JPH10206791A - Oblique projection optical system - Google Patents

Oblique projection optical system

Info

Publication number
JPH10206791A
JPH10206791A JP861997A JP861997A JPH10206791A JP H10206791 A JPH10206791 A JP H10206791A JP 861997 A JP861997 A JP 861997A JP 861997 A JP861997 A JP 861997A JP H10206791 A JPH10206791 A JP H10206791A
Authority
JP
Japan
Prior art keywords
lens
optical system
image plane
coaxial
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP861997A
Other languages
Japanese (ja)
Inventor
Satoshi Osawa
聡 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP861997A priority Critical patent/JPH10206791A/en
Publication of JPH10206791A publication Critical patent/JPH10206791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the optical system high in magnification, sufficient in an oblique projection angle and capable of shortening the entire length of lens groups and a lens diameter and making it compact by making mutually eccentrically arranged two coaxial lens groups satisfy specified conditions. SOLUTION: In this optical system for magnifying or reducing primary images to secondary images and projecting them from an oblique direction, by providing mutually eccentric two or more lens groups 3a and not forming intermediate real images from a primary image surface 1 to a secondary image surface 2, the entire length of the lens group 3a is compacted and the following conditional expressions are satisfied; |θi -θo |<10 deg. and 1<θp /Pt <10 deg.. In this case, |θi -θo | is the absolute value of an angle formed by the primary image surface and the secondary image surface. θp is a value for which all the absolute values of multiplying the power of the respective lens groups for forming a coaxial system and the angle formed by the symmetry axis of the respective lens groups for forming the coaxial system and a straight line vertical to a magnifying side image surface are added and Pt is the value for which all the absolute values of the power of the respective groups for forming the coaxial group are added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、画像投影装置や画
像読み取り装置に使用される、1次像を斜め方向から2
次像に拡大或いは縮小して投影する投影光学系に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for converting a primary image used in an image
The present invention relates to a projection optical system that projects an enlarged or reduced image on a next image.

【0002】[0002]

【従来の技術】従来より、液晶ディスプレイ等に表示さ
れた画像をスクリーンに拡大投影する投影装置におい
て、スクリーンの大型化を図りながら投影装置全体をコ
ンパクトにする目的で、画像を斜め方向からスクリーン
に投影する装置が種々提案されている。これらの斜め投
影光学装置によれば、投影光学系をスクリーンから外し
て配置する事ができるので、スクリーン観察者の視野を
妨げないという利点も備えている。
2. Description of the Related Art Conventionally, in a projection apparatus for enlarging and projecting an image displayed on a liquid crystal display or the like onto a screen, the image is obliquely projected onto the screen in order to make the entire projection apparatus compact while enlarging the screen. Various projection devices have been proposed. According to these oblique projection optical devices, since the projection optical system can be disposed off the screen, there is an advantage that the field of view of the screen observer is not obstructed.

【0003】但し、画像を斜め方向からスクリーンにた
だ投影するだけでは、投影画像にいわゆる台形歪が生じ
てしまうので、この台形歪を補正するための投影光学系
も種々提案されている。例えば、特開平5−11928
3号公報や特開平5−134213号公報では、投影光
学系を偏心させる事により、台形歪を補正している。
However, simply projecting an image onto a screen from an oblique direction causes so-called trapezoidal distortion in the projected image, and various projection optical systems for correcting the trapezoidal distortion have been proposed. For example, Japanese Patent Application Laid-Open No. 5-11928
In Japanese Unexamined Patent Application Publication No. HEI 3-134213 and Japanese Patent Application Laid-Open No. 5-134213, trapezoidal distortion is corrected by decentering the projection optical system.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来より提案されている投影光学系では、コンパクト化や
高性能化の点で充分な満足が得られなかった。本発明
は、高倍率で斜め投影角度が充分であり、しかもレンズ
径やレンズ群の全長を短くしてコンパクト化を達成した
斜め投影光学系を提供する事を目的とする。
However, the projection optical systems proposed in the prior art have not been sufficiently satisfactory in terms of compactness and high performance. SUMMARY OF THE INVENTION It is an object of the present invention to provide an oblique projection optical system which has a high magnification, has a sufficient oblique projection angle, and achieves compactness by shortening the lens diameter and the entire length of the lens unit.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、1次像を2次像に拡大或いは縮小して
投影する投影レンズ系を有し、その投影レンズ系は、少
なくとも2つの共軸レンズ群より構成されていて、その
共軸レンズ群は、互いに偏心して配置されており、縮小
側像面から拡大側像面まで中間実像を結像しない斜め投
影光学系において、以下の条件式範囲を満足する構成と
する。 |θi −θo |<10゜ 1<θp /Pt <10 但し、 |θi −θo |:1次像面と2次像面のなす角度の絶対
値 θp :各共軸レンズ群のパワーと、各共軸レンズ群の対
称軸と拡大側像面に垂直な直線とのなす角度とを乗じて
絶対値をとった値を、全て加算した値 Pt :各共軸レンズ群のパワーの絶対値を全て加算した
値 である。
In order to achieve the above object, the present invention has a projection lens system for enlarging or reducing a primary image to a secondary image and projecting the image. In an oblique projection optical system which is composed of two coaxial lens groups, which are arranged eccentrically to each other and do not form an intermediate real image from the reduction image plane to the enlargement image plane, That satisfies the conditional expression range. | Θ i −θ o | <10 ゜ 1 <θ p / P t <10 where | θ i −θ o |: the absolute value of the angle between the primary image plane and the secondary image plane θ p : each coaxial A value obtained by multiplying the power of the lens group by the angle between the symmetry axis of each coaxial lens group and a straight line perpendicular to the magnifying-side image plane to obtain an absolute value Pt : each coaxial lens This is the sum of all the absolute values of the group power.

【0006】また、前記投影レンズ系は、少なくとも一
組の正レンズ,負レンズ,正レンズの配列を含む構成と
する。さらに、前記配列は、以下の条件式範囲を満足す
る構成としても良い。 νn <νp 但し、 νn :負レンズの媒質の分散 νp :2つの正レンズの媒質の分散のいずれか大きい方
の値 である。
Further, the projection lens system includes at least one set of a positive lens, a negative lens, and an array of positive lenses. Further, the array may be configured to satisfy the following conditional expression range. ν np, where ν n : dispersion of the medium of the negative lens ν p : dispersion of the medium of the two positive lenses, whichever is larger.

【0007】また、前記投影レンズ系は、軸対称な非球
面を少なくとも一面持つ構成としても良い。或いは、前
記投影レンズ系は、非軸対称な面を少なくとも一面持つ
構成としても良い。
The projection lens system may have at least one axisymmetric aspheric surface. Alternatively, the projection lens system may be configured to have at least one non-axisymmetric surface.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明では、1次像を斜め方向から2次像
に拡大或いは縮小して投影する投影光学系において、互
いに偏心した2つ以上のレンズ群を備えるとともに、1
次像面から2次像面まで中間実像を結像しない構成とす
る事により、レンズ群全長をコンパクトにする事を可能
にしている。
Embodiments of the present invention will be described below. According to the present invention, a projection optical system that projects a primary image by enlarging or reducing it from a diagonal direction to a secondary image is provided with two or more lens groups decentered from each other.
Since the intermediate real image is not formed from the secondary image plane to the secondary image plane, the overall length of the lens unit can be reduced.

【0009】また、以下の条件式を満たす事が必要であ
る。 |θi −θo |<10゜ (1) この式において、|θi −θo |は1次像面と2次像面
のなす角度の絶対値である。この条件式の範囲を外れる
と、斜め投影により発生する台形歪量が増大するので、
それを補正するためにレンズ群の偏心量も増大させなけ
ればならず、それにより各レンズ群に入射する光線角度
が大きくなるため、他の収差(コマ収差等)の補正が困
難となる。
It is necessary to satisfy the following conditional expression. | Θ i −θ o | <10 ° (1) In this equation, | θ i −θ o | is the absolute value of the angle between the primary image plane and the secondary image plane. Outside the range of this conditional expression, the amount of trapezoidal distortion generated by oblique projection increases,
In order to correct this, the amount of eccentricity of the lens units must also be increased, which increases the angle of light rays incident on each lens unit, making it difficult to correct other aberrations (such as coma).

【0010】さらに、以下の条件式を満たす事がより望
ましい。 |θi −θo |<5゜ (2) この条件式の範囲を満たせば、レンズ群の偏心量をより
少なくする事ができ、各レンズ群における収差補正が容
易になるため、各レンズ群を構成するために必要なレン
ズの枚数を少なくする事ができ、よりコンパクトで安価
にレンズ群を構成する事が可能となる。
It is more desirable to satisfy the following condition: | Θ i −θ o | <5 ゜ (2) If the range of this conditional expression is satisfied, the amount of eccentricity of the lens units can be further reduced, and aberration correction in each lens unit becomes easy. It is possible to reduce the number of lenses required to construct the lens unit, and it is possible to configure a lens group more compactly and inexpensively.

【0011】そして、以下の条件式を満たす事も必要で
ある。 1<θp /Pt <10 (3) 但し、 θp :共軸系をなす各レンズ群のパワーと、共軸系をな
す各レンズ群の対称軸と拡大側像面に垂直な直線とのな
す角度とを乗じて絶対値をとった値を、全て加算した値 Pt :共軸系をなす各レンズ群のパワーの絶対値を全て
加算した値 である。
It is also necessary to satisfy the following conditional expression. 1 <θ p / P t <10 (3) where θ p is the power of each lens group forming the coaxial system, and the straight line perpendicular to the symmetry axis and the magnified image plane of each lens group forming the coaxial system. Pt : A value obtained by adding all the absolute values of the powers of the respective lens units forming the coaxial system.

【0012】この条件式の下限を下回ると、各レンズ群
の偏心による台形歪の補正効果が少なくなりすぎてシフ
トレンズの構成に近づくため、充分な斜め投影角度を得
ようとすると非常に広い画角のレンズが必要となり、レ
ンズ枚数も増大するのでコンパクトな構成ではなくな
る。また、この条件式の上限を上回ると、各レンズ群の
偏心量が増大するため、各レンズ群に入射する光線角度
が大きくなり、他の収差(コマ収差等)の補正が困難と
なる。
If the lower limit of the conditional expression is not reached, the effect of correcting trapezoidal distortion due to the eccentricity of each lens unit becomes too small to approach the structure of the shift lens. Therefore, if a sufficient oblique projection angle is to be obtained, a very wide image is required. An angled lens is required, and the number of lenses is increased, so that the configuration is not compact. If the upper limit of the conditional expression is exceeded, the amount of eccentricity of each lens group increases, so that the ray angle incident on each lens group becomes large, making it difficult to correct other aberrations (such as coma).

【0013】また、少なくともレンズの並びの一部に正
レンズ,負レンズ,正レンズの順の並びを含む事が望ま
しい。この構成をとる事で、コマ収差,像面湾曲,歪曲
収差の補正を良好に行う事が可能となる。さらに、絞り
から拡大像面側のレンズの並びの一部に正レンズ,負レ
ンズ,正レンズの順の並びを含む事が望ましい。この構
成をとる事により、通常の撮影レンズにおけるトリプレ
ットの構成となり、台形歪以外の収差のコントロール
が、少ないレンズ枚数で可能となるので、絞りより縮小
側像面での収差補正の負担が軽減される。
It is preferable that at least a part of the lens arrangement includes a positive lens, a negative lens, and a positive lens in this order. With this configuration, it is possible to satisfactorily correct coma, curvature of field, and distortion. Further, it is desirable that a part of the arrangement of the lenses on the enlarged image plane side from the stop includes an arrangement of a positive lens, a negative lens, and a positive lens in this order. By adopting this configuration, it becomes a triplet configuration in a normal photographing lens, and it is possible to control aberrations other than trapezoidal distortion with a small number of lenses, so that the burden of aberration correction on the reduction side image plane is reduced from the aperture. You.

【0014】また、少なくともレンズの並びの一部に正
レンズ,負レンズ,正レンズの順の並びを含み、その正
レンズ,負レンズ,正レンズは以下の条件式を満たす事
が望ましい。 νn <νp (4) 但し、 νn :負レンズの媒質の分散 νp :2つの正レンズの媒質の分散のいずれか大きい方
の値 である。この条件式の範囲を外れると、全体として正の
パワーを持つ正レンズ,負レンズ,正レンズの構成の正
レンズで発生する色収差を負レンズで発生する逆の色収
差で補正する事が困難となる。
It is preferable that at least a part of the arrangement of the lenses includes an arrangement of a positive lens, a negative lens, and a positive lens, and the positive lens, the negative lens, and the positive lens satisfy the following conditional expressions. ν np (4) where ν n : dispersion of the medium of the negative lens ν p : dispersion value of the medium of the two positive lenses, whichever is larger. If the conditional expression is out of the range, it becomes difficult to correct the chromatic aberration generated by the positive lens having the positive power, the negative lens, and the positive lens having the positive power as a whole by the reverse chromatic aberration generated by the negative lens. .

【0015】さらに、以下の条件式を満たす事がより望
ましい。 10<νp −νn (5) この条件式を満たす事で、負レンズで発生する逆の色収
差を強める事ができるため、相対的に負レンズのパワー
を弱くする事が可能となり、他の収差(コマ収差等)の
発生が少なくなるため、全体のレンズ枚数を減らす事が
でき、よりコンパクトな構成を実現する事ができる。
It is more desirable to satisfy the following condition: 10 <ν p −ν n (5) By satisfying this conditional expression, the inverse chromatic aberration generated in the negative lens can be strengthened, so that the power of the negative lens can be relatively weakened. Occurrence of aberrations (such as coma) is reduced, so that the total number of lenses can be reduced and a more compact configuration can be realized.

【0016】また、各レンズの曲面の内、少なくとも1
面以上、軸対称な非球面を持つ事が望ましい。これによ
り、像面湾曲,歪曲収差の補正の自由度が高まり、レン
ズ枚数の削減が可能となって、よりコンパクトな構成を
実現する事ができる。さらに、絞りから拡大側と絞りか
ら縮小側の両方に、少なくとも1面以上、軸対称な非球
面を持つ事がより望ましい。これにより、絞りから拡大
側と絞りから縮小側のそれぞれで像面湾曲,歪曲収差を
補正する事が可能となり、投影レンズ群全体での性能補
正が容易になるとともに、レンズ枚数の削減が可能とな
る。
Further, at least one of the curved surfaces of each lens is provided.
It is desirable to have an aspherical surface that is axially symmetric with respect to the surface. As a result, the degree of freedom in correcting field curvature and distortion is increased, the number of lenses can be reduced, and a more compact configuration can be realized. It is more desirable to have at least one or more axisymmetric aspheric surfaces on both the enlargement side and the reduction side from the stop. This makes it possible to correct the field curvature and distortion on the enlargement side from the stop and on the reduction side from the stop, and to easily correct the performance of the entire projection lens group and reduce the number of lenses. Become.

【0017】また、各レンズの曲面の内、少なくとも1
面以上、軸非対称な面を持つ事が望ましい。これによ
り、偏心により発生する非対称収差補正(残存する台形
歪や非対称なコマ収差の補正)の自由度が高まり、より
精度良く収差補正する事が可能となる。これらの非球
面,自由曲面を表す式については後述する。
Further, at least one of the curved surfaces of each lens is provided.
It is desirable to have a plane that is axially asymmetric with respect to the plane. As a result, the degree of freedom in correcting asymmetric aberrations caused by eccentricity (correction of remaining trapezoidal distortion and asymmetric coma aberration) is increased, and aberrations can be corrected more accurately. The expressions representing these aspherical surfaces and free-form surfaces will be described later.

【0018】さらに、絞りを挟んで略対称にレンズの並
びが構成されている事がより望ましい。これにより、絞
り前後で光線の通過状況が逆転するため、絞りより前の
レンズ群で発生した収差を絞りから後のレンズ群で打ち
消す構成をとる事ができるので、より少ないレンズ枚数
で収差補正が可能となり、よりコンパクトで安価な構成
を実現する事ができる。
Furthermore, it is more desirable that the arrangement of the lenses is configured substantially symmetrically with respect to the stop. As a result, since the light passing state is reversed before and after the stop, it is possible to adopt a configuration in which the aberration generated in the lens group before the stop is canceled by the lens group after the stop, so that the aberration correction can be performed with a smaller number of lenses. It is possible to realize a more compact and inexpensive configuration.

【0019】《第1の実施形態》上記のような条件を満
たしたより具体的な実施の形態を以下に示す。図1は、
本発明の第1の実施形態の光学系を示す模式図である。
同図に示すように、2次像面(像面)2の画像光は、斜
め方向より投影レンズ群3aによって、1次像面(物体
面)1に斜めに拡大投影される。この場合、逆方向に縮
小投影されると考えても良い。
<< First Embodiment >> A more specific embodiment satisfying the above conditions will be described below. FIG.
FIG. 1 is a schematic diagram illustrating an optical system according to a first embodiment of the present invention.
As shown in the figure, the image light on the secondary image plane (image plane) 2 is obliquely enlarged and projected onto the primary image plane (object plane) 1 by the projection lens group 3a from an oblique direction. In this case, reduction projection may be considered in the opposite direction.

【0020】投影レンズ群3aは、図2に示すように、
1枚の正レンズからなる第1レンズ群(grp1),1
枚の正レンズからなる第2レンズ群(grp2),絞
り,1枚の正レンズからなる第3レンズ群(grp
3),1枚の正レンズからなる第4レンズ群(grp
4)より構成されている。また、光学系の構成要素の位
置関係は、紙面に平行で互いに直角をなすX軸,Y軸及
び紙面に垂直なZ軸が示す3次元座標により表される。
尚、同図のr記号群は、各レンズの曲面を表している。
これらの具体的なコンストラクションデータを以下に示
す。
The projection lens group 3a includes, as shown in FIG.
A first lens group (grp1) composed of one positive lens, 1
A second lens group (grp2) composed of one positive lens, an aperture, and a third lens group (grp2) composed of one positive lens
3) a fourth lens group (grp) composed of one positive lens
4). The positional relationship between the components of the optical system is represented by three-dimensional coordinates indicated by an X-axis and a Y-axis that are parallel to the plane of the paper and are perpendicular to each other, and a Z-axis perpendicular to the plane of the paper.
Note that the group of r symbols in the figure represents the curved surface of each lens.
These specific construction data are shown below.

【0021】 〈物体面OBJ〉(1次像面1) 中心位置…XO=-580 YO=0.00000 ZO=0.00000 回転角…θO=18.0000 エリアサイズ…Ymax=202.000, Ymin=-202.000 Zmax=202.000, Zmin=-202.000 〈像面IMG〉(2次像面2) 中心位置…XI=82.0141 YI=-2.08511 ZI=0.00000 回転角…θI=15.3245<Object plane OBJ> (Primary image plane 1) Center position XO = -580 YO = 0.00000 ZO = 0.00000 Rotation angle ... θO = 18.0000 Area size Ymax = 202.000, Ymin = -202.000 Zmax = 202.000, Zmin = -202.000 <image plane IMG> (secondary image plane 2) Center position ... XI = 82.0141 YI = -2.08511 ZI = 0.00000 Rotation angle ... θI = 15.3245

【0022】 〈grp1〉(正レンズ) 面頂点…X1=0.00000 Y1=2.76113 Z1=0.00000 回転角…θ1=12.9528 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r1 31.6104 7.00000 1.69680 56.4700 r2 71.0884 0.
00000 1.00000
<Grp1> (positive lens) Surface vertex: X1 = 0.00000 Y1 = 2.76113 Z1 = 0.00000 Rotation angle: θ1 = 12.9528 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [Dispersion νd] r1 31.6104 7.00000 1.69680 56.4700 r2 71.0884 0.
00000 1.00000

【0023】 〈grp2〉(正レンズ) 面頂点…X2=17.6187 Y2=−0.718943 Z2=0.00000 回転角…θ2=11.9641 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r3 -30.8768 8.00000 1.85000 40.0400 r4 -29.7079 0.00000 1.00000<Grp2> (positive lens) Surface vertex: X2 = 17.6187 Y2 = −0.718943 Z2 = 0.0000 Rotation angle: θ2 = 11.9641 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [dispersion νd] r3 -30.8768 8.00000 1.85000 40.0400 r4 -29.7079 0.00000 1.00000

【0024】 〈絞り〉(絞り4) 中心位置…XS=27.0000 YS=0.00000 ZS=0.00000 回転角…θS=0.00000 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔絞り半径〕 (絞り4) ∞ 5.1448 0.00000 1.00000<Aperture> (Aperture 4) Center position ... XS = 27.0000 YS = 0.00000 ZS = 0.00000 Rotation angle ... θS = 0.00000 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [Aperture radius] (Aperture 4) ∞ 5.1448 0.00000 1.00000

【0025】 〈grp3〉(正レンズ) 面頂点…X3=36.6272 Y3=2.15965 Z3=0.00000 回転角…θ3=22.2216 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r5 48.2800 8.00000 1.85000 40.0400 r6 54.2974 0.00000 1.00000<Grp3> (positive lens) Surface vertex: X3 = 36.6272 Y3 = 2.15965 Z3 = 0.00000 Rotation angle: θ3 = 22.2216 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [Dispersion νd] r5 48.2800 8.00000 1.85000 40.0400 r6 54.2974 0.00000 1.00000

【0026】 〈grp4〉(正レンズ) 面頂点…X4=49.9105 Y4=-1.96207 Z4=0.00000 回転角…θ4=23.8818 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r7 -49.6066 7.00000 1.69680 56.4700 r8 -33.5213 0.00000 1.00000<Grp4> (positive lens) Surface vertex X4 = 49.9105 Y4 = -1.96207 Z4 = 0.00000 Rotation angle θ4 = 23.8818 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd ] [Dispersion νd] r7 -49.6066 7.00000 1.69680 56.4700 r8 -33.5213 0.00000 1.00000

【0027】 〔面係数〕 a4 a6 a8 a10 非球面r3 1.38215E-06 5.32369E-08 5.20041E-11 -2.21081E-12 非球面r4 1.76030E-05 -1.60556E-07 1.72622E-09 -6.18330E-12 非球面r5 -9.35068E-06 1.57674E-07 -1.62349E-09 5.45421E-12 非球面r6 4.35441E-06 -6.47054E-08 3.17186E-10 -6.38271E-13 [Surface coefficient] a4 a6 a8 a10 Aspheric surface r3 1.38215E-06 5.32369E-08 5.20041E-11 -2.21081E-12 Aspheric surface r4 1.76030E-05 -1.60556E-07 1.72622E-09 -6.18330E -12 Aspheric surface r5 -9.35068E-06 1.57674E-07 -1.62349E-09 5.45421E-12 Aspheric surface r6 4.35441E-06 -6.47054E-08 3.17186E-10 -6.38271E-13

【0028】上記コンストラクションデータより、1次
像面と2次像面のなす角度の絶対値は、 |θi −θo |=2.6755 であり、上記条件式(2)を満たしている事が分かる。
また、共軸系をなす各レンズ群のパワーと、共軸系をな
す各レンズ群の対称軸と拡大側像面に垂直な直線とのな
す角度との関係は、以下の表1のようになる。
From the above construction data, the absolute value of the angle between the primary image plane and the secondary image plane is | θ i −θ o | = 2.6755, and the conditional expression (2) must be satisfied. I understand.
Further, the relationship between the power of each lens group forming the coaxial system and the angle formed by the symmetry axis of each lens group forming the coaxial system and a straight line perpendicular to the magnifying-side image plane is as shown in Table 1 below. Become.

【0029】[0029]

【表1】 [Table 1]

【0030】この表より、 θp /Pt =5.3425 であり、上記条件式(3)を満たしている事が分かる。
尚、上述の非球面,自由曲面を表す式を以下に示す。
From this table, it can be seen that θ p / P t = 5.3425, which satisfies the conditional expression (3).
The expressions representing the above-mentioned aspherical surface and free-form surface are shown below.

【0031】 x=f(y,z)=cr2/{1+(1−εc221/2} +a44+a66+a88+a1010 +g044+g066+g088+g12yz2+g14yz4+g16yz6 +g2222+g2424+g2626+g303+g3232+g3434 +g404+g4242+g4444+g505+g5252 +g606+g6262+g707+g808 (6)X = f (y, z) = cr 2 / {1+ (1-εc 2 r 2 ) 1/2 } + a 4 r 4 + a 6 r 6 + a 8 r 8 + a 10 r 10 + g 04 z 4 + g 06 z 6 + g 08 z 8 + g 12 yz 2 + g 14 yz 4 + g 16 yz 6 + g 22 y 2 z 2 + g 24 y 2 z 4 + g 26 y 2 z 6 + g 30 y 3 + g 32 y 3 z 2 + g 34 y 3 z 4 + g 40 y 4 + g 42 y 4 z 2 + g 44 y 4 z 4 + g 50 y 5 + g 52 y 5 z 2 + g 60 y 6 + g 62 y 6 z 2 + g 70 y 7 + g 80 y 8 (6)

【0032】この式において、 r=(y2 +z21/2 ε:2次曲面パラメータ(本発明においては全ての実施
形態について1.0) c:曲率(曲率半径crの逆数) a:非球面の面係数 g:自由曲面の面係数 である。コンストラクションデータに示された面係数を
この式に代入する事により、軸対称非球面或いは非軸対
称面(自由曲面)が得られる。但し、自由曲面の面係数
gは、後述の第5の実施形態においてのみ使用されてい
る。
In this equation, r = (y 2 + z 2 ) 1/2 ε: secondary surface parameter (1.0 for all embodiments in the present invention) c: curvature (reciprocal of radius of curvature cr) a: Surface coefficient of aspheric surface g: surface coefficient of free-form surface By substituting the surface coefficients shown in the construction data into this equation, an axisymmetric aspheric surface or a nonaxisymmetric surface (free-form surface) can be obtained. However, the surface coefficient g of the free-form surface is used only in a fifth embodiment described later.

【0033】図3は、本実施形態の光学系により得られ
るスポットダイアグラムであり、図4は、同じく歪曲図
である。これらの図によると、点像の分布のばらつきも
少なく、また、概ね理想に近い形状で投影される事が示
されており、実用性は充分である事が分かる。
FIG. 3 is a spot diagram obtained by the optical system of this embodiment, and FIG. 4 is a distortion diagram. These figures show that there is little variation in the distribution of the point images, and that the projection is performed in a shape that is almost ideal, indicating that the practicability is sufficient.

【0034】《第2の実施形態》図5は、本発明の第2
の実施形態の光学系を示す模式図である。同図に示すよ
うに、2次像面(像面)2の画像光は、斜め方向より投
影レンズ群3bによって、1次像面(物体面)1に斜め
に拡大投影される。この場合、逆方向に縮小投影される
と考えても良い。
<< Second Embodiment >> FIG. 5 shows a second embodiment of the present invention.
It is a schematic diagram which shows the optical system of embodiment. As shown in the figure, the image light on the secondary image plane (image plane) 2 is obliquely enlarged and projected onto the primary image plane (object plane) 1 by the projection lens group 3b from an oblique direction. In this case, reduction projection may be considered in the opposite direction.

【0035】投影レンズ群3bは、図6に示すように、
正レンズ,負レンズ,正レンズの共軸な3枚構成からな
る全体で正のパワーの第1レンズ群(grp1),絞
り,及び正レンズ,正レンズの共軸な2枚構成からなる
全体で正のパワーの第2レンズ群(grp2)より構成
されている。また、光学系の構成要素の位置関係は、紙
面に平行で互いに直角をなすX軸,Y軸及び紙面に垂直
なZ軸が示す3次元座標により表される。尚、同図のr
記号群は、各レンズの曲面を表している。これらの具体
的なコンストラクションデータを以下に示す。
As shown in FIG. 6, the projection lens group 3b
A first lens group (grp1) having a positive power as a whole, which is composed of three coaxial lenses including a positive lens, a negative lens, and a positive lens, a diaphragm, and a total of two lenses which are coaxial with a positive lens and a positive lens. It is composed of a second lens group (grp2) having a positive power. The positional relationship between the components of the optical system is represented by three-dimensional coordinates indicated by an X-axis and a Y-axis that are parallel to the plane of the paper and are perpendicular to each other, and a Z-axis perpendicular to the plane of the paper. Note that r in FIG.
The symbol group represents the curved surface of each lens. These specific construction data are shown below.

【0036】 〈物体面OBJ〉(1次像面1) 中心位置…XO=-580 YO=0.00000 ZO=0.00000 回転角…θO=18.0000 エリアサイズ…Ymax=202.000, Ymin=-202.000 Zmax=202.000, Zmin=-202.000 〈像面IMG〉(2次像面2) 中心位置…XI=78.6937 YI=-2.56297 ZI=0.00000 回転角…θI=13.9220<Object plane OBJ> (Primary image plane 1) Center position XO = -580 YO = 0.00000 ZO = 0.00000 Rotation angle θO = 18.0000 Area size Ymax = 202.000, Ymin = -202.000 Zmax = 202.000, Zmin = -202.000 <image plane IMG> (secondary image plane 2) Center position ... XI = 78.6937 YI = -2.56297 ZI = 0.00000 Rotation angle ... θI = 13.9220

【0037】 〈grp1〉(正レンズ,負レンズ,正レンズ) 面頂点…X1=0.00000 Y1=1.01156 Z1=0.00000 回転角…θ1=10.6790 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r1 30.5476 11.0000 1.77250 49,7700 r2 107.494 5.00000 1.00000 r3 -41.4098 2.00000 1.59270 35.4500 r4 31.1401 3.00000 1.00000 r5 180.479 4.00000 1.77250 49.7700 r6 -34.6252 0.00000 1.00000<Grp1> (positive lens, negative lens, positive lens) Surface vertex X1 = 0.00000 Y1 = 1.01156 Z1 = 0.00000 Rotation angle θ1 = 10.6790 [symbol of curved surface] [curvature radius cr] [surface interval t] [ d-line refractive index Nd] [dispersion νd] r1 30.5476 11.0000 1.77250 49,7700 r2 107.494 5.00000 1.00000 r3 -41.4098 2.00000 1.59270 35.4500 r4 31.1401 3.00000 1.00000 r5 180.479 4.00000 1.77250 49.7700 r6 -34.6252 0.00000 1.00000

【0038】 〈絞り〉(絞り4) 中心位置…XS=27.0000 YS=0.00000 ZS=0.00000 回転角…θS=0.00000 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔絞り半径〕 (絞り4) ∞ 4.74929 0.00000 1.00000<Aperture> (Aperture 4) Center position: XS = 27.0000 YS = 0.00000 ZS = 0.00000 Rotation angle: θS = 0.00000 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [Aperture radius] (Aperture 4) ∞ 4.74929 0.00000 1.00000

【0039】 〈grp2〉(正レンズ,正レンズ) 面頂点…X2=35.0000 Y2=2.96383 Z2=0.00000 回転角…θ2=23.1648 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r7 45.2075 8.00000 1.85000 40.0400 r8 47.9317 10.0000 1.00000 r9 -113.035 7.00000 1.69680 56.4700 r10 -42.5867 0.00000 1.00000<Grp2> (positive lens, positive lens) Surface vertex: X2 = 35.0000 Y2 = 2.96383 Z2 = 0.00000 Rotation angle: θ2 = 23.1648 [Symbol of curved surface] [Curvature radius cr] [Spacing t] [D-line refraction] Rate Nd] [dispersion νd] r7 45.2075 8.00000 1.85000 40.0400 r8 47.9317 10.0000 1.00000 r9 -113.035 7.00000 1.69680 56.4700 r10 -42.5867 0.00000 1.00000

【0040】 〔面係数〕 a4 a6 a8 a10 非球面r7 -8.99826E-06 1.72301E-07 -1.70192E-09 5.74446E-12 [Surface coefficient] a4 a6 a8 a10 Aspherical surface r7 -8.99826E-06 1.72301E-07 -1.70192E-09 5.74446E-12

【0041】上記コンストラクションデータより、1次
像面と2次像面のなす角度の絶対値は、 |θi −θo |=4.078 であり、上記条件式(2)を満たしている事が分かる。
また、共軸系をなす各レンズ群のパワーと、共軸系をな
す各レンズ群の対称軸と拡大側像面に垂直な直線とのな
す角度との関係は、以下の表2のようになる。
From the above construction data, the absolute value of the angle formed between the primary image plane and the secondary image plane is | θ i −θ o | = 4.078, which satisfies the conditional expression (2). I understand.
The relationship between the power of each lens group forming the coaxial system and the angle formed between the symmetry axis of each lens group forming the coaxial system and a straight line perpendicular to the magnified image plane is shown in Table 2 below. Become.

【0042】[0042]

【表2】 [Table 2]

【0043】この表より、 θp /Pt =6.358 であり、上記条件式(3)を満たしている事が分かる。
また、コンストラクションデータより、grp1につい
て 35.4500=νn <νp =49.7700 であり、上記条件式(4)を満たしている事が分かる。
さらに、 10<νp −νn =14.3200 であり、上記条件式(5)を満たしている事が分かる。
From this table, it can be seen that θ p / P t = 6.358, which satisfies the conditional expression (3).
Also, from the construction data, grp1 is 35.4500 = ν np = 49.7700, which indicates that the above-mentioned conditional expression (4) is satisfied.
Further, 10 <ν p −ν n = 14.3200, which indicates that the conditional expression (5) is satisfied.

【0044】図7は、本実施形態の光学系により得られ
るスポットダイアグラムであり、図8は、同じく歪曲図
である。これらの図によると、点像の分布のばらつきも
少なく、また、概ね理想に近い形状で投影される事が示
されており、実用性は充分である事が分かる。
FIG. 7 is a spot diagram obtained by the optical system of the present embodiment, and FIG. 8 is a distortion diagram. These figures show that there is little variation in the distribution of the point images, and that the projection is performed in a shape that is almost ideal, indicating that the practicability is sufficient.

【0045】《第3の実施形態》図9は、本発明の第3
の実施形態の光学系を示す模式図である。同図に示すよ
うに、2次像面(像面)2の画像光は、斜め方向より投
影レンズ群3cによって、1次像面(物体面)1に斜め
に拡大投影される。この場合、逆方向に縮小投影される
と考えても良い。
<< Third Embodiment >> FIG. 9 shows a third embodiment of the present invention.
It is a schematic diagram which shows the optical system of embodiment. As shown in the figure, the image light on the secondary image plane (image plane) 2 is obliquely enlarged and projected onto the primary image plane (object plane) 1 by the projection lens group 3c from an oblique direction. In this case, reduction projection may be considered in the opposite direction.

【0046】投影レンズ群3cは、図10に示すよう
に、正レンズ,負レンズ,正レンズの共軸な3枚構成か
らなる全体で正のパワーの第1レンズ群(grp1),
絞り,及び正レンズ,負レンズ,正レンズの共軸な3枚
構成からなる全体で正のパワーの第2レンズ群(grp
2)より構成されている。また、光学系の構成要素の位
置関係は、紙面に平行で互いに直角をなすX軸,Y軸及
び紙面に垂直なZ軸が示す3次元座標により表される。
尚、同図のr記号群は、各レンズの曲面を表している。
これらの具体的なコンストラクションデータを以下に示
す。
As shown in FIG. 10, the projection lens group 3c is composed of a first lens group (grp1) having a positive power as a whole and composed of a coaxial three lens element including a positive lens, a negative lens, and a positive lens.
A second lens group (grp) having a positive power as a whole, comprising a stop and a coaxial three-element configuration of a positive lens, a negative lens, and a positive lens
2). The positional relationship between the components of the optical system is represented by three-dimensional coordinates indicated by an X-axis and a Y-axis that are parallel to the plane of the paper and are perpendicular to each other, and a Z-axis perpendicular to the plane of the paper.
Note that the group of r symbols in the figure represents the curved surface of each lens.
These specific construction data are shown below.

【0047】 〈物体面OBJ〉(1次像面1) 中心位置…XO=-580 YO=0.00000 ZO=0.00000 回転角…θO=18.0000 エリアサイズ…Ymax=202.000, Ymin=-202.000 Zmax=202.000, Zmin=-202.000 〈像面IMG〉(2次像面2) 中心位置…XI=83.2088 YI=-1.34904 ZI=0.00000 回転角…θI=17.0069<Object plane OBJ> (Primary image plane 1) Center position XO = -580 YO = 0.00000 ZO = 0.00000 Rotation angle θO = 18.0000 Area size Ymax = 202.000, Ymin = -202.000 Zmax = 202.000, Zmin = -202.000 <Image plane IMG> (Secondary image plane 2) Center position ... XI = 83.2088 YI = -1.34904 ZI = 0.00000 Rotation angle ... I = 17.0069

【0048】 〈grp1〉(正レンズ,負レンズ,正レンズ) 面頂点…X1=0.00000 Y1=2.44299 Z1=0.00000 回転角…θ1=15.2790 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r1 32.3182 7.00000 1.77250 49,7700 r2 64.9410 6.00000 1.00000 r3 -42.3750 2.00000 1.59270 35.4500 r4 36.2863 2.00000 1.00000 r5 85.9018 6.00000 1.77250 49.7700 r6 -40.1515 0.00000 1.00000<Grp1> (positive lens, negative lens, positive lens) Surface vertex X1 = 0.00000 Y1 = 2.44299 Z1 = 0.00000 Rotation angle θ1 = 15.2790 [symbol of curved surface] [curvature radius cr] [surface interval t ] [D-line refractive index Nd] [dispersion νd] r1 32.3182 7.00000 1.77250 49,7700 r2 64.9410 6.00000 1.00000 r3 -42.3750 2.00000 1.59270 35.4500 r4 36.2863 2.00000 1.00000 r5 85.9018 6.00000 1.77250 49.7700 r6 -40.1515 0.00000 1.00000

【0049】 〈絞り〉(絞り4) 中心位置…XS=25.0000 YS=0.00000 ZS=0.00000 回転角…θS=0.00000 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔絞り半径〕 (絞り4) ∞ 5.4091 0.00000 1.00000<Aperture> (Aperture 4) Center position: XS = 25.0000 YS = 0.00000 ZS = 0.00000 Rotation angle: θS = 0.00000 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [Aperture radius] (Aperture 4) ∞ 5.4091 0.00000 1.00000

【0050】 〈grp2〉(正レンズ,負レンズ,正レンズ) 面頂点…X2=29.1084 Y2=4.88961 Z2=0.00000 回転角…θ2=19.7837 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r7 46.3064 7.80000 1.75450 51.5700 r8 -233.343 1.30000 1.00000 r9 -149.229 1.50000 1.63980 34.5500 r10 38.9179 8.90000 1.00000 r11 -91.6607 6.00000 1.61800 63.3900 r12 -32.1965 0.00000 1.00000<Grp2> (positive lens, negative lens, positive lens) Surface vertex X2 = 29.1084 Y2 = 4.88961 Z2 = 0.00000 Rotation angle θ2 = 19.7837 [curved surface symbol] [curvature radius cr] [surface interval t] [ d-line refractive index Nd] [dispersion νd] r7 46.3064 7.80000 1.75450 51.5700 r8 -233.343 1.30000 1.00000 r9 -149.229 1.50000 1.63980 34.5500 r10 38.9179 8.90000 1.00000 r11 -91.6607 6.00000 1.61800 63.3900 r12 -32.1965 0.00000 1.00000

【0051】 〔面係数〕 a4 a6 a8 a10 非球面r7 -7.45508E-06 8.86108E-08 -7.42697E-10 2.09919E-12 [Surface coefficient] a4 a6 a8 a10 Aspherical surface r7 -7.45508E-06 8.86108E-08 -7.42697E-10 2.09919E-12

【0052】上記コンストラクションデータより、1次
像面と2次像面のなす角度の絶対値は、 |θi −θo |=0.9931 であり、上記条件式(2)を満たしている事が分かる。
また、共軸系をなす各レンズ群のパワーと、共軸系をな
す各レンズ群の対称軸と拡大側像面に垂直な直線とのな
す角度との関係は、以下の表3のようになる。
From the above construction data, the absolute value of the angle between the primary image plane and the secondary image plane is | θ i −θ o | = 0.9931, which satisfies the conditional expression (2). I understand.
The relationship between the power of each lens group forming the coaxial system and the angle between the symmetry axis of each lens group forming the coaxial system and a straight line perpendicular to the magnified image plane is shown in Table 3 below. Become.

【0053】[0053]

【表3】 [Table 3]

【0054】この表より、 θp /Pt =2.2556 であり、上記条件式(3)を満たしている事が分かる。
また、コンストラクションデータより、grp1につい
て 35.4500=νn <νp =49.7700 であり、上記条件式(4)を満たしている事が分かる。
さらに、 10<νp −νn =14.3200 であり、上記条件式(5)を満たしている事が分かる。
また、grp2について 35.5500=νn <νp =63.3900 であり、上記条件式(4)を満たしている事が分かる。
さらに、 10<νp −νn =27.8400 であり、上記条件式(5)を満たしている事が分かる。
From this table, it can be seen that θ p / P t = 2.2556, which satisfies the conditional expression (3).
Also, from the construction data, grp1 is 35.4500 = ν np = 49.7700, which indicates that the above-mentioned conditional expression (4) is satisfied.
Further, 10 <ν p −ν n = 14.3200, which indicates that the conditional expression (5) is satisfied.
In addition, grp2 is 35.5500 = ν np = 63.3900, and it can be seen that the above-mentioned conditional expression (4) is satisfied.
Furthermore, 10 <ν p −ν n = 27.8400, which indicates that the conditional expression (5) is satisfied.

【0055】図11は、本実施形態の光学系により得ら
れるスポットダイアグラムであり、図12は、同じく歪
曲図である。これらの図によると、点像の分布のばらつ
きも少なく、また、概ね理想に近い形状で投影される事
が示されており、実用性は充分である事が分かる。
FIG. 11 is a spot diagram obtained by the optical system of this embodiment, and FIG. 12 is a distortion diagram. These figures show that there is little variation in the distribution of the point images, and that the projection is performed in a shape that is almost ideal, indicating that the practicability is sufficient.

【0056】《第4の実施形態》図13は、本発明の第
4の実施形態の光学系を示す模式図である。同図に示す
ように、2次像面(像面)2の画像光は、斜め方向より
投影レンズ群3dによって、1次像面(物体面)1に斜
めに拡大投影される。この場合、逆方向に縮小投影され
ると考えても良い。
Fourth Embodiment FIG. 13 is a schematic diagram showing an optical system according to a fourth embodiment of the present invention. As shown in the figure, the image light on the secondary image plane (image plane) 2 is obliquely enlarged and projected onto the primary image plane (object plane) 1 by the projection lens group 3d from an oblique direction. In this case, reduction projection may be considered in the opposite direction.

【0057】投影レンズ群3dは、図14に示すよう
に、1枚の正レンズからなる第1レンズ群(grp
1),正レンズ,負レンズ,正レンズの共軸な3枚構成
からなる全体で正のパワーの第2レンズ群(grp
2),絞り,及び正レンズ,負レンズ,正レンズの共軸
な3枚構成からなる全体で正のパワーの第3レンズ群
(grp3),1枚の負レンズからなる第4レンズ群
(grp4)より構成されている。また、光学系の構成
要素の位置関係は、紙面に平行で互いに直角をなすX
軸,Y軸及び紙面に垂直なZ軸が示す3次元座標により
表される。尚、同図のr記号群は、各レンズの曲面を表
している。これらの具体的なコンストラクションデータ
を以下に示す。
As shown in FIG. 14, the projection lens group 3d includes a first lens group (grp
1), a second lens group (grp) having a positive power as a whole, comprising a coaxial three-element configuration of a positive lens, a negative lens, and a positive lens.
2) a third lens group (grp3) having a positive power as a whole, which is composed of three lenses coaxial with a stop, a positive lens, a negative lens, and a positive lens; and a fourth lens group (grp4) including a single negative lens. ). Further, the positional relationship of the components of the optical system is X parallel to the paper and perpendicular to each other.
It is represented by three-dimensional coordinates indicated by an axis, a Y axis, and a Z axis perpendicular to the paper surface. Note that the group of r symbols in the figure represents the curved surface of each lens. These specific construction data are shown below.

【0058】 〈物体面OBJ〉(1次像面1) 中心位置…XO=-580 YO=0.00000 ZO=0.00000 回転角…θO=18.0000 エリアサイズ…Ymax=202.000, Ymin=-202.000 Zmax=202.000, Zmin=-202.000 〈像面IMG〉(2次像面2) 中心位置…XI=86.0703 YI=-1.67835 ZI=0.00000 回転角…θI=14.6007<Object plane OBJ> (Primary image plane 1) Center position XO = -580 YO = 0.00000 ZO = 0.00000 Rotation angle ... θO = 18.0000 Area size Ymax = 202.000, Ymin = -202.000 Zmax = 202.000, Zmin = -202.000 <Image plane IMG> (Secondary image plane 2) Center position ... XI = 86.0703 YI = -1.67835 ZI = 0.00000 Rotation angle ... θI = 14.6007

【0059】 〈grp1〉(正レンズ) 面頂点…X1=-10.0000 Y1=2.06976 Z1=0.00000 回転角…θ1=7.74110 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r1 -82.0971 5.00000 1.51680 64.2000 r2 -68.8938 0.00000 1.00000<Grp1> (positive lens) Surface vertex X1 = -10.0000 Y1 = 2.06976 Z1 = 0.00000 Rotation angle θ1 = 7.74110 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd ] [Dispersion νd] r1 -82.0971 5.00000 1.51680 64.2000 r2 -68.8938 0.00000 1.00000

【0060】 〈grp2〉(正レンズ, 負レンズ,正レンズ) 面頂点…X2=0.00000 Y2=-0.327736 Z2=0.00000 回転角…θ2=11.6329 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r3 33.5548 7.00000 1.77250 49.7700 r4 54.8585 6.00000 1.00000 r5 -30.6656 2.00000 1.59270 35.4500 r6 51.1018 2.00000 1.00000 r7 165.863 6.00000 1.77250 49.7700 r8 -32.2578 0.00000 1.00000<Grp2> (positive lens, negative lens, positive lens) Surface vertex X2 = 0.00000 Y2 = -0.327736 Z2 = 0.00000 Rotation angle θ2 = 11.6329 [curved surface symbol] [curvature radius cr] [surface interval t] [D-line refractive index Nd] [dispersion νd] r3 33.5548 7.00000 1.77250 49.7700 r4 54.8585 6.00000 1.00000 r5 -30.6656 2.00000 1.59270 35.4500 r6 51.1018 2.00000 1.00000 r7 165.863 6.00000 1.77250 49.7700 r8 -32.2578 0.00000 1.00000

【0061】 〈絞り〉(絞り4) 中心位置…XS=25.0000 YS=0.00000 ZS=0.00000 回転角…θS=0.00000 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔絞り半径〕 (絞り4) ∞ 5.7245 0.00000 1.00000<Aperture> (Aperture 4) Center position: XS = 25.0000 YS = 0.00000 ZS = 0.00000 Rotation angle: θS = 0.00000 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [Aperture radius] (Aperture 4) ∞ 5.7245 0.00000 1.00000

【0062】 〈grp3〉(正レンズ,負レンズ,正レンズ) 面頂点…X3=29.0000 Y3=5.06238 Z3=0.00000 回転角…θ3=17.6283 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r9 42.5087 7.80000 1.75450 51.5700 r10 -186.220 1.30000 1.00000 r11 -142.437 1.50000 1.63980 34.5500 r12 36.2388 8.90000 1.00000 r13 -91.0622 6.00000 1.61800 63.3900 r14 -33.5116 0.00000 1.00000<Grp3> (positive lens, negative lens, positive lens) Surface vertex: X3 = 29.0000 Y3 = 5.06238 Z3 = 0.00000 Rotation angle: θ3 = 17.6283 [symbol of curved surface] [curvature radius cr] [surface interval t] [ d-line refractive index Nd] [dispersion νd] r9 42.5087 7.80000 1.75450 51.5700 r10 -186.220 1.30000 1.00000 r11 -142.437 1.50000 1.63980 34.5500 r12 36.2388 8.90000 1.00000 r13 -91.0622 6.00000 1.61800 63.3900 r14 -33.5116 0.00000 1.00000

【0063】 〈grp4〉(負レンズ) 面頂点…X4=60.0000 Y4=-4.97837 Z4=0.00000 回転角…θ4=-13.7348 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r15 149.447 5.00000 1.59551 39.2300 r16 93.8166 0.00000 1.00000<Grp4> (negative lens) Surface vertex: X4 = 60.0000 Y4 = -4.97837 Z4 = 0.00000 Rotation angle ... θ4 = -13.7348 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [dispersion νd] r15 149.447 5.00000 1.59551 39.2300 r16 93.8166 0.00000 1.00000

【0064】 〔面係数〕 a4 a6 a8 a10 非球面r9 -7.63071E-06 8.79046E-08 -7.38534E-10 2.12661E-12 [Surface coefficient] a4 a6 a8 a10 Aspherical surface r9 -7.63071E-06 8.79046E-08 -7.38534E-10 2.12661E-12

【0065】上記コンストラクションデータより、1次
像面と2次像面のなす角度の絶対値は、 |θi −θo |=3.3993 であり、上記条件式(2)を満たしている事が分かる。
また、共軸系をなす各レンズ群のパワーと、共軸系をな
す各レンズ群の対称軸と拡大側像面に垂直な直線とのな
す角度との関係は、以下の表4のようになる。
From the above construction data, the absolute value of the angle between the primary image plane and the secondary image plane is | θ i −θ o | = 3.3993, which satisfies the conditional expression (2). I understand.
The relationship between the power of each lens group forming the coaxial system and the angle between the symmetry axis of each lens group forming the coaxial system and a straight line perpendicular to the magnifying-side image plane is shown in Table 4 below. Become.

【0066】[0066]

【表4】 [Table 4]

【0067】この表より、 θp /Pt =5.9738 であり、上記条件式(3)を満たしている事が分かる。
また、コンストラクションデータより、grp2につい
て 35.4500=νn <νp =49.7700 であり、上記条件式(4)を満たしている事が分かる。
さらに、 10<νp −νn =14.3200 であり、上記条件式(5)を満たしている事が分かる。
また、grp3について 35.5500=νn <νp =63.3900 であり、上記条件式(4)を満たしている事が分かる。
さらに、 10<νp −νn =27.8400 であり、上記条件式(5)を満たしている事が分かる。
From this table, it can be seen that θ p / P t = 5.9738, which satisfies the conditional expression (3).
Also, from the construction data, grp2 is 35.4500 = ν np = 49.7700, and it can be seen that the above-mentioned conditional expression (4) is satisfied.
Further, 10 <ν p −ν n = 14.3200, which indicates that the conditional expression (5) is satisfied.
Also, grp3 is 35.5500 = ν np = 63.3900, and it can be seen that the above conditional expression (4) is satisfied.
Furthermore, 10 <ν p −ν n = 27.8400, which indicates that the conditional expression (5) is satisfied.

【0068】図15は、本実施形態の光学系により得ら
れるスポットダイアグラムであり、図16は、同じく歪
曲図である。これらの図によると、点像の分布のばらつ
きも少なく、また、概ね理想に近い形状で投影される事
が示されており、実用性は充分である事が分かる。
FIG. 15 is a spot diagram obtained by the optical system of this embodiment, and FIG. 16 is a distortion diagram. These figures show that there is little variation in the distribution of the point images, and that the projection is performed in a shape that is almost ideal, indicating that the practicability is sufficient.

【0069】《第5の実施形態》図17は、本発明の第
5の実施形態の光学系を示す模式図である。同図に示す
ように、2次像面(像面)2の画像光は、斜め方向より
投影レンズ群3eによって、1次像面(物体面)1に斜
めに拡大投影される。この場合、逆方向に縮小投影され
ると考えても良い。
<< Fifth Embodiment >> FIG. 17 is a schematic diagram showing an optical system according to a fifth embodiment of the present invention. As shown in the figure, the image light on the secondary image plane (image plane) 2 is obliquely enlarged and projected onto the primary image plane (object plane) 1 by a projection lens group 3e from an oblique direction. In this case, reduction projection may be considered in the opposite direction.

【0070】投影レンズ群3eは、図18に示すよう
に、正レンズ,負レンズ,正レンズの共軸な3枚構成か
らなる全体で正のパワーの第1レンズ群(grp1),
絞り,及び正レンズ,負レンズ,正レンズの共軸な3枚
構成からなる全体で正のパワーの第2レンズ群(grp
2)より構成されている。また、光学系の構成要素の位
置関係は、紙面に平行で互いに直角をなすX軸,Y軸及
び紙面に垂直なZ軸が示す3次元座標により表される。
尚、同図のr記号群は、各レンズの曲面を表している。
これらの具体的なコンストラクションデータを以下に示
す。
As shown in FIG. 18, the projection lens group 3e is composed of a first lens group (grp1) having a positive power as a whole and having a coaxial three-element configuration including a positive lens, a negative lens, and a positive lens.
A second lens group (grp) having a positive power as a whole, comprising a stop and a coaxial three-element configuration of a positive lens, a negative lens, and a positive lens
2). The positional relationship between the components of the optical system is represented by three-dimensional coordinates indicated by an X-axis and a Y-axis that are parallel to the plane of the paper and are perpendicular to each other, and a Z-axis perpendicular to the plane of the paper.
Note that the group of r symbols in the figure represents the curved surface of each lens.
These specific construction data are shown below.

【0071】 〈物体面OBJ〉(1次像面1) 中心位置…XO=-580 YO=0.00000 ZO=0.00000 回転角…θO=18.0000 エリアサイズ…Ymax=202.000, Ymin=-202.000 Zmax=202.000, Zmin=-202.000 〈像面IMG〉(2次像面2) 中心位置…XI=84.6488 YI=-4.08456 ZI=0.00000 回転角…θI=16.9200<Object plane OBJ> (Primary image plane 1) Center position XO = -580 YO = 0.00000 ZO = 0.00000 Rotation angle ... θO = 18.0000 Area size Ymax = 202.000, Ymin = -202.000 Zmax = 202.000, Zmin = -202.000 <Image plane IMG> (Secondary image plane 2) Center position ... XI = 84.6488 YI = -4.08456 ZI = 0.00000 Rotation angle ... θI = 16.9200

【0072】 〈grp1〉(正レンズ,負レンズ,正レンズ) 面頂点…X1=0.00000 Y1=0.143185 Z1=0.00000 回転角…θ1=15.1314 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r1 33.8400 7.00000 1.77250 49,7700 r2 75.4347 6.00000 1.00000 r3 -44.6425 2.00000 1.59270 35.4500 r4 40.4044 2.00000 1.00000 r5 145.838 6.00000 1.77250 49.7700 r6 -39.5116 0.00000 1.00000<Grp1> (positive lens, negative lens, positive lens) Surface vertex X1 = 0.00000 Y1 = 0.143185 Z1 = 0.00000 Rotation angle θ1 = 15.1314 [symbol of curved surface] [curvature radius cr] [surface interval t] [ d-line refractive index Nd] [dispersion νd] r1 33.8400 7.00000 1.77250 49,7700 r2 75.4347 6.00000 1.00000 r3 -44.6425 2.00000 1.59270 35.4500 r4 40.4044 2.00000 1.00000 r5 145.838 6.00000 1.77250 49.7700 r6 -39.5116 0.00000 1.00000

【0073】 〈絞り〉(絞り4) 中心位置…XS=25.0000 YS=0.00000 ZS=0.00000 回転角…θS=0.00000 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔絞り半径〕 (絞り4) ∞ 5.4505 0.00000 1.00000<Aperture> (Aperture 4) Center position XS = 25.0000 YS = 0.00000 ZS = 0.00000 Rotation angle θS = 0.00000 [Symbol of curved surface] [Radius of curvature cr] [Spacing t] [D-line refractive index Nd] [Aperture radius] (Aperture 4) ∞ 5.4505 0.00000 1.00000

【0074】 〈grp2〉(正レンズ,負レンズ,正レンズ) 面頂点…X2=29.1084 Y2=2.37492 Z2=0.00000 回転角…θ2=19.4773 〔曲面の記号〕〔曲率半径cr〕〔面間隔t〕〔d線屈折率Nd〕〔分散νd〕 r7 53.4805 7.80000 1.75450 51.5700 r8 -130.816 1.30000 1.00000 r9 -101.690 1.50000 1.63980 34.5500 r10 45.7553 8.90000 1.00000 r11 -63.1820 6.00000 1.61800 63.3900 r12 -27.3304 0.00000 1.00000<Grp2> (positive lens, negative lens, positive lens) Surface vertex: X2 = 29.1084 Y2 = 2.37492 Z2 = 0.00000 Rotation angle: θ2 = 19.4773 [Symbol of curved surface] [radius of curvature cr] [surface interval t] [ d-line refractive index Nd] [dispersion νd] r7 53.4805 7.80000 1.75450 51.5700 r8 -130.816 1.30000 1.00000 r9 -101.690 1.50000 1.63980 34.5500 r10 45.7553 8.90000 1.00000 r11 -63.1820 6.00000 1.61800 63.3900 r12 -27.3304 0.00000 1.00000

【0075】 〔面係数〕 非球面 a4 a6 a8 a10 r7 -8.26923E-06 1.42457E-07 -1.77269E-09 8.20727E-12 自由曲面(軸非対称) g04 g06 g08 r10 1.83513E-05 -3.26306E-07 1.95935E-09 g12 g14 g16 4.68721E-05 -1.46675E-06 6.11889E-09 g22 g24 g26 5.72399E-06 -1.06325E-07 3.27880E-10 g30 g32 g34 2.37083E-06 -1.76068E-06 2.30339E-08 g40 g42 g44 -3.82034E-06 1.11039E-08 -3.81010E-10 g50 g52 -5.36097E-07 4.07491E-09 g60 g62 7.44486E-08 -1.83735E-10 g70 1.04955E-09 g80 -4.26391E-10 [Surface coefficient] Aspheric surface a4 a6 a8 a10 r7 -8.26923E-06 1.42457E-07 -1.77269E-09 8.20727E-12 Free-form surface (axially asymmetric) g04 g06 g08 r10 1.83513E-05 -3.26306E- 07 1.95935E-09 g12 g14 g16 4.68721E-05 -1.46675E-06 6.11889E-09 g22 g24 g26 5.72399E-06 -1.06325E-07 3.27880E-10 g30 g32 g34 2.37083E-06 -1.76068E-06 2.30339 E-08 g40 g42 g44 -3.82034E-06 1.11039E-08 -3.81010E-10 g50 g52 -5.36097E-07 4.07491E-09 g60 g62 7.44486E-08 -1.83735E-10 g70 1.04955E-09 g80 -4.26391 E-10

【0076】上記コンストラクションデータより、1次
像面と2次像面のなす角度の絶対値は、 |θi −θo |=1.080 であり、上記条件式(2)を満たしている事が分かる。
また、共軸系をなす各レンズ群のパワーと、共軸系をな
す各レンズ群の対称軸と拡大側像面に垂直な直線とのな
す角度との関係は、以下の表5のようになる。
From the above construction data, the absolute value of the angle between the primary image plane and the secondary image plane is | θ i −θ o | = 1.080, which satisfies the conditional expression (2). I understand.
The relationship between the power of each lens group forming the coaxial system and the angle formed between the symmetry axis of each lens group forming the coaxial system and a straight line perpendicular to the magnifying-side image plane is as shown in Table 5 below. Become.

【0077】[0077]

【表5】 [Table 5]

【0078】この表より、 θp /Pt =2.131 であり、上記条件式(3)を満たしている事が分かる。
また、コンストラクションデータより、grp1につい
て 35.4500=νn <νp =49.7700 であり、上記条件式(4)を満たしている事が分かる。
さらに、 10<νp −νn =14.3200 であり、上記条件式(5)を満たしている事が分かる。
また、grp2について 35.5500=νn <νp =63.3900 であり、上記条件式(4)を満たしている事が分かる。
さらに、 10<νp −νn =27.8400 であり、上記条件式(5)を満たしている事が分かる。
From this table, it can be seen that θ p / P t = 2.131, which satisfies the conditional expression (3).
Also, from the construction data, grp1 is 35.4500 = ν np = 49.7700, which indicates that the above-mentioned conditional expression (4) is satisfied.
Further, 10 <ν p −ν n = 14.3200, which indicates that the conditional expression (5) is satisfied.
In addition, grp2 is 35.5500 = ν np = 63.3900, and it can be seen that the above-mentioned conditional expression (4) is satisfied.
Furthermore, 10 <ν p −ν n = 27.8400, which indicates that the conditional expression (5) is satisfied.

【0079】図19は、本実施形態の光学系により得ら
れるスポットダイアグラムであり、図20は、同じく歪
曲図である。これらの図によると、点像の分布のばらつ
きも少なく、また、概ね理想に近い形状で投影される事
が示されており、実用性は充分である事が分かる。
FIG. 19 is a spot diagram obtained by the optical system of this embodiment, and FIG. 20 is a distortion diagram. These figures show that there is little variation in the distribution of the point images, and that the projection is performed in a shape that is almost ideal, indicating that the practicability is sufficient.

【0080】[0080]

【発明の効果】以上説明したように、本発明によれば、
高倍率で斜め投影角度が充分であり、しかもレンズ径や
レンズ群の全長を短くしてコンパクト化を達成した斜め
投影光学系を提供する事ができる。
As described above, according to the present invention,
It is possible to provide an oblique projection optical system in which the oblique projection angle is high and the oblique projection angle is sufficient, and the lens diameter and the total length of the lens group are shortened to achieve compactness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の光学系を示す模式
図。
FIG. 1 is a schematic diagram showing an optical system according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態の投影レンズ群を示す
模式図。
FIG. 2 is a schematic diagram illustrating a projection lens group according to the first embodiment of the present invention.

【図3】本発明の第1の実施形態の光学系のスポットダ
イアグラム。
FIG. 3 is a spot diagram of the optical system according to the first embodiment of the present invention.

【図4】本発明の第1の実施形態の光学系の歪曲図。FIG. 4 is a distortion diagram of the optical system according to the first embodiment of the present invention.

【図5】本発明の第2の実施形態の光学系を示す模式
図。
FIG. 5 is a schematic diagram showing an optical system according to a second embodiment of the present invention.

【図6】本発明の第2の実施形態の投影レンズ群を示す
模式図。
FIG. 6 is a schematic diagram illustrating a projection lens group according to a second embodiment of the present invention.

【図7】本発明の第2の実施形態の光学系のスポットダ
イアグラム。
FIG. 7 is a spot diagram of an optical system according to a second embodiment of the present invention.

【図8】本発明の第2の実施形態の光学系の歪曲図。FIG. 8 is a distortion diagram of the optical system according to the second embodiment of the present invention.

【図9】本発明の第3の実施形態の光学系を示す模式
図。
FIG. 9 is a schematic diagram showing an optical system according to a third embodiment of the present invention.

【図10】本発明の第3の実施形態の投影レンズ群を示
す模式図。
FIG. 10 is a schematic diagram showing a projection lens group according to a third embodiment of the present invention.

【図11】本発明の第3の実施形態の光学系のスポット
ダイアグラム。
FIG. 11 is a spot diagram of an optical system according to a third embodiment of the present invention.

【図12】本発明の第3の実施形態の光学系の歪曲図。FIG. 12 is a distortion diagram of the optical system according to the third embodiment of the present invention.

【図13】本発明の第4の実施形態の光学系を示す模式
図。
FIG. 13 is a schematic diagram showing an optical system according to a fourth embodiment of the present invention.

【図14】本発明の第4の実施形態の投影レンズ群を示
す模式図。
FIG. 14 is a schematic diagram illustrating a projection lens group according to a fourth embodiment of the present invention.

【図15】本発明の第4の実施形態の光学系のスポット
ダイアグラム。
FIG. 15 is a spot diagram of an optical system according to a fourth embodiment of the present invention.

【図16】本発明の第4の実施形態の光学系の歪曲図。FIG. 16 is a distortion diagram of the optical system according to the fourth embodiment of the present invention.

【図17】本発明の第5の実施形態の光学系を示す模式
図。
FIG. 17 is a schematic view showing an optical system according to a fifth embodiment of the present invention.

【図18】本発明の第5の実施形態の投影レンズ群を示
す模式図。
FIG. 18 is a schematic diagram showing a projection lens group according to a fifth embodiment of the present invention.

【図19】本発明の第5の実施形態の光学系のスポット
ダイアグラム。
FIG. 19 is a spot diagram of an optical system according to a fifth embodiment of the present invention.

【図20】本発明の第5の実施形態の光学系の歪曲図。FIG. 20 is a distortion diagram of the optical system according to the fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 1次像面 2 2次像面 3a〜3e 投影レンズ群 4 絞り DESCRIPTION OF SYMBOLS 1 Primary image surface 2 Secondary image surface 3a-3e Projection lens group 4 Aperture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1次像を2次像に拡大或いは縮小して投
影する投影レンズ系を有し、該投影レンズ系は、少なく
とも2つの共軸レンズ群より構成されていて、該共軸レ
ンズ群は、互いに偏心して配置されており、縮小側像面
から拡大側像面まで中間実像を結像しない斜め投影光学
系において、以下の条件式範囲を満足する事を特徴とす
る斜め投影光学系、 |θi −θo |<10゜ 1<θp /Pt <10 但し、 |θi −θo |:1次像面と2次像面のなす角度の絶対
値 θp :各共軸レンズ群のパワーと、各共軸レンズ群の対
称軸と拡大側像面に垂直な直線とのなす角度とを乗じて
絶対値をとった値を、全て加算した値 Pt :各共軸レンズ群のパワーの絶対値を全て加算した
値 である。
1. A projection lens system for enlarging or reducing a primary image to a secondary image and projecting the same, the projection lens system comprising at least two coaxial lens groups, wherein the coaxial lens The oblique projection optical system is arranged eccentrically with respect to each other, and satisfies the following conditional expression range in an oblique projection optical system that does not form an intermediate real image from the reduction side image plane to the enlargement side image plane. | Θ i −θ o | <10 ゜ 1 <θ p / P t <10 where | θ i −θ o |: the absolute value of the angle between the primary image plane and the secondary image plane θ p : each A value obtained by multiplying the power of the axial lens group by the angle formed between the symmetry axis of each coaxial lens group and a straight line perpendicular to the magnifying-side image plane, and adding all the absolute values Pt : each coaxial This is the sum of the absolute values of the powers of the lens groups.
【請求項2】 前記投影レンズ系は、少なくとも一組の
正レンズ,負レンズ,正レンズの配列を含む事を特徴と
する請求項1に記載の斜め投影光学系。
2. The oblique projection optical system according to claim 1, wherein the projection lens system includes at least one set of a positive lens, a negative lens, and an array of positive lenses.
【請求項3】 前記配列は、以下の条件式範囲を満足す
る事を特徴とする請求項2に記載の斜め投影光学系、 νn <νp 但し、 νn :負レンズの媒質の分散 νp :2つの正レンズの媒質の分散のいずれか大きい方
の値 である。
3. The oblique projection optical system according to claim 2, wherein said array satisfies the following conditional expression range: ν np, where ν n : dispersion of a medium of a negative lens. p : the larger of the dispersions of the media of the two positive lenses.
【請求項4】 前記投影レンズ系は、軸対称な非球面を
少なくとも一面持つ事を特徴とする請求項1に記載の斜
め投影光学系。
4. The oblique projection optical system according to claim 1, wherein the projection lens system has at least one axisymmetric aspheric surface.
【請求項5】 前記投影レンズ系は、非軸対称な面を少
なくとも一面持つ事を特徴とする請求項1に記載の斜め
投影光学系。
5. The oblique projection optical system according to claim 1, wherein the projection lens system has at least one non-axisymmetric surface.
JP861997A 1997-01-21 1997-01-21 Oblique projection optical system Pending JPH10206791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP861997A JPH10206791A (en) 1997-01-21 1997-01-21 Oblique projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP861997A JPH10206791A (en) 1997-01-21 1997-01-21 Oblique projection optical system

Publications (1)

Publication Number Publication Date
JPH10206791A true JPH10206791A (en) 1998-08-07

Family

ID=11697968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP861997A Pending JPH10206791A (en) 1997-01-21 1997-01-21 Oblique projection optical system

Country Status (1)

Country Link
JP (1) JPH10206791A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006295A1 (en) * 1999-07-14 2001-01-25 Eiki Matsuo Image-forming optical system
US7009776B2 (en) 2001-11-05 2006-03-07 Canon Kabushiki Kaisha Projection optical system and projection apparatus using the same
JP2011150029A (en) * 2010-01-19 2011-08-04 Fujifilm Corp Projection optical system and projection type display device using the same
US8188419B2 (en) 2009-05-08 2012-05-29 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Eccentric field imaging lens with titlted and decentered surfaces

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006295A1 (en) * 1999-07-14 2001-01-25 Eiki Matsuo Image-forming optical system
GB2367905A (en) * 1999-07-14 2002-04-17 Eiki Matsuo Image-forming optical system
GB2367905B (en) * 1999-07-14 2003-10-08 Eiki Matsuo Imaging optical system
US6771427B1 (en) 1999-07-14 2004-08-03 Nec Viewtechnology, Ltd. Image-forming optical system
US6879444B2 (en) 1999-07-14 2005-04-12 Nec Viewtechnology, Ltd. Imaging optical system
US6947221B2 (en) 1999-07-14 2005-09-20 Nec Viewtechnology, Ltd. Imaging optical system
US6950240B2 (en) 1999-07-14 2005-09-27 Nec Viewtechnology, Ltd. Imaging optical system
US7123420B2 (en) 1999-07-14 2006-10-17 Nec Viewtechnology, Ltd. Imaging optical system
US7009776B2 (en) 2001-11-05 2006-03-07 Canon Kabushiki Kaisha Projection optical system and projection apparatus using the same
US8188419B2 (en) 2009-05-08 2012-05-29 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Eccentric field imaging lens with titlted and decentered surfaces
JP2011150029A (en) * 2010-01-19 2011-08-04 Fujifilm Corp Projection optical system and projection type display device using the same

Similar Documents

Publication Publication Date Title
JP3541576B2 (en) Imaging optics
JP3658034B2 (en) Image observation optical system and imaging optical system
JP4847110B2 (en) Projection lens and projection-type image display device
JP4232269B2 (en) Projection optical system
WO2005106560A1 (en) Image projector
JP2003140049A (en) Projection optical system and projector using the same
JP4419243B2 (en) Oblique projection optical system
JP3837944B2 (en) Oblique projection optical system
JP3304694B2 (en) Oblique projection optical device
JPH11194267A (en) Image-formation optical system
JPH10161027A (en) Variable power optical system
US6450648B1 (en) Oblique projection optical system
JP2004085979A (en) Projection optical system
JP3610166B2 (en) Large aperture wide angle telecentric lens
JP4689147B2 (en) Projection zoom lens and enlargement projection device
JP2000028919A (en) Middle telephotographic lens
JPH10282451A (en) Oblique projection optical system
JPH10206791A (en) Oblique projection optical system
JP2011075633A (en) Wide angle lens and projector device using the same
JP4340468B2 (en) Projection lens and projection-type image display device
JPH1152242A (en) Zoom lens having hand shake correcting function
JP3405061B2 (en) Projection optical device
JP2007240934A (en) Projection lens
JP5493651B2 (en) Wide angle lens and projector apparatus using the same
JPH095668A (en) Projection optical device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Written amendment

Effective date: 20050622

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20050809

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD03 Notification of appointment of power of attorney

Effective date: 20050817

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A02 Decision of refusal

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A02