the lower electrode.

【0006】上記従来例において、絶縁層として用いら
れているアルミニウム酸化物薄膜は、電子放出特性を高
めるために薄く均一である必要がある。このため、上記
酸化物膜の形成には蒸着法よりも、従来例に見られるよ
うな陽極酸化法が多く用いられているが、陽極酸化処理
は湿処理であるため不純物元素が混入しやすく、また高
電界により絶縁膜内からの酸素の脱離が生じるなどし
て、絶縁膜の耐電圧低下や絶縁破壊を生じやすい。MI
M型薄膜電子源の電子放出特性向上のためには、より安
定な絶縁材料が必要とされていた。
In the above conventional example, the aluminum oxide thin film used as the insulating layer needs to be thin and uniform in order to enhance the electron emission characteristics. For this reason, the anodic oxidation method as seen in the conventional example is often used for the formation of the oxide film, rather than the vapor deposition method. However, since the anodic oxidation treatment is a wet treatment, an impurity element is easily mixed, In addition, a high electric field causes oxygen to be desorbed from the inside of the insulating film, and the withstand voltage of the insulating film is easily reduced and dielectric breakdown is likely to occur. MI
In order to improve the electron emission characteristics of the M-type thin film electron source, a more stable insulating material has been required.

【0007】また、MIM型薄膜電子源の上部電極は絶
縁膜に電界を印加して電子を加速するために必要不可欠
であるが、一方で電極内部での散乱によって電子放出を
阻害するものでもあるため、上部電極膜は均一でかつで
きるだけ薄い膜である必要があった。従来例に用いられ
ている金等の金属蒸着膜では、確実に絶縁膜表面を被覆
できる薄膜が安定に存在するためにある程度の厚さが必
要であり、これが上部電極内の電子の透過効率を制限
し、電子源としての電子放出特性の向上を阻害してい
た。
The upper electrode of the MIM type thin-film electron source is indispensable for accelerating electrons by applying an electric field to the insulating film. On the other hand, the upper electrode inhibits electron emission by scattering inside the electrode. Therefore, the upper electrode film needs to be uniform and as thin as possible. In the case of a metal deposition film of gold or the like used in the conventional example, a certain thickness is necessary in order for a thin film capable of reliably covering the surface of the insulating film to be present, which increases the electron transmission efficiency in the upper electrode. This limits the improvement of the electron emission characteristics as an electron source.

【0008】本発明の目的は、上述したような、下部電
極−絶縁層−上部電極の三層構造を有する薄膜電子源に
おいて、高い安定性と、高い電子放出特性を有する薄膜
電子源を提供することにある。
An object of the present invention is to provide a thin film electron source having high stability and high electron emission characteristics in a thin film electron source having a three-layer structure of a lower electrode, an insulating layer and an upper electrode as described above. It is in.

【0009】[0009]

【課題を解決するための手段】他の元素を添加していな
いノンドープダイヤモンド薄膜は高い絶縁性を有してい
る。また、このダイヤモンド薄膜は経年変化も少なく、
高い温度の環境下においても安定である。さらに、水素
原子もしくはアルカリ金属を吸着させたダイヤモンド薄
膜表面は数原子層の最表面のみに電気電導性を示すよう
になり上部電極として用いることができる。さらにこの
導電層は負の電子親和力を示すと言われており、極めて
電子を放出しやすい性質を有しているため、絶縁層であ
るダイヤモンド薄膜を厚くすることにより上部電極に達
した電子のエネルギーが低くなってしまう場合において
も、真空中への電子放出を生じさせることができる。
The non-doped diamond thin film to which no other element is added has a high insulating property. In addition, this diamond thin film has little aging,
Stable even under high temperature environment. Furthermore, the surface of the diamond thin film on which hydrogen atoms or alkali metals are adsorbed exhibits electrical conductivity only on the outermost surface of several atomic layers, and can be used as an upper electrode. Furthermore, it is said that this conductive layer has a negative electron affinity, and has a property of easily emitting electrons. Therefore, the energy of the electrons reaching the upper electrode is increased by increasing the thickness of the diamond thin film which is an insulating layer. , It is possible to cause electron emission into a vacuum.

【0010】また、水素吸着ダイヤモンド表面は約10
00℃の高温にいたるまで安定であることが知られてい
る。したがって、絶縁層としてダイヤモンド薄膜を用
い、表面に水素またはアルカリ金属を吸着させることに
より、安定でかつ高耐圧の絶縁層と電子透過効率の高い
上部電極を形成することができる。また、水素もしくは
アルカリ金属吸着層による上部電極の高い電子放出能に
より、絶縁層であるダイヤモンド薄膜を厚くすることが
可能であり、高い安定性を得ることができる。これらに
より、高い安定性と高い電子放出効率を有する薄膜電子
線源およびそれを用いたフラットパネルディスプレイを
得ることができる。
The surface of the diamond adsorbing hydrogen is about 10
It is known that it is stable up to a high temperature of 00 ° C. Therefore, by using a diamond thin film as an insulating layer and adsorbing hydrogen or an alkali metal on the surface, a stable and high withstand voltage insulating layer and an upper electrode having high electron transmission efficiency can be formed. In addition, the high electron emission ability of the upper electrode by the hydrogen or alkali metal adsorption layer makes it possible to increase the thickness of the diamond thin film, which is the insulating layer, and to obtain high stability. Thus, a thin-film electron beam source having high stability and high electron emission efficiency and a flat panel display using the same can be obtained.

【0011】[0011]

【発明の実施の形態】ダイヤモンド薄膜を用いて作製し
た、MIM型薄膜電子源の構造図を図2に示す。この電
子源は下部電極として用いる白金金属基板4の上にダイ
ヤモンド薄膜5を形成している。ダイヤモンド薄膜5の
形成は、原料ガスとして重量比約1%のアセトンを混ぜ
た水素ガスを用い、マイクロ波プラズマを用いた化学的
気相成長法(マイクロ波CVD法)により作製した。
FIG. 2 is a structural view of an MIM type thin film electron source manufactured using a diamond thin film. In this electron source, a diamond thin film 5 is formed on a platinum metal substrate 4 used as a lower electrode. The diamond thin film 5 was formed by a chemical vapor deposition method (microwave CVD method) using microwave plasma using a hydrogen gas mixed with acetone at a weight ratio of about 1% as a raw material gas.

【0012】ダイヤモンド薄膜5の膜厚は3nmとし、
必要な膜厚が得られた後にダイヤモンド薄膜5上に上部
電極として厚さ5nmの金薄膜6を形成した。作製した
ダイヤモンド薄膜を用いたMIM型薄膜電子源におい
て、下部電極4に対して上部電極6が+5Vとなるよう
に直流電圧を印加した。さらに放出される電子線強度を
測定するために、約10μPaの真空中において上部電
極6から300μm離したところに厚さ300μmのモ
リブデン板を設置して陽極7とし、上部電極6に対して
+100Vとなるように直流電圧を印加した。
The thickness of the diamond thin film 5 is 3 nm,
After the required film thickness was obtained, a 5 nm thick gold thin film 6 was formed on the diamond thin film 5 as an upper electrode. In the MIM type thin film electron source using the produced diamond thin film, a DC voltage was applied to the lower electrode 4 so that the upper electrode 6 became + 5V. In order to further measure the intensity of the emitted electron beam, a 300 μm-thick molybdenum plate was placed at a distance of 300 μm from the upper electrode 6 in a vacuum of about 10 μPa to form an anode 7, and a voltage of +100 V was applied to the upper electrode 6. A DC voltage was applied so that

【0013】比較のため、図1の絶縁層3として厚さ5
μmのアルミニウム酸化物膜と上部電極1として厚さ3
μmの金薄膜を用いた従来型のMIM型薄膜電子源と本
発明によるダイヤモンド薄膜を用いた薄膜電子源の放出
電子強度の時間変化を調べた。
For comparison, the insulating layer 3 of FIG.
μm aluminum oxide film and a thickness of 3
The change over time in the emission electron intensity of a conventional MIM type thin film electron source using a gold thin film of μm and the thin film electron source using a diamond thin film according to the present invention was examined.

【0014】上部電極1と下部電極2の間に直流電圧を
印加した場合には、従来のアルミニウム絶縁膜の場合に
は酸素原子の脱離が生じるために約10時間程度で絶縁
層3の絶縁破壊が生じるのに対して、本発明によるダイ
ヤモンド薄膜5を用いたMIM型薄膜電子源においては5
0時間までの間に絶縁破壊は認められなかった。また、
従来型よりも高い電子放出を得たにもかかわらず、ノイ
ズが少なく安定した電子放出が得られた。
When a DC voltage is applied between the upper electrode 1 and the lower electrode 2, in the case of a conventional aluminum insulating film, oxygen atoms are desorbed. Whereas destruction occurs, the MIM type thin film electron source using the diamond thin film 5 according to the present invention has 5
No dielectric breakdown was observed up to 0 hours. Also,
Despite obtaining higher electron emission than the conventional type, stable electron emission with less noise was obtained.

【0015】さらに高い電子放出を得るために、上部電
極として水素吸着層を用いたMIM型薄膜電子源を作製
した。その構造図を図3に示す。この電子源では、図2
に示した電子源と同様の手法によりダイヤモンド薄膜5
の成膜を行い、厚さ3nmの薄膜が形成された時点でア
セトンの導入を止めて水素のみを導入してダイヤモンド
薄膜5の水素プラズマ処理を行い、ダイヤモンド薄膜5
の表面に水素吸着層8を形成して上部電極とした。この
上部電極表面の端部には金を蒸着し、配線を行うための
パット9を形成した。
To obtain higher electron emission, an MIM type thin film electron source using a hydrogen adsorption layer as an upper electrode was manufactured. FIG. 3 shows the structure diagram. In this electron source, FIG.
In the same manner as in the electron source shown in FIG.
When a thin film having a thickness of 3 nm is formed, the introduction of acetone is stopped, and only hydrogen is introduced to perform a hydrogen plasma treatment on the diamond thin film 5.
A hydrogen adsorption layer 8 was formed on the surface of the substrate to form an upper electrode. Gold was vapor-deposited on the end of the upper electrode surface to form a pad 9 for wiring.

【0016】この電子源の電子放出特性を前記実施例と
同様の手法により、電子放出効率を示す値である、絶縁
層から下部電極に流れ込む電流Itに対する表面からの
電子放出に対応する電流Ieの割合(Ie/It)を調
べたところ、従来型のMIM型電子源では約5%程度で
あったのに対して、ダイヤモンド薄膜5および水素吸着
層8を用いた図3に示すMIM型薄膜電子源では15%
程度に向上した。
The electron emission characteristics of this electron source are measured by the same method as in the above embodiment. The current Ie corresponding to the electron emission from the surface with respect to the current It flowing from the insulating layer to the lower electrode is a value indicating the electron emission efficiency. When the ratio (Ie / It) was examined, it was about 5% in the conventional MIM type electron source, whereas the MIM type thin film electron using the diamond thin film 5 and the hydrogen adsorption layer 8 shown in FIG. 15% at source
Improved to a degree.

【0017】また、ダイヤモンド薄膜5の成膜が終了し
た電子源を、水素プラズマ処理を行わずに約1μPaの
真空中で約800℃まで加熱した後、ダイヤモンド薄膜
5表面にナトリウム,セシウムを1ないし2原子層相当
の量だけ照射した場合にも、やはり高い電子放出が得ら
れた。同様の効果は他のアルカリ金属を用いた場合にも
得られることは、容易に類推可能である。
After the electron source on which the diamond thin film 5 has been formed is heated to about 800 ° C. in a vacuum of about 1 μPa without performing a hydrogen plasma treatment, the surface of the diamond thin film 5 is coated with 1 to 100% of sodium and cesium. Even when irradiation was performed in an amount equivalent to two atomic layers, high electron emission was also obtained. It can be easily analogized that the same effect can be obtained when another alkali metal is used.

【0018】さらに、所定の膜厚のダイヤモンド薄膜5
の成膜が終了した後に水素プラズマ処理もアルカリ金属
照射も行わずに、水素ガスの導入を止めてアセトンのみ
を約0.1mPa の圧力となるように導入して、ダイヤ
モンド薄膜5上に約3原子層に相当する厚さのグラファ
イト層の形成を行った。このグラファイト層は面内に導
電性を有しており、これを上部電極として用いた場合に
は、上記のような水素吸着層を用いた場合よりも電子放
出はやや少な目であるものの、安定した電子放出が得ら
れた。
Further, a diamond thin film 5 having a predetermined thickness
After completion of the film formation, the introduction of hydrogen gas was stopped and the pressure of about 0.1 mPa was applied to the diamond thin film 5 without hydrogen plasma treatment or alkali metal irradiation. A graphite layer having a thickness corresponding to the atomic layer was formed. This graphite layer has in-plane conductivity, and when this is used as the upper electrode, the electron emission is slightly smaller than when using the hydrogen adsorption layer as described above, but it is stable. Electron emission was obtained.

【0019】さらに、図3に示した構造で上述した薄膜
電子源では3nmとしたダイヤモンド薄膜5の膜厚を1
5nmと厚くした薄膜電子源も作製した。ダイヤモンド
薄膜は成膜の初期においては結晶化し難いと言われてお
り、膜厚を厚くすることにより多数作製する際の再現性
の向上が期待できる。このダイヤモンド薄膜5を厚くし
た薄膜電子源では、下部電極に対して上部電極が+15
Vとなるように直流電圧を印加して、上部電極表面から
の電子放出を測定した。この薄膜電子源では絶縁層に従
来型のMIM型電子源と同程度の電界が印加されている
にもかかわらず、上述した電子放出効率(Ie/It)
は8%となり、従来型の薄膜電子源よりも高い値を示し
た。
Further, in the thin-film electron source having the structure shown in FIG.
A thin film electron source as thick as 5 nm was also prepared. It is said that it is difficult to crystallize a diamond thin film in the early stage of film formation, and it is expected that the reproducibility of a large number of thin films can be improved by increasing the film thickness. In the thin-film electron source in which the diamond thin film 5 is made thicker, the upper electrode is +15
A DC voltage was applied so as to be V, and electron emission from the upper electrode surface was measured. In this thin-film electron source, the above-described electron emission efficiency (Ie / It) despite the fact that the same electric field as that of the conventional MIM type electron source is applied to the insulating layer.
Was 8%, which was higher than that of the conventional thin film electron source.

【0020】また、上記ダイヤモンド薄膜形成を行った
後に、アセトンおよび水素ガスの導入を停止して約10
mPaの圧力になるように酸素ガスを導入し酸素プラズ
マ処理を行いダイヤモンド薄膜5表面に酸素吸着層を形
成した。さらに酸素ガスの導入を停止して、約1μPa
の真空中において、ダイヤモンド薄膜5の一部に紫外光
を照射し、図4に示した200μm幅の紫外線照射領域
10と100μm幅の紫外線非照射領域11を交互の縞
状に形成した。
After the formation of the diamond thin film, the introduction of acetone and hydrogen gas is stopped and
Oxygen gas was introduced at a pressure of mPa and oxygen plasma treatment was performed to form an oxygen adsorption layer on the surface of the diamond thin film 5. Further stop the introduction of oxygen gas, and
In the vacuum, a part of the diamond thin film 5 was irradiated with ultraviolet light to form an ultraviolet irradiation region 10 having a width of 200 μm and a non-irradiation region 11 having a width of 100 μm shown in FIG.

【0021】この電子源に対して約300μm離して蛍
光板12を設置し、電子放出パターンを蛍光体の発光と
して観察できるようにした。この蛍光板12は厚さ1mm
のガラス板13上にZnS蛍光膜14を形成し、その上
に陽極となるITOの透明電極15を形成したものであ
る。これらを、約1μPaの圧力の真空容器中に設置
し、下部電極を基準として、上部電極に5Vを、ITO
陽極に150Vを印加したところ、蛍光板12上におい
て約200μm幅の明るい領域と約100μmの暗い領
域が認められ、紫外線照射領域10においてのみ電子放
出が得られた。
The fluorescent plate 12 was placed at a distance of about 300 μm from the electron source so that the electron emission pattern could be observed as the emission of the phosphor. This fluorescent plate 12 is 1 mm thick.
A ZnS fluorescent film 14 is formed on a glass plate 13 of the above, and an ITO transparent electrode 15 serving as an anode is formed thereon. These were placed in a vacuum vessel at a pressure of about 1 μPa, and 5 V was applied to the upper electrode with respect to the lower electrode, and ITO was applied.
When a voltage of 150 V was applied to the anode, a bright region having a width of about 200 μm and a dark region having a width of about 100 μm were observed on the fluorescent plate 12, and electron emission was obtained only in the ultraviolet irradiation region 10.

【0022】また、ここで作製した電子源を紫外光照射
後のダイヤモンド薄膜5表面をオージェ電子分光法を用
いて分析したところ、紫外線非照射領域11では炭素と
酸素が検出され、紫外線照射領域10では炭素のみが検
出され、紫外光照射により酸素が脱離していることがわ
かった。さらに、紫外線非照射領域11表面では帯電が
認められ、表面電導性が失われていた。
When the surface of the diamond thin film 5 after the irradiation of the ultraviolet light was analyzed using Auger electron spectroscopy, carbon and oxygen were detected in the ultraviolet non-irradiated region 11 and the ultraviolet irradiated region 10 was detected. Only carbon was detected, indicating that oxygen was desorbed by ultraviolet light irradiation. Furthermore, charging was observed on the surface of the ultraviolet non-irradiated area 11, and the surface conductivity was lost.

【0023】以上は、下部電極が金属であるいわゆるM
IM型薄膜電子源を用いたものであるが、下部電極が半
導体であり、金属−絶縁層−半導体の3層構造を有する
いわゆるMIS型薄膜電子源の絶縁層にダイヤモンド薄
膜を用いた場合にも、同様の効果が得られる。
The above description is based on the so-called M in which the lower electrode is made of metal.
Although an IM type thin film electron source is used, the lower electrode is made of a semiconductor, and a diamond thin film is used as an insulating layer of a so-called MIS type thin film electron source having a three-layer structure of metal-insulating layer-semiconductor. The same effect can be obtained.

【0024】上述したように酸素プラズマ照射を行うこ
とにより、ダイヤモンド薄膜5表面の電気電導性を失わ
せることが可能であり、さらに真空中において紫外線を
照射することにより電気電導性を持たせ上部電極として
の機能を復活させることができるので、上部電極1内の
任意の領域からの電子放出を抑制することが可能であ
る。
By performing the oxygen plasma irradiation as described above, it is possible to cause the surface of the diamond thin film 5 to lose its electrical conductivity. Further, by irradiating ultraviolet rays in a vacuum, the surface of the diamond thin film 5 is provided with the electrical conductivity and the upper electrode is provided. , The electron emission from an arbitrary region in the upper electrode 1 can be suppressed.

【0025】これを用いて、図5に示したような構造を
有する電子源マトリクスを用いたフラットパネルディス
プレイを作製した。この電子源マトリクスは以下のよう
な手順により作製した。
Using this, a flat panel display using an electron source matrix having a structure as shown in FIG. 5 was manufactured. This electron source matrix was prepared by the following procedure.

【0026】シリコン基板16表面を全面酸化し酸化シ
リコン膜17を形成した。その上に真空蒸着法により厚
さ20μmの金属シリコン膜を全面に蒸着し、通常のフ
ォトリソグラフィ工程により幅が100μmで間隔が2
0μmとなるレジストによりマスキング領域を形成し
た。これを酸化させた後にレジストを除去し、100μ
mの金属シリコン領域と20μmの酸化シリコン領域を
形成して縞状下部電極18とした。
The entire surface of the silicon substrate 16 was oxidized to form a silicon oxide film 17. A metal silicon film having a thickness of 20 μm is vapor-deposited on the entire surface by a vacuum vapor deposition method, and has a width of 100 μm and an interval of 2 μm by a normal photolithography process.
A masking region was formed with a resist having a thickness of 0 μm. After oxidizing the resist, the resist was removed and 100 μm was removed.
A metal silicon region of m and a silicon oxide region of 20 μm were formed to form a striped lower electrode 18.

【0027】この縞状下部電極18の上に上述したよう
にアセトンおよび水素ガスを導入してマイクロ波CVD
を行って厚さ3μmのダイヤモンド薄膜5を成膜し、必
要な厚さが得られた時点でアセトンおよび水素ガスの導
入を停止した。ディスプレイパネルにした場合には縞状
上部電極19の電気電導性だけでは不十分であるため、
ダイヤモンド薄膜5表面に上部電極バスライン20を形
成した。これは、真空蒸着法による幅5μmで厚さ5μ
mの金の線状電極を、縞状下部電極18とは垂直となる
向きになるように形成した。成膜の際にはメタルマスク
を用いたが、リフトオフを用いたフォトリソグラフィで
パターン化してもよい。
Acetone and hydrogen gas are introduced onto the striped lower electrode 18 as described above to perform microwave CVD.
Was performed to form a diamond thin film 5 having a thickness of 3 μm. When the required thickness was obtained, the introduction of acetone and hydrogen gas was stopped. In the case of a display panel, the electric conductivity of the striped upper electrode 19 alone is not sufficient.
An upper electrode bus line 20 was formed on the surface of the diamond thin film 5. This is 5 μm wide and 5 μm thick by vacuum evaporation.
An m-shaped gold linear electrode was formed so as to be perpendicular to the striped lower electrode 18. Although a metal mask was used for film formation, patterning may be performed by photolithography using lift-off.

【0028】上部電極バスライン20を形成した後、酸
素ガスのみを導入して酸素プラズマ処理を行い、酸素吸
着層を形成した。その後、約1μPaの真空中における
紫外線照射を行い、上部電極バスライン20に沿って幅
100μmで20μm間隔となる電気電導性を有する領
域を作製して縞状上部電極19を形成した。
After the upper electrode bus line 20 was formed, an oxygen plasma treatment was performed by introducing only oxygen gas to form an oxygen adsorption layer. Thereafter, ultraviolet irradiation in a vacuum of about 1 μPa was performed to form a striped upper electrode 19 along the upper electrode bus line 20 with a region having electric conductivity having a width of 100 μm and an interval of 20 μm.

【0029】この電子源マトリクスでは、縞状下部電極
18と縞状上部電極19のそれぞれから電極を1本ずつ
選択して縞状上部電極19側が正電位となる約5Vの直
流電圧を印加することにより、マトリクス上の任意の領
域から選択的に電子放出を行わせることができた。
In this electron source matrix, one electrode is selected from each of the striped lower electrode 18 and the striped upper electrode 19, and a DC voltage of about 5 V at which the striped upper electrode 19 side has a positive potential is applied. As a result, electrons can be selectively emitted from an arbitrary region on the matrix.

【0030】この電子源マトリクスと300μm離して
蛍光板12を設置して縞状下部電極18に対して約30
0Vの直流電圧を印加し、下部電極走査回路21と上部
電極走査回路22をそれぞれの縞状電極に接続すること
により、入力信号に対応した画像を得ることができた。
The phosphor plate 12 is set at a distance of 300 μm from the electron source matrix, and the phosphor plate
By applying a DC voltage of 0 V and connecting the lower electrode scanning circuit 21 and the upper electrode scanning circuit 22 to the respective striped electrodes, an image corresponding to the input signal could be obtained.

【0031】[0031]

【発明の効果】以上示したように、下部電極−絶縁層−
上部電極の三層構造を有する薄膜電子源において、絶縁
層としてダイヤモンド薄膜を用いることにより耐電圧性
が向上するため、薄膜電子源の動作を安定化しかつ長寿
命化することができる。また、この薄膜電子源を用いる
ことにより、低消費電力でかつ高輝度,長寿命のフラッ
トパネルディスプレイを得ることができる。
As described above, the lower electrode-insulating layer-
In a thin-film electron source having a three-layer structure of an upper electrode, the use of a diamond thin film as an insulating layer improves withstand voltage, so that the operation of the thin-film electron source can be stabilized and the life can be prolonged. Further, by using this thin-film electron source, a flat panel display with low power consumption, high luminance and long life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来型MIM型薄膜電子源構造の断面図。FIG. 1 is a cross-sectional view of a conventional MIM type thin film electron source structure.

【図2】ダイヤモンド薄膜を用いたMIM型薄膜電子源
構造の斜視図。
FIG. 2 is a perspective view of an MIM type thin film electron source structure using a diamond thin film.

【図3】水素吸着層を用いたMIM薄膜電子源構造の斜
視図。
FIG. 3 is a perspective view of an MIM thin-film electron source structure using a hydrogen adsorption layer.

【図4】紫外線を照射した薄膜電子源表面の紫外線照射
領域形状を示す斜視図。
FIG. 4 is a perspective view showing the shape of an ultraviolet irradiation area on the surface of a thin film electron source irradiated with ultraviolet light.

【図5】薄膜電子源マトリクスを用いたフラットパネル
ディスプレイの構造を示す斜視図。
FIG. 5 is a perspective view showing the structure of a flat panel display using a thin-film electron source matrix.

【符号の説明】[Explanation of symbols]

4…白金金属基板、5…ダイヤモンド薄膜、6…金薄
膜、7…陽極、8…水素吸着層、9…パット、10…紫
外線照射領域、11…紫外線非照射領域、12…蛍光
板、13…ガラス板、14…蛍光膜、15…透明電極、
16…シリコン基板、17…酸化シリコン膜、18…縞
状下部電極、19…縞状上部電極、20…上部電極バス
ライン、21…下部電極走査回路、22…上部電極走査
回路。
4 ... Platinum metal substrate, 5 ... Diamond thin film, 6 ... Gold thin film, 7 ... Anode, 8 ... Hydrogen adsorption layer, 9 ... Pad, 10 ... UV irradiation area, 11 ... UV non-irradiation area, 12 ... Fluorescent plate, 13 ... Glass Plate, 14: fluorescent film, 15: transparent electrode,
16 silicon substrate, 17 silicon oxide film, 18 striped lower electrode, 19 striped upper electrode, 20 upper electrode bus line, 21 lower electrode scanning circuit, 22 upper electrode scanning circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 進 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Susumu Sasaki 3300 Hayano, Mobara-shi, Chiba Hitachi, Ltd. Electronic Device Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】上部電極と下部電極の間に絶縁層を有する
薄膜電子源において、絶縁層としてダイヤモンド薄膜を
用いた薄膜電子源。
1. A thin film electron source having an insulating layer between an upper electrode and a lower electrode, wherein the thin film electron source uses a diamond thin film as the insulating layer.
【請求項2】上記上部電極として、上記ダイヤモンド薄
膜層の表面に、水素またはアルカリ金属を吸着させるこ
とにより表面に導電層を形成した請求項1記載の薄膜電
子源。
2. The thin film electron source according to claim 1, wherein a conductive layer is formed on the surface of the diamond thin film layer by adsorbing hydrogen or an alkali metal as the upper electrode.
【請求項3】水素またはアルカリ金属による導電層を用
いて形成した上部電極上の、一部の吸着水素または吸着
アルカリ金属を除去することにより絶縁層を形成し、電
子を放出し難い領域と電子を放出しやすい領域のいずれ
をも形成した請求項2記載の薄膜電子源。
3. An insulating layer is formed by removing a part of adsorbed hydrogen or adsorbed alkali metal on an upper electrode formed by using a conductive layer made of hydrogen or alkali metal. 3. The thin-film electron source according to claim 2, wherein each of the regions that easily emits is formed.
【請求項4】上記上部電極が、c軸配向したグラファイ
ト層である請求項1記載の薄膜電子源。
4. The thin film electron source according to claim 1, wherein said upper electrode is a graphite layer having a c-axis orientation.
【請求項5】上部電極と下部電極の間に絶縁層を有する
薄膜電子源の絶縁層として、ダイヤモンド薄膜を用いた
薄膜電子源を有するフラットディスプレイ。
5. A flat display having a thin film electron source using a diamond thin film as an insulating layer of a thin film electron source having an insulating layer between an upper electrode and a lower electrode.
【請求項6】上記上部電極として、上記ダイヤモンド薄
膜層の表面に、水素またはアルカリ金属を吸着させるこ
とにより導電層を形成した薄膜電子源を有する請求項5
記載のフラットディスプレイ。
6. A thin film electron source in which a conductive layer is formed by adsorbing hydrogen or an alkali metal on the surface of the diamond thin film layer as the upper electrode.
The flat display as described.
【請求項7】水素またはアルカリ金属による導電層を用
いて形成した上部電極上の、一部の吸着水素または吸着
アルカリ金属を除去することにより絶縁層を形成し、電
子を放出し難い領域と電子を放出しやすい領域を形成し
た薄膜電子源を有する請求項6記載のフラットディスプ
レイ。
7. An insulating layer is formed by removing a part of adsorbed hydrogen or adsorbed alkali metal on an upper electrode formed by using a conductive layer made of hydrogen or alkali metal, and a region where electrons are hardly emitted and an electron The flat display according to claim 6, further comprising a thin-film electron source having a region that easily emits light.
【請求項8】水素吸着層による導電層を用いて形成した
上記上部電極の一部の吸着水素または吸着アルカリ金属
を除去することにより絶縁層を形成して電子を放出し難
い領域を形成して複数の線状電極からなる縞状電極と
し、かつ、上記下部電極を上部電極と垂直になる方向の
縞状電極として、線状上部電極と線状下部電極の任意の
交点において電子放出を行わせる薄膜電子源を有する請
求項6記載のフラットディスプレイ。
8. An insulating layer is formed by removing a part of adsorbed hydrogen or an adsorbed alkali metal of the upper electrode formed by using a conductive layer composed of a hydrogen adsorbing layer to form a region in which electrons are hardly emitted. A striped electrode composed of a plurality of linear electrodes, and the lower electrode is a striped electrode in a direction perpendicular to the upper electrode, and emits electrons at any intersection of the linear upper electrode and the linear lower electrode. 7. The flat display according to claim 6, further comprising a thin-film electron source.
JP1095297A 1997-01-24 1997-01-24 Thin film electron source Pending JPH10208620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095297A JPH10208620A (en) 1997-01-24 1997-01-24 Thin film electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095297A JPH10208620A (en) 1997-01-24 1997-01-24 Thin film electron source

Publications (1)

Publication Number Publication Date
JPH10208620A true JPH10208620A (en) 1998-08-07

Family

ID=11764538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095297A Pending JPH10208620A (en) 1997-01-24 1997-01-24 Thin film electron source

Country Status (1)

Country Link
JP (1) JPH10208620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290303B1 (en) * 1999-06-14 2001-05-15 구자홍 Field Emission Device
JP2006134723A (en) * 2004-11-05 2006-05-25 National Institute For Materials Science Diamond emitter array and its manufacturing method
JP2006134724A (en) * 2004-11-05 2006-05-25 National Institute For Materials Science Field emitter array and its manufacturing method
CN100390921C (en) * 2003-06-20 2008-05-28 中国科学院物理研究所 A diamond film flat field emission cathode and method for making same
WO2016147603A1 (en) * 2015-03-13 2016-09-22 株式会社デンソー Thermionic power generation element and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290303B1 (en) * 1999-06-14 2001-05-15 구자홍 Field Emission Device
CN100390921C (en) * 2003-06-20 2008-05-28 中国科学院物理研究所 A diamond film flat field emission cathode and method for making same
JP2006134723A (en) * 2004-11-05 2006-05-25 National Institute For Materials Science Diamond emitter array and its manufacturing method
JP2006134724A (en) * 2004-11-05 2006-05-25 National Institute For Materials Science Field emitter array and its manufacturing method
WO2016147603A1 (en) * 2015-03-13 2016-09-22 株式会社デンソー Thermionic power generation element and method for manufacturing same
JP2016171246A (en) * 2015-03-13 2016-09-23 株式会社デンソー Thermionic power generation element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
CN1105392C (en) Thin-film electron emitter device and application equipment using the same
US7714492B2 (en) Electron emission material and electron emission panel having the same
KR100714325B1 (en) Process for improving the emission of electron field emitters
Nakayama et al. Field-emission device with carbon nanotubes for a flat panel display
US7365482B2 (en) Field emission display including electron emission source formed in multi-layer structure
US7755363B2 (en) Ionization vacuum gauge
KR960005733A (en) Method for manufacturing electron emitting device, electron source and image forming apparatus using electron emitting device
JP2007214032A (en) Electron emitting element, electron source, and manufacturing method of image display device
JPH10208620A (en) Thin film electron source
US7601043B2 (en) Method of manufacturing microholes in a cathode substrate of a field emission display using anodic oxidation
KR20020064651A (en) Thin-film electron source, display and device
US20060213774A1 (en) Method for enhancing homogeneity and effeciency of carbon nanotube electron emission source of field emission display
JP3084272B2 (en) Field emission electron source
JP2002015658A (en) Electric field emission type cold cathode device and its manufacturing method, as well as vacuum microdevice
RU2077087C1 (en) Autoemissive cathode-luminescent cell
KR100342186B1 (en) A Fabricating Organic Electro Luminescence Device and Method with The Metal Oxide Film
JP3721976B2 (en) Manufacturing method of field emission electron source
KR100186256B1 (en) Structure of fed emitter tip
JP3478279B2 (en) Method for manufacturing field emission electron source
JP2001093406A (en) Electric field emission type electron source and manufacturing method of the same
JP2003347215A (en) Substrate heating method, electric field radiating electronic source, and method for manufacturing electric field radiating electronic source
JPH11162328A (en) Thin film type electron source, display apparatus employing thin film type electron source, and apparatus employing thin film type electron source
JPS63239755A (en) X-ray generator and x-ray exposer applied therewith
JP2005050829A (en) Thin film type electron source and thin film type electron source application equipement
JPH0440107A (en) Driving method for electric field electron discharging triode