JPH10202135A - Collision type air flow pulverizing apparatus and electrophotographic toner production using the same - Google Patents

Collision type air flow pulverizing apparatus and electrophotographic toner production using the same

Info

Publication number
JPH10202135A
JPH10202135A JP1372997A JP1372997A JPH10202135A JP H10202135 A JPH10202135 A JP H10202135A JP 1372997 A JP1372997 A JP 1372997A JP 1372997 A JP1372997 A JP 1372997A JP H10202135 A JPH10202135 A JP H10202135A
Authority
JP
Japan
Prior art keywords
pulverized
cone
collision
collision member
shaped portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1372997A
Other languages
Japanese (ja)
Inventor
Hideyuki Yoshida
秀幸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP1372997A priority Critical patent/JPH10202135A/en
Publication of JPH10202135A publication Critical patent/JPH10202135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulverizing apparatus which has high pulverization treatment performance and economical efficiency and with which an object to by pulverized is not melted and deposited. SOLUTION: In an acceleration pipe 3, the divergence angle of the acceleration pipe from an inlet 1 through which an object to be pulverized is thrown to the outlet 9 of the acceleration pipe is made smaller than the divergence angle of the acceleration pipe to the inlet 1 through which an object to be pulverized is thrown. A collision member 4 is constituted of a conical shape part 12 and a circular flat part 11 and of the conical shape part 12, the tip end part is truncated at 0.65H-0.80H of the height from the bottom plane 13 of the conical shape part 12, wherein H stands for the height of the conical shape part 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はジェット気流(高圧
気体)を利用した衝突式気流粉砕機、およびこの衝突式
気流粉砕機を用いた電子写真用トナーの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impingement airflow pulverizer utilizing a jet airflow (high-pressure gas) and a method for producing an electrophotographic toner using the impingement airflow pulverizer.

【0002】[0002]

【従来の技術】ジェット気流を利用した従来の衝突式気
流粉砕機の分野では、例えば、図5に示すように衝突部
材(4)の平面部(14)を加速管軸に対して垂直に配
置して、これに加速流にのった被粉砕物を衝突させて粉
砕していたが、反射流が発生し粉砕性能が低下するた
め、粉砕性能向上の観点から、衝突部材や加速管に様々
な改良が加えられている。例えば、実開平1−1487
40号公報では図4に示すように衝突部材(4)の環状
平面部(11)を加速管軸に対して垂直に配置し、その
平面部に円錐形の突起(10)を設けて平面部による反
射流を防止することにより、高い粉砕性能を提供しよう
という試みがなされている。
2. Description of the Related Art In the field of a conventional collision type air flow pulverizer utilizing a jet air flow, for example, as shown in FIG. 5, a plane portion (14) of a collision member (4) is arranged perpendicularly to an axis of an acceleration tube. Then, the crushed object in the accelerating flow collides with the crushed material to pulverize it.However, the reflected flow is generated and the crushing performance is reduced. Improvements have been made. For example, Japanese Utility Model Laid-Open No. 1-1487
In Japanese Patent No. 40, as shown in FIG. 4, the annular flat portion (11) of the collision member (4) is arranged perpendicular to the axis of the acceleration tube, and the flat portion is provided with a conical projection (10). Attempts have been made to provide high pulverization performance by preventing the reflected flow due to the air.

【0003】しかしながら、衝突部材には円錐形突起が
そのまま取り付けられているため、樹脂粉末やトナー等
の被粉砕物が熱可塑性を有する場合には、粉砕時におけ
る粉砕面、特に円錐形突起先端で急激なエネルギー増加
に伴った発熱と温度上昇が起こり、その結果円錐形突起
先端で被粉砕物の融着および固着が起こるという問題が
生じている。
However, since the conical projection is directly attached to the collision member, if the material to be pulverized such as resin powder or toner has thermoplasticity, the pulverized surface at the time of pulverization, in particular, the tip of the conical projection. Heat generation and temperature rise occur due to a rapid increase in energy, and as a result, there is a problem that the object to be ground is fused and fixed at the tip of the conical projection.

【0004】このため、特開平6−71194号公報で
は従来からの、加速管出口までの拡がり角度が一様なラ
バールノズル型加速管(図4および5における加速管
3'参照)を用いながら、円錐形突起材料として熱伝導
率(20℃)が0.1cal/cm・sec・℃以上のセラミックス
を用いたり、円錐形突起先端部を円錐形突起部高さHに
対して円錐形突起底面から0.80H〜0.99Hの高さ
で円錐斜面に対し滑らかな円弧を描く形状にして、円錐
形突起先端での融着等を防止しようという提案がされて
いるが、前者では経済性が悪化し実用性に乏しく、また
後者では処理量が低下し粉砕効率が悪化するという問題
が生じている。
For this reason, Japanese Unexamined Patent Publication No. Hei 6-71194 discloses a conventional Laval nozzle type accelerating tube having a uniform divergence angle to the outlet of the accelerating tube (see accelerating tube 3 'in FIGS. 4 and 5). Ceramics having a thermal conductivity (20 ° C.) of 0.1 cal / cm · sec · ° C. or more may be used as the material of the projection, or the tip of the projection may be set at 0 ° from the bottom of the projection relative to the height H of the projection. It has been proposed to form a smooth circular arc on the conical slope at a height of .80H to 0.99H to prevent fusing at the tip of the conical projection, but the former is not economical. Practicality is poor, and the latter has a problem that the throughput is reduced and the pulverization efficiency is deteriorated.

【0005】そこで、処理量の問題に対してはラバール
ノズル型加速管に代えて本願出願人が特開平8−155
324号で開示した(図2参照)、加速管に被粉砕物投
入口(1)を設け、少なくとも被粉砕物投入口(1)か
ら加速管出口(9)までの加速管の拡がり角度θ2が、
被粉砕物投入口(1)までの加速管の拡がり角度θ1
り小さい加速管を用いて被粉砕物を効率的に加速させ、
粉砕処理能力を向上させようとする試みがなされたが、
上述のごとく円錐形突起先端を円錐形突起部高さHに対
して円錐形突起底面から0.80Hより高い高さで円錐
斜面に対し滑らかな形状にしても、被粉砕物がその先端
で融着するという問題が再び生じ、これら問題を完全に
解決するには至っていない。
To solve the problem of the throughput, the applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. Hei 8-155 instead of the Laval nozzle type acceleration tube.
No. 324 (refer to FIG. 2), the object to be pulverized has an inlet (1) provided in the accelerating tube, and at least the spread angle θ 2 of the accelerating tube from the object to be ground (1) to the outlet (9) of the accelerating tube. But,
Efficiently accelerates the grinding object using the spread angle theta 1 is less than the acceleration tube accelerating tube to the object to be crushed inlet (1),
Attempts were made to improve the crushing capacity,
As described above, even when the tip of the conical projection is made to have a height higher than 0.80H from the bottom of the conical projection with respect to the height H of the conical projection and having a smooth shape with respect to the conical slope, the object to be ground is melted at the tip. The problem of wearing again arises, and these problems have not been completely solved.

【0006】[0006]

【発明が解決しようとする課題】本発明は、被粉砕物の
融着等が起こらず、粉砕処理能力および経済性に優れた
衝突式気流粉砕機を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an impingement type air current pulverizer which is excellent in pulverization capacity and economical efficiency without fusing of a material to be pulverized.

【0007】また本発明は上記衝突式気流粉砕機を用い
た、効率的な電子写真用トナーの製造方法を提供するこ
とを目的とする。
Another object of the present invention is to provide an efficient method for producing a toner for electrophotography using the above-mentioned collision type air current pulverizer.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、高速
気体により被粉砕物を搬送加速するための加速管と、該
加速管より噴出する被粉砕物を衝突力により粉砕するた
めの衝突部材とを具備し、該衝突部材を加速管出口に対
向して粉砕室内に設けた衝突式気流粉砕機において、該
加速管に被粉砕物投入口を設け、少なくとも被粉砕物投
入口から加速管出口までの加速管の拡がり角度が被粉砕
物投入口までの加速管の拡がり角度より小さくなってお
り、前記衝突部材が加速管出口から噴出する被粉砕物を
偏向させる錐体形状部と、該錐体形状部の周囲に設けら
れている加速管軸に対して垂直な被粉砕物を粉砕するた
めの環状平面部とからなり、該錐体形状部は錐体形状部
高さHに対して錐体形状部底面から0.65H〜0.80
Hの高さで先端部が面取りされていることを特徴とする
衝突式気流粉砕機に関する。
That is, the present invention provides an accelerating tube for conveying and accelerating an object to be crushed by a high-speed gas, and a collision member for crushing the object to be crushed from the accelerating tube by an impact force. In a collision type air current pulverizer provided in the pulverizing chamber with the collision member facing the outlet of the acceleration tube, a pulverized material input port is provided in the acceleration tube, and at least from the pulverized material input port to the acceleration tube outlet. A divergence angle of the accelerating tube is smaller than a diverging angle of the accelerating tube up to the crushed object input port, and the collision member deflects the crushed object ejected from the accelerating tube outlet; An annular flat portion provided around the shape portion for crushing the object to be crushed perpendicular to the axis of the accelerating tube, wherein the cone shape portion has a cone shape with respect to the cone shape height H. 0.65H to 0.80 from the bottom of the shape
The present invention relates to a collision-type airflow pulverizer characterized in that a tip portion is chamfered at a height of H.

【0009】本発明においては、衝突部材における錐体
形状部を錐体形状部高さHに対して錐体形状部底面から
0.65H〜0.80Hの高さで先端部が面取りされた形
状にすることを特徴とし、これにより被粉砕物を効率的
に加速し粉砕処理能力を高める加速管を用いても被粉砕
物の衝突・粉砕による熱の発生が先端部に集中すること
なく適度に分散するため、被粉砕物が熱可塑性を有する
場合でも被粉砕物の錐体形状部への融着および固着を防
止することができる。従って、粉砕処理能力および経済
性に優れた衝突式気流粉砕機を容易に提供することが可
能となり、またこの衝突式気流粉砕機を用いることによ
り電子写真用トナーを効率よく製造することができる。
In the present invention, the cone-shaped portion of the collision member is shaped such that the tip is chamfered at a height of 0.65H to 0.80H from the bottom of the cone-shaped portion with respect to the height H of the cone-shaped portion. Even when using an accelerating tube that efficiently accelerates the object to be crushed and increases the crushing capacity, heat generated by collision and crushing of the object to be crushed is not concentrated at the tip end, Due to the dispersion, even when the object to be ground has thermoplasticity, it is possible to prevent the object to be ground from being fused and fixed to the cone-shaped portion. Therefore, it is possible to easily provide a collision-type airflow pulverizer excellent in pulverization processing capacity and economy, and it is possible to efficiently manufacture an electrophotographic toner by using the collision-type airflow pulverizer.

【0010】[0010]

【発明の実施の形態】本発明の衝突式気流粉砕機に用い
られる衝突部材(4)は、例えば、図1で示されるよう
に錐体形状部(12)が加速管出口(9)に対向するよ
う粉砕室(6)内に配置されており、錐体形状部(1
2)は錐体形状部高さHに対して錐体形状部底面(1
3)から0.65H〜0.80Hの高さで先端部が面取り
されている。面取りの態様には、錐体形状部底面からの
上記高さにおいて、当該底面に対して平行に先端部が切
り取られている形状(図3(a)における錐体形状部付
近の概略断面図参照)および錐体斜面に対し滑らかな円
弧を描くように先端部が切り取られている形状(図3
(b)における錐体形状部付近の概略断面図参照)が含
まれるものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a collision member (4) used in a collision type air current pulverizer of the present invention has a cone-shaped portion (12) facing an acceleration tube outlet (9). Is arranged in the grinding chamber (6) so that the cone-shaped portion (1
2) is the cone-shaped portion bottom surface (1) with respect to the cone-shaped portion height H.
The tip is chamfered at a height of 0.65H to 0.80H from 3). The shape of the chamfer has a shape in which the tip is cut in parallel with the bottom surface at the height from the bottom surface of the cone-shaped portion (see a schematic cross-sectional view near the cone-shaped portion in FIG. 3A). ) And a shape whose tip is cut out so as to draw a smooth arc with respect to the cone slope (FIG. 3).
(Refer to a schematic sectional view near the cone-shaped portion in (b)).

【0011】具体的には、図3(a)および(b)で示
されるように、錐体形状部底面(13)からの面取り高
さhは錐体形状部高さHについて0.65H〜0.80H
で表される。好ましくは0.7H〜0.8Hである。この
面取り高さhは、面取りによって形成された先端面(平
面および曲面を含む)(17)での粉砕能力と、処理能
力向上のために錐体形状部で被粉砕物を偏向させる能力
とのバランス、および先端面での局所的な熱発生の度合
いによって決定され、すなわち、0.80Hより高いと
先端面での粉砕能力は低下しつつも被粉砕物の偏向能力
は向上し、全体として処理能力が向上するが、先端面で
の熱発生が顕著になり、被粉砕物の融着が起こる。一方
で、0.65Hより低いと、先端面での粉砕能力は向上
するが被粉砕物の偏向能力は低下し、全体として処理能
力はそれほど向上しない。
More specifically, as shown in FIGS. 3 (a) and 3 (b), the height h of the chamfer from the bottom surface (13) of the cone-shaped portion is 0.65H or more with respect to the height H of the cone-shaped portion. 0.80H
It is represented by Preferably it is 0.7H to 0.8H. The chamfering height h is determined by the crushing ability at the tip end surface (including a flat surface and a curved surface) (17) formed by the chamfering and the ability to deflect the object to be crushed by the cone-shaped portion for improving the processing ability. It is determined by the balance and the degree of local heat generation at the tip end face. That is, if it is higher than 0.80H, the deflecting ability of the object to be crushed is improved while the crushing ability at the tip end face is reduced, and the whole treatment is performed. Although the performance is improved, heat generation at the tip end surface becomes remarkable, and the object to be ground is fused. On the other hand, if it is lower than 0.65H, the crushing ability at the tip end surface is improved, but the deflecting ability of the object to be crushed is reduced, and the processing capacity as a whole is not so much improved.

【0012】また、錐体形状部の頂角αについては、被
粉砕物に対する偏向能力および環状平面部の最小面積確
保の観点から30°〜90°、好ましくは50°〜70
°が望ましい。環状平面部(11)の面積Tについて
は、加速管出口の開口断面積Aeを用いて表した場合、
2Ae以上、好ましくは4Ae〜10Aeであることが
望ましい。2Ae未満であると所望の粉砕能力を提供で
きない。
Further, the apex angle α of the cone-shaped portion is 30 ° to 90 °, preferably 50 ° to 70 °, from the viewpoint of the deflection ability to the object to be ground and the minimum area of the annular flat portion.
° is desirable. When the area T of the annular flat portion (11) is expressed by using the opening cross-sectional area Ae of the outlet of the acceleration tube,
It is desirably 2 Ae or more, preferably 4 Ae to 10 Ae. If it is less than 2 Ae, the desired grinding ability cannot be provided.

【0013】錐体形状部と環状平面部は、被粉砕物の流
れの対称性を考慮して、それぞれ円錐形状と円環形状を
有することが好ましいが、その他の形状、例えば、多角
錐形状とそれに対応した形状でも本発明による同様の効
果が得られる。
The cone-shaped portion and the annular flat portion preferably have a conical shape and an annular shape, respectively, in consideration of the symmetry of the flow of the material to be pulverized, but have other shapes, for example, a polygonal pyramid shape. A similar effect according to the present invention can be obtained with a shape corresponding to the shape.

【0014】錐体形状部材料としては、従来から衝突部
材材料として用いられているいかなる材料も使用するこ
とができ、例えば、アルミナ(Al23)に代表される
セラミックや鉄鋼材料等が挙げられる。
As the material for the cone-shaped portion, any material conventionally used as a material for a collision member can be used, for example, a ceramic represented by alumina (Al 2 O 3 ) or a steel material. Can be

【0015】本発明の衝突式気流粉砕機に用いられる加
速管としては、処理能力のさらなる向上を目的として、
被粉砕物投入口より加速管出口までの加速管拡がり角度
を被粉砕物投入口までの加速管の拡がり角度より小さく
した加速管を用いる。これにより、被粉砕物投入口での
気流の速度が加速管出口に向かって極端に減速すること
がなくなり、衝突時の被粉砕物の持つ運動エネルギーを
従来の衝突式気流粉砕機より高めることができ、そのた
めより大きな粉砕能力を付与することが可能となり、上
記本発明の衝突部材とを組み合わせることにより被粉砕
物の融着等の不都合が生じず、処理能力に優れた粉砕機
を提供できる。以下、本発明の衝突式気流粉砕機に用い
られる加速管を図1および図2の概略断面図を用いて説
明する。
[0015] The accelerating tube used in the impingement type air current pulverizer of the present invention has a purpose of further improving the processing capacity.
An accelerating tube in which the angle of divergence of the accelerating tube from the inlet of the crushed object to the outlet of the accelerating tube is smaller than the angle of divergence of the accelerating tube from the inlet of the crushed object is used. As a result, the speed of the airflow at the inlet of the object to be crushed does not extremely decrease toward the outlet of the acceleration tube, and the kinetic energy of the object to be crushed at the time of collision can be increased as compared with the conventional collision type airflow crusher. Therefore, it is possible to provide a pulverizer having a high processing capability without inconvenience such as fusion of the object to be pulverized by combining with the collision member of the present invention. Hereinafter, an accelerating tube used in the impingement type air current pulverizer of the present invention will be described with reference to the schematic sectional views of FIGS.

【0016】圧縮空気供給ノズル(2)から高速気流が
供給される。高速気流はスロート部(8)(断面At)
を通過し加速管(3)に供給される。本発明の加速管
(3)は図2に示すごとく拡がり角θ1を有する被粉砕
物投入口(1)までの加速管部(ノズル部)(15)と
拡がり角θ2が0≦θ2<θ1を満たす被粉砕物投入口
(1)から加速管出口までの加速管部(ノズル部)(1
6)から構成される。被粉砕物(7)は投入口(1)よ
りノズル部(16)に供給される。供給された被粉砕物
は、ノズル部(16)中を加速されて加速管出口(9)
から吐出され、衝突部材(4)に衝突する。
A high-speed air flow is supplied from a compressed air supply nozzle (2). High-speed airflow is throat (8) (Cross section At)
And is supplied to the accelerating tube (3). Accelerating tube of the present invention (3) is accelerating tube section to material to be ground inlet (1) with a divergence angle theta 1 as shown in FIG. 2 (nozzle) (15) and the divergence angle theta 2 is 0 ≦ theta 2 <accelerating tube portion from the ground material inlet (1) to the accelerating tube outlet satisfying theta 1 (nozzle) (1
6). The object to be crushed (7) is supplied to the nozzle (16) from the input port (1). The supplied material to be crushed is accelerated in the nozzle portion (16), and is accelerated in the acceleration tube outlet (9).
And collides with the collision member (4).

【0017】投入口(1)が設けられる位置は、被粉砕
物に最大の運動エネルギーを与えるようにノズル中の気
流の速度が最大となる位置と等しい。この気流の速度が
最大となる位置は、ノズル前後の圧力比とノズルのスロ
ート部断面積に対する任意位置でのノズル部断面積の大
きさによって決定される。本発明において「投入口」の
位置は、上流側bの位置として定める。また「加速管出
口まで」とは投入口から、粉砕室(6)に達するノズル
先端部分までの位置をいい、その長さは、被粉砕物が気
流中に一様に分散する為に必要な長さと、管との摩擦に
よる減速度合のバランスから、最も粉砕性が高くなるよ
うに決定される。
The position where the inlet (1) is provided is equal to the position where the velocity of the airflow in the nozzle is maximized so as to give the maximum kinetic energy to the material to be ground. The position where the velocity of the airflow is maximum is determined by the pressure ratio between the front and rear of the nozzle and the size of the cross-sectional area of the nozzle at an arbitrary position with respect to the cross-sectional area of the throat of the nozzle. In the present invention, the position of the “input port” is determined as the position on the upstream side b. Further, "to the outlet of the accelerating tube" means a position from the inlet to the tip of the nozzle reaching the pulverizing chamber (6), the length of which is necessary for the object to be pulverized to be uniformly dispersed in the air flow. From the balance between the length and the deceleration due to the friction with the pipe, it is determined that the crushability is highest.

【0018】拡がり角θ1、θ2のノズル部の断面形状
は、すべての方向に一様な速度場を実現するため好まし
くは円形であるが、被粉砕物投入口(1)での流速が出
口(9)までの間に極端に減速されない限り、楕円等の
形状であってもよい。ここで投入口(1)から出口
(9)までの間に流速が極端に減速されないとは、管と
の摩擦等による不可避的な減速を意味するのではなく、
ノズルの形状による極端な圧力損失による減速を意味す
る。
The cross-sectional shape of the nozzle portion having the divergence angles θ 1 and θ 2 is preferably circular in order to realize a uniform velocity field in all directions. The shape may be an ellipse or the like as long as the speed is not extremely reduced before the exit (9). Here, the fact that the flow velocity is not extremely reduced between the inlet (1) and the outlet (9) does not mean an inevitable deceleration due to friction with the pipe, etc.
It means deceleration due to extreme pressure loss due to the shape of the nozzle.

【0019】ノズル部(15)の拡がり角θ1は、圧縮
空気が断熱膨張して加速する際にできるだけ効率良く加
速される観点から4°〜8°、好ましくは5°〜7°で
ある。ノズル部(16)の拡がり角θ2は、上記のθ1
対して0≦θ2<θ1を満足すれば良く、好ましくは0°
である。
The divergence angle θ 1 of the nozzle portion (15) is 4 ° to 8 °, preferably 5 ° to 7 ° from the viewpoint that compressed air is accelerated as efficiently as possible when adiabatically expanding and accelerating. The divergence angle θ 2 of the nozzle portion (16) may satisfy 0 ≦ θ 21 with respect to the above θ 1 , and is preferably 0 °.
It is.

【0020】このような加速管と上記した錐体形状部を
有する衝突部材から構成される本発明の衝突式気流粉砕
機を、従来からの分級機と組み合わせることにより所望
の粒径を有する粉砕粒子を効率よく得ることができる。
図1に本発明の粉砕機を使用した粉砕工程と分級機を使
用した分級工程を組み合わせた粉砕装置のフローチャー
ト図を合わせて示す。
Combination of such an impulse type air-flow pulverizer of the present invention comprising such an accelerating tube and the above-mentioned collision member having a cone-shaped portion with a conventional classifier results in pulverized particles having a desired particle size. Can be obtained efficiently.
FIG. 1 also shows a flow chart of a pulverizer in which a pulverizing step using a pulverizer of the present invention and a classifying step using a classifier are combined.

【0021】粉砕室出口(5)からでた粉砕粒子は分級
機に送られ所望の粒径範囲内にある粒子を製品として取
り出し、粗粉砕粒子はさらに粉砕機に戻され、さらに粉
砕、分級の工程が繰り返される。
The pulverized particles from the pulverizing chamber outlet (5) are sent to a classifier to take out particles within a desired particle size range as a product, and the coarsely pulverized particles are returned to the pulverizer and further pulverized and classified. The process is repeated.

【0022】本発明の粉砕機は粉砕能力に優れているの
で、所望の粒径に粉砕するまでの繰り返し粉砕回数を減
らすことができ、そのことはさらに粉砕物の処理能力向
上につながる。
Since the pulverizer of the present invention has excellent pulverizing ability, the number of repetitive pulverizations until pulverization to a desired particle size can be reduced, which further leads to an improvement in the processing capacity of pulverized materials.

【0023】本発明の衝突式気流粉砕機は、少なくとも
結着樹脂および着色剤を含有する混合物を溶融混練し、
混練物を冷却固化し、固化物を従来からの粉砕機により
粗粉砕(または中粉砕)して得られた粒径10〜200
0μm、好ましくは10〜100μmの粉砕物をさらに微
粉砕する工程において使用することが特に有用である。
The collision-type airflow pulverizer of the present invention melt-kneads a mixture containing at least a binder resin and a colorant,
The kneaded material is cooled and solidified, and the solidified material is roughly pulverized (or medium pulverized) with a conventional pulverizer to obtain a particle size of 10 to 200.
It is particularly useful to use a pulverized product having a size of 0 μm, preferably 10 to 100 μm, in a further pulverization process.

【0024】本発明は結着樹脂が熱可塑性樹脂、特に融
点の低い樹脂である場合において特に有用であるが、こ
れに制限されるものではなく、従来からトナーに用いら
れているいかなる結着樹脂も使用可能であり、例えば、
スチレン系樹脂、スチレン−アクリル系樹脂、ポリエス
テル系樹脂、エポキシ系樹脂等、好ましくはポリエステ
ル系樹脂を使用することができる。
The present invention is particularly useful when the binder resin is a thermoplastic resin, particularly a resin having a low melting point. However, the present invention is not limited thereto, and any binder resin conventionally used in toners may be used. Can also be used, for example,
A styrene resin, a styrene-acrylic resin, a polyester resin, an epoxy resin, or the like, preferably a polyester resin can be used.

【0025】着色剤としては特に限定されるものではな
く、従来電子写真で使用されてきた着色剤を用いること
ができる、以下のものが例示できる。まず、着色剤とし
て黒色顔料は、カーボン・ブラック、酸化銅、二酸化マ
ンガン、アニリンブラック、活性炭、フェライト、マグ
ネタイトなどを使用することができる。黄色顔料として
は、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、
ミネラルファストイエロー、ニッケルチタンイエロー、
ネーブルスイエロー、ナフトールイエローS、バンザー
イエローG、バンザーイエロー10G、ベンジジンイエ
ローG、ベンジジンイエローGR、キノリンイエローレ
ーキ、パーマネントイエローNCG、タートラジンレヘ
ーキなどを使用することができる。
The coloring agent is not particularly limited, and the following coloring agents which can be used in conventional electrophotography can be used. First, as a black pigment, carbon black, copper oxide, manganese dioxide, aniline black, activated carbon, ferrite, magnetite, and the like can be used as a coloring agent. As yellow pigments, yellow lead, zinc yellow, cadmium yellow, yellow iron oxide,
Mineral fast yellow, nickel titanium yellow,
Navels Yellow, Naphthol Yellow S, Banza Yellow G, Banza Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake and the like can be used.

【0026】また、赤色顔料としては、赤色黄鉛、モリ
ブデンオレンジ、パーマネントオレンジGTR、ピラゾ
ロンオレンジ、バルカンオレンジ、インダスレンブリリ
アントオレンジRK、ベンジジンオレンジG、インダス
レンブリリアントオレンジGK、ベンガラ、カドミウム
レッド、鉛丹、パーマネントレッド4R、リソールレッ
ド、ピラゾロンレッド、ウオッチングレッド、レーキレ
ッドC、レーキレッドD、ブリリアントカーミン6B、
エオシンレーキ、ローダミンレーキB、アリザリンレー
キ、ブリリアントカーミン3B、パーマネントオレンジ
GTR、バルカンファストオレンジGG、パーマネント
レッドF4RH、パーマネントカーミンFBなどを使用
することができる。また、青色顔料としては、紺青、コ
バルトブルー、アルカリブルーレーキ、ビクトリアブル
ーレーキ、フタロシアニンブルーなどを使用することが
できる。なお、これらの着色剤の量はトナー結着樹脂1
00重量部に対して1〜20重量部、好ましくは3〜1
5重量部になるようにする。
Examples of the red pigment include red lead, molybdenum orange, permanent orange GTR, pyrazolone orange, vulcan orange, indaslen brilliant orange RK, benzidine orange G, indaslen brilliant orange GK, bengala, cadmium red, and lead tan. , Permanent Red 4R, Risor Red, Pyrazolone Red, Watching Red, Lake Red C, Lake Red D, Brilliant Carmine 6B,
Eosin Lake, Rhodamine Lake B, Alizarin Lake, Brilliant Carmine 3B, Permanent Orange GTR, Vulcan Fast Orange GG, Permanent Red F4RH, Permanent Carmine FB and the like can be used. As the blue pigment, navy blue, cobalt blue, alkali blue lake, Victoria blue lake, phthalocyanine blue, and the like can be used. The amount of these colorants is the same as that of the toner binder resin 1.
1 to 20 parts by weight, preferably 3-1 to 100 parts by weight
Make up to 5 parts by weight.

【0027】本発明の粉砕機を用いて製造することので
きる電子写真用トナーには、トナーに従来から用いられ
ているその他所望の添加剤、例えば、荷電制御剤、オフ
セット防止剤、流動化剤、離型剤、クリーニング剤等を
適宜配合することもできる。
The electrophotographic toner which can be produced by using the pulverizer of the present invention includes other desired additives conventionally used in toners, such as charge control agents, anti-offset agents, and fluidizing agents. , A release agent, a cleaning agent and the like can be appropriately compounded.

【0028】荷電制御剤としては、従来の乾式現像剤で
一般に使用されているものを使用すことができ、正荷電
制御剤としては、例えば、アジン化合物のニグロシン系
染料のボントロンO3、第四級アンモニウム塩のボント
ロンP−51が挙げられ、負荷電制御剤としては、例え
ば、含金アゾ染料のボントロンS−34、オキシナフト
エ酸系金属錯体のE−82、サリチル酸系金属錯体のE
−84ならびにフェノール系縮合物のE−89が挙げら
れる。なお、これらの量はトナー結着樹脂100重量部
に対して0.1〜10重量部、好ましくは0.5〜5.0
重量部になるようにする。
As the charge control agent, those generally used in conventional dry-type developers can be used. Examples of the positive charge control agent include Bontron O3, a nigrosine dye of an azine compound, and quaternary. Examples of the negative charge control agent include Bontron S-34, a gold-containing azo dye, E-82 of an oxynaphthoic acid-based metal complex, and E-82 of a salicylic acid-based metal complex.
-84 and phenolic condensate E-89. These amounts are 0.1 to 10 parts by weight, preferably 0.5 to 5.0 parts by weight, per 100 parts by weight of the toner binder resin.
So that it is by weight.

【0029】オフセット防止剤としてはポリエチレンワ
ックス、ポリプロピレンワックス、酸化型ポリエチレン
ワックス、酸化型ポリプロピレンワックス、カルナバワ
ックス、サゾールワックス、ライスワックス、キャンデ
リラワックス、ホホバ油ワックス、蜜ろうワックス、な
どを使用できる。オフセット防止剤の添加量は、結着樹
脂100重量部に対して1〜7重量部、好ましくは2〜
5重量部になるようにする。その量が1重量部より少な
いとオフセット防止の効果が不十分になり、7重量部よ
り多いとトナーの流動性が悪くなる。
As the anti-offset agent, polyethylene wax, polypropylene wax, oxidized polyethylene wax, oxidized polypropylene wax, carnauba wax, sasol wax, rice wax, candelilla wax, jojoba oil wax, beeswax, and the like can be used. . The addition amount of the offset inhibitor is 1 to 7 parts by weight, preferably 2 to 100 parts by weight of the binder resin.
Make up to 5 parts by weight. If the amount is less than 1 part by weight, the effect of preventing the offset becomes insufficient, and if it is more than 7 parts by weight, the fluidity of the toner deteriorates.

【0030】流動化剤を用いる場合には、シリカ微粒
子、二酸化チタン微粒子、アルミナ微粒子、フッ化マグ
ネシウム微粒子、炭化ケイ素微粒子、炭化ホウ素微粒
子、炭化チタン微粒子、炭化ジルコニウム微粒子、窒化
ホウ素微粒子、窒化チタン微粒子、窒化ジルコニウム微
粒子、マグネタイト微粒子、二硫化モリブデン微粒子、
ステアリン酸アルミニウム微粒子、ステアリン酸マグネ
シウム微粒子、ステアリン酸亜鉛微粒子等を使用するこ
とができる。なお、これらの微粒子は、シランカップリ
ング剤、チタンカップリング剤、高級脂肪酸、シリコー
ンオイル等で疎水化処理して用いることが望ましい。流
動化剤の量は、トナー100重量部に対して0.05〜
5重量部、好ましくは0.1〜3重量部用いることが望
ましい。本発明の衝突式気流粉砕機およびこれを用いた
電子写真用トナーの製造方法を以下の実施例でさらに詳
しく説明する。
When a fluidizing agent is used, silica fine particles, titanium dioxide fine particles, alumina fine particles, magnesium fluoride fine particles, silicon carbide fine particles, boron carbide fine particles, titanium carbide fine particles, zirconium carbide fine particles, boron nitride fine particles, titanium nitride fine particles , Zirconium nitride fine particles, magnetite fine particles, molybdenum disulfide fine particles,
Fine particles of aluminum stearate, fine particles of magnesium stearate, fine particles of zinc stearate and the like can be used. It is desirable that these fine particles are used after being subjected to a hydrophobic treatment with a silane coupling agent, a titanium coupling agent, a higher fatty acid, silicone oil, or the like. The amount of the fluidizing agent is 0.05 to 100 parts by weight of the toner.
It is desirable to use 5 parts by weight, preferably 0.1 to 3 parts by weight. The collision airflow pulverizer of the present invention and a method for producing an electrophotographic toner using the same will be described in more detail in the following examples.

【0031】[0031]

【実施例】 ポリエステル樹脂Aの合成 モル比 ・ポリオキシプロピレン(2,2)−2,2−ビス(4−ヒドロキシフェニル) プロパン(PO) 3 ・ポリオキシエチレン(2,0)−2,2−ビス(4−ヒドロキシフェニル)プ ロパン(EO) 7 ・テレフタル酸(TPA) 9 5リットルの4つ口フラスコに還流冷却器、水分離装
置、窒素ガス導入管、撹拌装置、温度計を付し、マント
ルヒーターに設置した。このフラスコに上記材料を各々
のモル比に相当するだけ仕込み、フラスコ内に窒素ガス
を導入しながら、加熱、撹拌して反応させた。酸価を測
定しながら反応の進行を追跡し、所定の酸価に達した時
点で反応を終了し、ポリエステル樹脂Aを得た。この樹
脂はTg=65℃、Mn=4700、Mw/Mn=3、
軟化点=100℃であった。
EXAMPLES Synthetic molar ratio of polyester resin A Polyoxypropylene (2,2) -2,2-bis (4-hydroxyphenyl) propane (PO) 3 Polyoxyethylene (2,0) -2,2 -Bis (4-hydroxyphenyl) propane (EO) 7 -terephthalic acid (TPA) 95 A 5-liter four-necked flask was equipped with a reflux condenser, a water separator, a nitrogen gas inlet tube, a stirrer, and a thermometer. And a mantle heater. The flask was charged with the above materials in an amount corresponding to each molar ratio, and reacted while heating and stirring while introducing nitrogen gas into the flask. The progress of the reaction was monitored while measuring the acid value. When the acid value reached a predetermined value, the reaction was terminated, and a polyester resin A was obtained. This resin has Tg = 65 ° C., Mn = 4700, Mw / Mn = 3,
Softening point = 100 ° C.

【0032】 顔料マスターバッチの作成 重量比 ・ポリエステル樹脂A(Tg=65℃、Mn=4700、Mw/Mn=3、軟化点=100℃) 7 ・シアン顔料(C.I.ヒ゜ク゛メントフ゛ルー-15-3:東洋インキ製造社製) 3 上記材料を各々の重量比になるように加圧ニーダーに仕
込み、熱と圧を加えながら、当該顔料が十分分散される
ように混練した。混練物を冷却後、フェザーミルで粉砕
し、顔料マスターバッチを得た。
Preparation weight ratio of pigment master batch・ Polyester resin A (Tg = 65 ° C., Mn = 4700, Mw / Mn = 3, softening point = 100 ° C.) 7 ・ Cyan pigment (CI element blue-15-3: Toyo) (Ink Manufacturing Co., Ltd.) 3 The above materials were charged into a pressure kneader so as to have respective weight ratios, and kneaded so that the pigment was sufficiently dispersed while applying heat and pressure. After cooling the kneaded material, it was pulverized with a feather mill to obtain a pigment master batch.

【0033】 被粉砕粒子Aの製造 ・ポリエステル樹脂A(Tg=65℃、Mn=4700、Mw/Mn=3、軟化点=100℃)80重量部 ・顔料マスターバッチ 20重量部 ・荷電制御剤(下記一般式(I)) 2重量部Preparation of particles A to be crushed : 80 parts by weight of polyester resin A (Tg = 65 ° C., Mn = 4700, Mw / Mn = 3, softening point = 100 ° C.) 20 parts by weight of pigment masterbatch The following general formula (I): 2 parts by weight

【化1】 ・微粉(粉砕時、分級時に発生する微粉) 20重量部 ・疎水性シリカ(ヘキスト社製;H-2000、BET=150m2/g、MW=55%) 0.2重量% 微粉、シリカ以外の上記材料をヘンシェルミキサーの中
に入れ、樹脂と各材料が均一に混合されるよう、十分に
冷却しながら1分間混合した(第1混合)。この間のヘ
ンシェルミキサー中の材料温度は50℃未満(Tg−1
5℃)であった。さらに微粉および、上記混合物総重量
に対して0.2重量%の疎水性シリカを添加し、十分に
冷却しながら、再度8分間混合した(第2混合)。尚、
この間のヘンシェルミキサー中の材料温度は50℃未満
(Tg−15℃)であった。
Embedded image ・ 20 parts by weight of fine powder (fine powder generated during pulverization and classification) ・ Hydrophobic silica (H-2000, BET = 150m 2 / g, MW = 55%) 0.2% by weight Other than fine powder and silica The above materials were placed in a Henschel mixer and mixed for 1 minute while sufficiently cooling so that the resin and each material were uniformly mixed (first mixing). During this time, the material temperature in the Henschel mixer is less than 50 ° C (Tg-1
5 ° C.). Further, fine powder and 0.2% by weight of hydrophobic silica based on the total weight of the mixture were added, and mixed again for 8 minutes while sufficiently cooling (second mixing). still,
During this time, the material temperature in the Henschel mixer was less than 50C (Tg-15C).

【0034】その混合物を2軸系混練押出機に投入して
均一に混練し、排出される混練物を十分に冷却固化した
後、固化物をハンマーミルで粗粉砕し、平均粒径2mmの
粗粉砕粒子を得た。得られた粗粉砕粒子を機械式衝撃粉
砕機で粉砕し、平均粒径15μmの被粉砕粒子Aを得
た。
The mixture is charged into a twin-screw kneading extruder and uniformly kneaded. The kneaded material discharged is sufficiently cooled and solidified, and the solidified material is coarsely pulverized by a hammer mill to give a coarse particle having an average particle size of 2 mm. Pulverized particles were obtained. The obtained coarsely pulverized particles were pulverized with a mechanical impact pulverizer to obtain pulverized particles A having an average particle size of 15 μm.

【0035】 被粉砕粒子Bの製造 ・ポリエステル樹脂A(Tg=65℃、Mn=4700、Mw/Mn=3、軟化点=100℃)100重量部 ・荷電制御剤(前記一般式(I)) 2重量部 ・カーボンブラック(三菱化学工業社製;MA#8) 7重量部 ・微粉(粉砕時、分級時に発生する微粉) 20重量部 ・疎水性シリカ(日本アエロシ゛ル社製;R-972、BET=100m2/g、MW=35%)0.2重量% ポリエステル樹脂Aと荷電制御剤をヘンシェルミキサー
の中に入れ、荷電制御剤が均一に分散されるよう、十分
に冷却しながら1分間混合した(第1混合)。この間の
ヘンシェルミキサー中の材料温度は50℃未満(Tg−
15℃)であった。次にカーボンブラック7重量部、微
粉20重量部および、上記混合物総重量に対して0.2
重量%の疎水性シリカを添加し、十分に冷却しながら、
再度8分間混合した(第2混合)。尚、この間のヘンシ
ェルミキサー中の材料温度は50℃未満(Tg−15
℃)であった。
Production of particles B to be crushed 100 parts by weight of polyester resin A (Tg = 65 ° C., Mn = 4700, Mw / Mn = 3, softening point = 100 ° C.) Charge control agent (the above-mentioned general formula (I)) 2 parts by weight ・ Carbon black (manufactured by Mitsubishi Chemical Corporation; MA # 8) 7 parts by weight ・ Fine powder (fine powder generated at the time of pulverization and classification) 20 parts by weight ・ Hydrophobic silica (manufactured by Nippon Aerosil Co .; R-972, BET) = 100m 2 / g, MW = 35%) 0.2% by weight Polyester resin A and charge control agent are placed in a Henschel mixer and mixed for 1 minute while cooling sufficiently to uniformly disperse the charge control agent (First mixing). During this time, the material temperature in the Henschel mixer is less than 50 ° C (Tg-
15 ° C.). Next, 7 parts by weight of carbon black, 20 parts by weight of fine powder, and 0.2 parts by weight based on the total weight of the mixture.
Weight percent of hydrophobic silica and with sufficient cooling,
Mixed again for 8 minutes (second mixing). During this time, the material temperature in the Henschel mixer was less than 50 ° C (Tg-15
° C).

【0036】その混合物を2軸系混練押出機に投入して
均一に混練し、排出される混練物を十分に冷却固化した
後、固化物をハンマーミルで粗粉砕し、平均粒径2mmの
被粉砕粒子Bを得た。
The mixture is charged into a twin-screw kneading extruder and uniformly kneaded. After the discharged kneaded material is sufficiently cooled and solidified, the solidified material is coarsely pulverized by a hammer mill to obtain a powder having an average particle diameter of 2 mm. Pulverized particles B were obtained.

【0037】 被粉砕粒子Cの製造 ・熱可塑性スチレン−アクリル樹脂(Tg=64℃) 100重量部 ・荷電制御剤(オリエント化学工業社製;ボントロンS−34) 2重量部 ・カルナバワックス(加藤洋行社製) 3.5重量部 ・カーボンブラック(三菱化学工業社製;MA#8) 7重量部 ・微粉(粉砕時、分級時に発生する微粉) 20重量部 熱可塑性スチレン−アクリル樹脂、荷電制御剤およびワ
ックスをヘンシェルミキサーの中に入れ、荷電制御剤が
均一に分散されるよう、十分に冷却しながら1分間混合
した(第1混合)。この間のヘンシェルミキサー中の材
料温度は49℃未満(Tg−15℃)であった。次にカ
ーボンブラック7重量部、および微粉20重量部を添加
し、十分に冷却しながら、再度8分間混合した(第2混
合)。尚、この間のヘンシェルミキサー中の材料温度は
49℃未満(Tg−15℃)であった。
Production of particles C to be crushed : 100 parts by weight of a thermoplastic styrene-acrylic resin (Tg = 64 ° C.) 2 parts by weight of a charge control agent (manufactured by Orient Chemical Co., Ltd .; Bontron S-34) ・ Carnauba wax (Yoyuki Kato) 3.5 parts by weight ・ Carbon black (manufactured by Mitsubishi Chemical Corporation; MA # 8) 7 parts by weight ・ Fine powder (fine powder generated during pulverization and classification) 20 parts by weight Thermoplastic styrene-acrylic resin, charge control agent The wax and the wax were placed in a Henschel mixer, and mixed for 1 minute with sufficient cooling so that the charge control agent was uniformly dispersed (first mixing). During this time, the material temperature in the Henschel mixer was less than 49 ° C (Tg-15 ° C). Next, 7 parts by weight of carbon black and 20 parts by weight of fine powder were added and mixed again for 8 minutes while sufficiently cooling (second mixing). The material temperature in the Henschel mixer during this time was lower than 49 ° C (Tg-15 ° C).

【0038】その混合物を2軸系混練押出機に投入して
均一に混練し、排出される混練物を十分に冷却固化した
後、固化物をハンマーミルで粗粉砕し、平均粒径2mm
の粗粉砕粒子を得た。得られた粗粉砕粒子を機械式衝撃
粉砕機で粉砕し、平均粒径12μmの被粉砕粒子Cを得
た。
The mixture is charged into a twin-screw kneading extruder and uniformly kneaded. The kneaded material discharged is sufficiently cooled and solidified, and the solidified material is roughly pulverized with a hammer mill to obtain an average particle size of 2 mm.
Was obtained. The obtained coarsely pulverized particles were pulverized with a mechanical impact pulverizer to obtain pulverized particles C having an average particle diameter of 12 μm.

【0039】実施例1 被粉砕粒子Aをさらに粉砕するに際して図1に示す本発
明の衝突式気流粉砕機を用いた。この時、加速管ノズル
としては図2に示す形態のθ1=6°、θ2=0°の粉砕
能力の高い加速管ノズルを使用した。加速管の具体的寸
法はAt=φ12.5mm、Ae=φ23.7mmであった。
被粉砕物投入口の位置はスロート部から96mm下流側で
あり、投入口面積は380mm2であった。なお、Atは
スロート部断面積、Aeは加速管出口開口断面積を示
す。また、衝突部材としては図3(a)に示す形態のも
のを使用した。衝突部材の具体的寸法は図3においてD
=φ90mm、h=36mm(0.7H)、α=60°であ
り、錐体形状部材料はアルミナであった。
Example 1 When the particles A to be pulverized were further pulverized, an impinging airflow pulverizer of the present invention shown in FIG. 1 was used. At this time, an acceleration tube nozzle having a high crushing ability of θ 1 = 6 ° and θ 2 = 0 ° in the form shown in FIG. 2 was used as the acceleration tube nozzle. The specific dimensions of the accelerating tube were At = φ12.5 mm and Ae = φ23.7 mm.
The position of the crushed material input port was 96 mm downstream from the throat portion, and the input port area was 380 mm 2 . In addition, At indicates a throat portion cross-sectional area, and Ae indicates an accelerator tube outlet opening cross-sectional area. The collision member used was of the type shown in FIG. The specific size of the collision member is D in FIG.
= Φ90 mm, h = 36 mm (0.7H), α = 60 °, and the cone-shaped portion material was alumina.

【0040】そして、粉砕圧6.5Kgf/cm2Gにおいて分
級条件を調整しながら処理を行い、平均粒径8μmの粉
砕粒子を得た。このときの最大可能処理量は88Kg/hで
あり、衝突部材表面上で熱融着は発生しなかった。ま
た、粉砕物中には熱溶融物の存在もなかった。この後、
上記粉砕粒子から粒径5μm以下の微粉を強制渦式分級
機で取り除き、0.3重量%の疎水性シリカ(ヘキスト
社製;H-2000、BET=150m2/g、MW=55%)で表面処理した
後、さらに0.2重量%の疎水性チタン(日本アエロジ
ル社製;T-805、BET=35m2/g、MW=55%)で表面処理して平
均粒径8.5μmの製品トナーAを得た。
The treatment was carried out at a pulverizing pressure of 6.5 kgf / cm 2 G while adjusting the classification conditions to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible processing amount was 88 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. After this,
Fine powder having a particle size of 5 μm or less is removed from the pulverized particles by a forced vortex classifier, and is then added with 0.3% by weight of hydrophobic silica (Hoechst; H-2000, BET = 150 m 2 / g, MW = 55%). After the surface treatment, the product is further treated with 0.2% by weight of hydrophobic titanium (manufactured by Nippon Aerosil Co., Ltd .; T-805, BET = 35 m 2 / g, MW = 55%) to obtain a product having an average particle size of 8.5 μm. Toner A was obtained.

【0041】なお、最大可能処理量は具体的には以下の
ごとく測定した。例えば、実施例1の場合であれば、分
級条件が一定であれば処理量を増すごとに粉砕物の粒径
が粗くなるので所定の粒径にするためには分級条件を小
径側にシフトする必要がある。このようにして分級条件
を最も小径側にシフトさせた時に粉砕機内に粉のつまり
がなく所定の粒径が得られる処理量が最大可能処理量と
なる。
Incidentally, the maximum possible processing amount was specifically measured as follows. For example, in the case of Example 1, if the classification conditions are constant, the particle size of the pulverized material increases as the processing amount increases, so that the classification conditions are shifted to the smaller diameter side to obtain a predetermined particle size. There is a need. In this way, when the classification condition is shifted to the smallest diameter side, the processing amount that can obtain a predetermined particle size without clogging of the powder in the crusher is the maximum possible processing amount.

【0042】実施例2 衝突部材の形状を以下のように変更した以外は、実施例
1と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は98Kg/hであり、衝突
部材表面上で熱融着は発生しなかった。また、粉砕物中
には熱溶融物の存在もなかった。その後、再び実施例1
と同様の処理を行い平均粒径8.5μmの製品トナーBを
得た。 衝突部材:D=φ90mm、h=41mm(0.8H)、α
=60°
Example 2 The same operation as in Example 1 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible treatment amount was 98 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Then, again in Example 1
In the same manner as in the above, a product toner B having an average particle size of 8.5 μm was obtained. Impact member: D = φ90 mm, h = 41 mm (0.8H), α
= 60 °

【0043】実施例3 衝突部材の形状を以下のように変更した以外は、実施例
1と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は84Kg/hであり、衝突
部材表面上で熱融着は発生しなかった。また、粉砕物中
には熱溶融物の存在もなかった。その後、再び実施例1
と同様の処理を行い平均粒径8.5μmの製品トナーCを
得た。 衝突部材:D=φ90mm、h=34mm(0.65H)、
α=30°
Example 3 The same operation as in Example 1 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle size of 8 μm. At this time, the maximum possible processing amount was 84 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Then, again in Example 1
In the same manner as described above, a product toner C having an average particle size of 8.5 μm was obtained. Impact member: D = φ90 mm, h = 34 mm (0.65H),
α = 30 °

【0044】実施例4 衝突部材の形状を以下のように変更した以外は、実施例
1と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は100Kg/hであり、衝
突部材表面上で熱融着は発生しなかった。また、粉砕物
中には熱溶融物の存在もなかった。その後、再び実施例
1と同様の処理を行い平均粒径8.5μmの製品トナーD
を得た。 衝突部材:D=φ90mm、h=41mm(0.8H)、α
=30°
Example 4 The same operation as in Example 1 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible processing amount was 100 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Thereafter, the same processing as in Example 1 is performed again, and a product toner D having an average particle size of 8.5 μm is formed.
I got Impact member: D = φ90 mm, h = 41 mm (0.8H), α
= 30 °

【0045】実施例5 衝突部材の形状を以下のように変更した以外は、実施例
1と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は85Kg/hであり、衝突
部材表面上で熱融着は発生しなかった。また、粉砕物中
には熱溶融物の存在もなかった。その後、再び実施例1
と同様の処理を行い平均粒径8.5μmの製品トナーEを
得た。 衝突部材:D=φ90mm、h=19.5mm(0.65
H)、α=90°
Example 5 The same operation as in Example 1 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible processing amount was 85 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Then, again in Example 1
In the same manner as described above, a product toner E having an average particle size of 8.5 μm was obtained. Impact member: D = φ90 mm, h = 19.5 mm (0.65
H), α = 90 °

【0046】実施例6 衝突部材の形状を以下のように変更した以外は、実施例
1と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は94Kg/hであり、衝突
部材表面上で熱融着は発生しなかった。また、粉砕物中
には熱溶融物の存在もなかった。その後、再び実施例1
と同様の処理を行い平均粒径8.5μmの製品トナーFを
得た。 衝突部材:D=φ90mm、h=24mm(0.8H)、α
=90°
Example 6 The same operation as in Example 1 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible treatment amount was 94 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Then, again in Example 1
In the same manner as described above, a product toner F having an average particle size of 8.5 μm was obtained. Impact member: D = φ90 mm, h = 24 mm (0.8H), α
= 90 °

【0047】実施例7 被粉砕粒子Bを用いたこと、および図3(b)に示す形
態の衝突部材を用い、さらに形状を以下のように変更し
たこと以外は、実施例1と同様の操作を行い、平均粒径
8μmの粉砕粒子を得た。このときの最大可能処理量は
66Kg/hであり、衝突部材表面上で熱融着は発生しなか
った。また、粉砕物中には熱溶融物の存在もなかった。
その後、上記粉砕粒子から粒径5μm以下の微粉を強制
渦式分級機で取り除き、0.5重量%の疎水性シリカ
(日本アエロジル社製;R-972、BET=100m2/g、MW=35%)で
表面処理して平均粒径8.5μmの製品トナーGを得た。 衝突部材:D=φ90mm、h=36mm(0.7H)、α
=60°
Example 7 The same operation as in Example 1 was performed except that the particles B to be pulverized were used, the collision member having the form shown in FIG. 3B was used, and the shape was changed as follows. Was carried out to obtain pulverized particles having an average particle size of 8 μm. At this time, the maximum possible treatment amount was 66 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material.
Thereafter, fine powder having a particle size of 5 μm or less was removed from the pulverized particles by a forced vortex classifier, and 0.5% by weight of hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd .; R-972, BET = 100 m 2 / g, MW = 35) %) To obtain a product toner G having an average particle size of 8.5 μm. Impact member: D = φ90mm, h = 36mm (0.7H), α
= 60 °

【0048】実施例8 衝突部材の形状を以下のように変更した以外は、実施例
7と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は72Kg/hであり、衝突
部材表面上で熱融着は発生しなかった。また、粉砕物中
には熱溶融物の存在もなかった。その後、再び実施例7
と同様の処理を行い平均粒径8.5μmの製品トナーHを
得た。 衝突部材:D=φ90mm、h=41mm(0.8H)、α
=60°
Example 8 The same operation as in Example 7 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible processing amount was 72 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Then, again in Example 7
In the same manner as in the above, a product toner H having an average particle size of 8.5 μm was obtained. Impact member: D = φ90 mm, h = 41 mm (0.8H), α
= 60 °

【0049】実施例9 被粉砕粒子Cを用いたこと、および衝突部材の形状を以
下のように変更したこと以外は、実施例1と同様の操作
を行い、平均粒径8μmの粉砕粒子を得た。このときの
最大可能処理量は90Kg/hであり、衝突部材表面上で熱
融着は発生しなかった。また、粉砕物中には熱溶融物の
存在もなかった。その後、上記粉砕粒子から粒径5μm
以下の微粉を強制渦式分級機で取り除き、0.3重量%
の疎水性シリカ(ヘキスト社製;H-2000、BET=150m2/g、M
W=55%)で表面処理して平均粒径8.5μmの製品トナー
Iを得た。 衝突部材:D=φ90mm、h=36mm(0.7H)、α
=60°
Example 9 The same operation as in Example 1 was carried out except that the particles C to be ground were used and the shape of the collision member was changed as follows, to obtain ground particles having an average particle diameter of 8 μm. Was. At this time, the maximum possible processing amount was 90 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Then, a particle size of 5 μm
The following fine powder is removed by a forced vortex classifier, and 0.3% by weight
Hydrophobic silica (Hoechst; H-2000, BET = 150m 2 / g, M
W = 55%) to obtain a product toner I having an average particle size of 8.5 μm. Impact member: D = φ90mm, h = 36mm (0.7H), α
= 60 °

【0050】実施例10 衝突部材の形状を以下のように変更した以外は、実施例
9と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は98Kg/hであり、衝突
部材表面上で熱融着は発生しなかった。また、粉砕物中
には熱溶融物の存在もなかった。その後、再び実施例9
と同様の処理を行い平均粒径8.5μmの製品トナーJを
得た。 衝突部材:D=φ90mm、h=41mm(0.8H)、α
=60°
Example 10 The same operation as in Example 9 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible treatment amount was 98 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. Thereafter, the ninth embodiment is again performed.
In the same manner as described above, a product toner J having an average particle size of 8.5 μm was obtained. Impact member: D = φ90 mm, h = 41 mm (0.8H), α
= 60 °

【0051】比較例1 衝突部材の形状を以下のように変更した以外は、実施例
1と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。さらに実施例1と同様の処理を行い平均粒径8.5
μmの製品トナーを得た。このときの最大可能処理量は
82Kg/hであった。衝突部材表面上で熱融着は発生せ
ず、また、粉砕物中には熱溶融物の存在もなかったが、
処理量が少なかった。 衝突部材:D=φ90mm、h=33mm(0.6H)、α
=60°
Comparative Example 1 The same operation as in Example 1 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. Further, the same treatment as in Example 1 was performed to obtain an average particle size of 8.5.
A μm product toner was obtained. The maximum possible throughput at this time was 82 kg / h. No heat fusion occurred on the impact member surface, and there was no hot melt in the pulverized material,
The throughput was small. Impact member: D = φ90 mm, h = 33 mm (0.6H), α
= 60 °

【0052】比較例2 衝突部材の形状を以下のように変更した以外は、実施例
1と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。このときの最大可能処理量は100Kg/hであった
が、衝突部材表面上で熱融着が発生した。また、粉砕物
中には熱溶融物が存在した。このため、トナーの製品化
は断念した。 衝突部材:D=φ90mm、h=44mm(0.85H)、
α=60°
Comparative Example 2 The same operation as in Example 1 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. At this time, the maximum possible processing amount was 100 kg / h, but heat fusion occurred on the surface of the collision member. A hot melt was present in the pulverized material. Therefore, the commercialization of the toner was abandoned. Impact member: D = φ90 mm, h = 44 mm (0.85H),
α = 60 °

【0053】比較例3 衝突部材の形状を以下のように変更した以外は、実施例
7と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。さらに、実施例1と同様の処理を行い平均粒径8.
5μmの製品トナーを得た。このときの最大可能処理量
は61Kg/hであった。衝突部材表面上で熱融着は発生せ
ず、また、粉砕物中には熱溶融物の存在もなかったが、
処理量が少なかった。 衝突部材:D=φ90mm、h=33mm(0.6H)、α
=60°
Comparative Example 3 The same operation as in Example 7 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. Further, the same treatment as in Example 1 was performed to obtain an average particle size of 8.
A product toner of 5 μm was obtained. The maximum possible throughput at this time was 61 kg / h. No heat fusion occurred on the impact member surface, and there was no hot melt in the pulverized material,
The throughput was small. Impact member: D = φ90 mm, h = 33 mm (0.6H), α
= 60 °

【0054】比較例4 衝突部材の形状を以下のように変更した以外は、実施例
9と同様の操作を行い、平均粒径8μmの粉砕粒子を得
た。さらに、実施例1と同様の処理を行い平均粒径8.
5μmの製品トナーを得た。このときの最大可能処理量
は85Kg/hであった。衝突部材表面上で熱融着は発生せ
ず、また、粉砕物中には熱溶融物の存在もなかったが、
処理量が少なかった。 衝突部材:D=φ90mm、h=33mm(0.6H)、α
=60°
Comparative Example 4 The same operation as in Example 9 was carried out except that the shape of the collision member was changed as follows, to obtain pulverized particles having an average particle diameter of 8 μm. Further, the same treatment as in Example 1 was performed to obtain an average particle size of 8.
A product toner of 5 μm was obtained. The maximum possible throughput at this time was 85 kg / h. No heat fusion occurred on the impact member surface, and there was no hot melt in the pulverized material,
The throughput was small. Impact member: D = φ90 mm, h = 33 mm (0.6H), α
= 60 °

【0055】従来例1 衝突部材として面取りしていない円錐形突起を有する衝
突部材を用い、その具体的寸法としては図3における
D、h、Hおよびαを用いて以下のように表される以外
は、実施例1と同様の操作を行い、平均粒径8μmの粉
砕粒子を得た。このときの最大可能処理量は104Kg/h
であったが、衝突部材表面上で熱融着が発生した。ま
た、粉砕物中には熱溶融物が存在した。このため、トナ
ーの製品化は断念した。 衝突部材:D=φ90mm、h=52mm(1.0H)、α
=60°
Conventional Example 1 A collision member having a conical projection that is not chamfered is used as the collision member, and its specific dimensions are as shown below using D, h, H, and α in FIG. Was carried out in the same manner as in Example 1 to obtain pulverized particles having an average particle size of 8 μm. The maximum possible processing volume at this time is 104Kg / h
However, heat fusion occurred on the surface of the collision member. A hot melt was present in the pulverized material. Therefore, the commercialization of the toner was abandoned. Impact member: D = φ90 mm, h = 52 mm (1.0 H), α
= 60 °

【0056】従来例2 衝突部材として面取りしていない円錐形突起を有する衝
突部材を用い、その具体的寸法としては図3における
D、h、Hおよびαを用いて以下のように表されるこ
と、および加速管ノズル形状を以下のように変更したこ
と以外は、実施例1と同様の操作を行い、平均粒径8μ
mの粉砕粒子を得た。このときの最大可能処理量は83K
g/hであったが、衝突部材表面上で熱融着が発生した。
また、粉砕物中には熱溶融物が存在した。さらには、処
理量も少なかったため、トナーの製品化は断念した。 衝突部材:D=φ90mm、h=52mm(1.0H)、α
=60° 加速管ノズル:θ1=θ2=6°、At=φ12.5mm、
Ae=φ36.9mm
Conventional Example 2 A collision member having a conical projection which is not chamfered is used as the collision member, and its specific dimensions are expressed as follows using D, h, H and α in FIG. And the same procedure as in Example 1 except that the shape of the accelerating tube nozzle was changed as follows.
m crushed particles were obtained. The maximum possible processing amount at this time is 83K
g / h, but thermal fusion occurred on the impact member surface.
A hot melt was present in the pulverized material. Further, since the processing amount was small, the commercialization of the toner was abandoned. Impact member: D = φ90 mm, h = 52 mm (1.0 H), α
= 60 ° Accelerator tube nozzle: θ 1 = θ 2 = 6 °, At = φ12.5 mm,
Ae = φ36.9mm

【0057】従来例3 図3(b)に示す形態の衝突部材を用い、さらにその形
状および加速管ノズルの形状を以下のように変更した以
外は、実施例1と同様の操作を行い、平均粒径8μmの
粉砕粒子を得た。このときの最大可能処理量は72Kg/h
であり、衝突部材表面上で熱融着は発生しなかった。ま
た、粉砕物中には熱溶融物の存在もなかった。その後、
再び実施例1と同様の処理を行い平均粒径8.5μmの製
品トナーを得たが、処理量が少なく本発明の効果は得ら
れなかった。 衝突部材:D=φ90mm、h=41mm(0.8H)、α
=60° 加速管ノズル:θ1=θ2=6°、At=φ12.5mm、
Ae=φ36.9mm
Conventional Example 3 The same operation as in Example 1 was performed except that the collision member having the form shown in FIG. 3B was used, and the shape and the shape of the acceleration tube nozzle were changed as follows. Pulverized particles having a particle size of 8 μm were obtained. The maximum possible processing volume at this time is 72 kg / h
And no thermal fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material. afterwards,
The same processing as in Example 1 was performed again to obtain a product toner having an average particle size of 8.5 μm, but the processing amount was small and the effect of the present invention was not obtained. Impact member: D = φ90 mm, h = 41 mm (0.8H), α
= 60 ° Accelerator tube nozzle: θ 1 = θ 2 = 6 °, At = φ12.5 mm,
Ae = φ36.9mm

【0058】従来例4 被粉砕粒子Aを用いたこと、および衝突部材として錐体
形状部を有しない図5に示す平面部を有する衝突部材を
用いたこと以外は、実施例1と同様の操作を行い、平均
粒径8μmの粉砕粒子を得た。このときの最大可能処理
量は80Kg/hであり、衝突部材表面上で熱融着は発生し
なかった。また、粉砕物中には熱溶融物の存在もなかっ
た。
Conventional Example 4 The same operation as in Example 1 was carried out except that the particles A to be ground were used, and that the collision member having a flat portion shown in FIG. Was carried out to obtain pulverized particles having an average particle size of 8 μm. At this time, the maximum possible processing amount was 80 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material.

【0059】従来例5 被粉砕粒子Bを用いたこと、および衝突部材として錐体
形状部を有しない図5に示す平面部を有する衝突部材を
用いたこと以外は、実施例7と同様の操作を行い、平均
粒径8μmの粉砕粒子を得た。このときの最大可能処理
量は60Kg/hであり、衝突部材表面上で熱融着は発生し
なかった。また、粉砕物中には熱溶融物の存在もなかっ
た。
Conventional Example 5 The same operation as in Example 7 was carried out except that the particles B to be ground were used, and that the collision member having a flat portion shown in FIG. Was carried out to obtain pulverized particles having an average particle size of 8 μm. At this time, the maximum possible processing amount was 60 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material.

【0060】従来例6 被粉砕粒子Cを用いたこと、および衝突部材として錐体
形状部を有しない図5に示す平面部を有する衝突部材を
用いたこと以外は、実施例9と同様の操作を行い、平均
粒径8μmの粉砕粒子を得た。このときの最大可能処理
量は83Kg/hであり、衝突部材表面上で熱融着は発生し
なかった。また、粉砕物中には熱溶融物の存在もなかっ
た。
Conventional Example 6 The same operation as in Example 9 was carried out except that the particles C to be ground were used, and that the collision member having a flat portion shown in FIG. Was carried out to obtain pulverized particles having an average particle size of 8 μm. At this time, the maximum possible treatment amount was 83 kg / h, and no heat fusion occurred on the surface of the collision member. There was no hot melt in the pulverized material.

【0061】従来例4〜6で示す処理量は、本発明以前
の従来技術における最良の組み合わせによるものである
(熱溶融物が発生せず、従来技術の中では粉砕処理量が
高い)。従って、処理量比は、被粉砕粒子の種類によっ
て従来例4〜6の処理量を基準にして、すなわち被粉砕
粒子Aを用いた場合は従来例4の最大可能処理量を、B
を用いた場合は従来例5の最大可能処理量を、Cを用い
た場合は従来例6の最大可能処理量を基準にして算出
し、一定値(1.05)に達しない場合は本発明の効果
が得られていないものとして「処理量に問題あり」と評
価した。以下の表1にそれぞれのトナーの製造条件なら
びに処理量比および融着の評価結果をまとめて示す。な
お、処理量比については1.05以上を「○」、1.05
未満を「×」として、その括弧内に算出値を示し、融着
については発生しなかった場合は「○」、発生した場合
は「×」と示した。
The throughputs shown in Conventional Examples 4 to 6 are based on the best combination in the prior art prior to the present invention (a hot melt is not generated, and the pulverization throughput is high in the prior art). Therefore, the processing amount ratio is based on the processing amounts of Conventional Examples 4 to 6 depending on the type of the particles to be ground, that is, when the particles A to be ground are used, the maximum possible processing amount of Conventional Example 4 is B,
Is calculated on the basis of the maximum possible processing amount of Conventional Example 5 when C is used, and is calculated based on the maximum possible processing amount of Conventional Example 6 when C is used. It was evaluated that "there was a problem with the throughput" because the effect of (1) was not obtained. Table 1 below summarizes the production conditions of each toner, the processing amount ratio, and the evaluation results of fusing. As for the processing amount ratio, “○” indicates 1.05 or more, and 1.05
When less than “×”, the calculated value is shown in parentheses. When no fusion occurred, “○” was shown, and when fusion occurred, “×” was shown.

【0062】[0062]

【表1】 [Table 1]

【0063】さらに、面取り高さ(h)と処理量比との
関係を、「融着」および「処理量」の問題を含めて図6
のグラフに表した。この結果から、面取り範囲が0.6
5H〜0.8Hであれば、面取りの種類に依存せず、一
定の処理量比を確保しながら融着を回避できることが明
らかになった。
Further, the relationship between the chamfer height (h) and the processing amount ratio is shown in FIG.
In the graph. From this result, the chamfer range was 0.6.
It has been clarified that if the width is 5H to 0.8H, the fusion can be avoided while maintaining a constant processing amount ratio without depending on the type of chamfer.

【0064】[0064]

【発明の効果】本発明により、被粉砕物を効率的に加速
し粉砕処理能力を高める加速管を用いても被粉砕物の融
着等が起こらず、かつ、粉砕処理能力および経済性に優
れた衝突式気流粉砕機を提供することができ、またこの
粉砕機を用いることにより電子写真用トナーを効率よく
製造することができる。
According to the present invention, even if an accelerating tube for efficiently accelerating the object to be pulverized and increasing the pulverization processing ability is used, the object to be pulverized does not fuse, etc. In addition, the present invention can provide a collision type airflow pulverizer, and the use of the pulverizer enables efficient production of electrophotographic toner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の衝突式気流粉砕機の概略断面図およ
び本発明の衝突式気流粉砕機と分級機を組み合わせたフ
ローチャート図である。
FIG. 1 is a schematic cross-sectional view of a collision type air flow pulverizer of the present invention and a flowchart diagram in which the collision type air flow pulverizer of the present invention is combined with a classifier.

【図2】 本発明の衝突式気流粉砕機で用いられる加速
管の概略断面図である。
FIG. 2 is a schematic sectional view of an accelerating tube used in the collision type air flow pulverizer of the present invention.

【図3】 (a)は錐体形状部底面と平行に面取りされ
た、本発明において用いられる衝突部材における錐体形
状部の一例の概略断面図であり、(b)は錐体斜面に対
して滑らかな円弧を描くように面取りされた、本発明に
おいて用いられる衝突部材における錐体形状部の一例の
概略断面図である。
FIG. 3A is a schematic cross-sectional view of an example of a cone-shaped portion of the collision member used in the present invention, which is chamfered in parallel with the bottom surface of the cone-shaped portion, and FIG. FIG. 5 is a schematic cross-sectional view of an example of a cone-shaped portion in the collision member used in the present invention, which is chamfered so as to draw a smooth arc.

【図4】 従来の衝突式気流粉砕機の概略断面図および
従来の衝突式気流粉砕機と分級機を組み合わせたフロー
チャート図である。
FIG. 4 is a schematic cross-sectional view of a conventional collision-type airflow pulverizer and a flowchart in which a conventional collision-type airflow pulverizer is combined with a classifier.

【図5】 従来の衝突式気流粉砕機の概略断面図および
従来の衝突式気流粉砕機と分級機を組み合わせたフロー
チャート図である。
FIG. 5 is a schematic cross-sectional view of a conventional collision-type air flow pulverizer and a flowchart diagram in which a conventional collision-type air flow pulverizer is combined with a classifier.

【図6】 面取り高さと処理量比との関係を表すグラフ
である。
FIG. 6 is a graph showing a relationship between a chamfer height and a processing amount ratio.

【符号の説明】 1:被粉砕物投入口、2:圧縮空気供給ノズル、3:加
速管、3':ラバールノズル型加速管、4:衝突部材、
5:粉砕室出口、6:粉砕室、7:被粉砕物、8:スロ
ート部、9:加速管出口、10:円錐形突起、11:環
状平面部、12:錐体形状部、13:錐体形状部底面、
14:平面部、15:被粉砕物投入口から加速管出口ま
での加速管ノズル部、16:被粉砕物投入口までの加速
管ノズル部、17:先端面
[Description of Signs] 1: Input port for crushed material, 2: Compressed air supply nozzle, 3: Acceleration tube, 3 ': Laval nozzle type acceleration tube, 4: Collision member,
5: Pulverizing chamber outlet, 6: Pulverizing chamber, 7: Pulverized object, 8: Throat part, 9: Acceleration tube outlet, 10: Conical projection, 11: Annular flat part, 12: Conical shape part, 13: Conical part Body shape bottom,
14: Plane part, 15: Acceleration tube nozzle part from pulverized material input port to acceleration pipe outlet, 16: Acceleration tube nozzle part from pulverized substance input port, 17: Tip surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高速気体により被粉砕物を搬送加速する
ための加速管と、該加速管より噴出する被粉砕物を衝突
力により粉砕するための衝突部材とを具備し、該衝突部
材を加速管出口に対向して粉砕室内に設けた衝突式気流
粉砕機において、該加速管に被粉砕物投入口を設け、少
なくとも被粉砕物投入口から加速管出口までの加速管の
拡がり角度が被粉砕物投入口までの加速管の拡がり角度
より小さくなっており、前記衝突部材が加速管出口から
噴出する被粉砕物を偏向させる錐体形状部と、該錐体形
状部の周囲に設けられている加速管軸に対して垂直な被
粉砕物を粉砕するための環状平面部とからなり、該錐体
形状部は錐体形状部高さHに対して錐体形状部底面から
0.65H〜0.80Hの高さで先端部が面取りされてい
ることを特徴とする衝突式気流粉砕機。
An acceleration tube for conveying and accelerating an object to be crushed by a high-speed gas, and a collision member for crushing the object to be crushed ejected from the acceleration tube by an impact force, wherein the collision member is accelerated. In an impingement type air current pulverizer provided in a pulverizing chamber opposed to a pipe outlet, a pulverized material input port is provided in the accelerating pipe, and at least the spread angle of the accelerating pipe from the pulverized substance input port to the accelerating pipe outlet is pulverized. A divergent angle of the accelerating tube up to the material inlet, wherein the collision member is provided around a cone-shaped portion for deflecting the crushed object ejected from the acceleration tube outlet, and around the cone-shaped portion. An annular flat portion for crushing an object to be crushed perpendicular to the axis of the accelerating tube, wherein the cone-shaped portion has a cone-shaped portion height H of 0.65H to 0.65H from the cone-shaped portion bottom surface. The tip is chamfered at a height of .80H突式 air pulverizer.
【請求項2】 少なくとも結着樹脂および着色剤を含有
する混合物を溶融混練し、混練物を冷却固化し、固化物
を粗粉砕して粉砕物を得、この粉砕物を衝突式気流粉砕
機で微粉砕し、得られた微粉砕物から電子写真用トナー
を製造する方法において、前記衝突式気流粉砕機として
請求項1記載の衝突式気流粉砕機を用いることを特徴と
する電子写真用トナーの製造方法。
2. A mixture containing at least a binder resin and a colorant is melt-kneaded, the kneaded product is cooled and solidified, and the solidified product is roughly pulverized to obtain a pulverized product. A method for producing an electrophotographic toner from the finely pulverized product obtained by pulverizing the finely pulverized product, wherein the collision type airflow pulverizer according to claim 1 is used as the collision type airflow pulverizer. Production method.
JP1372997A 1997-01-28 1997-01-28 Collision type air flow pulverizing apparatus and electrophotographic toner production using the same Pending JPH10202135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1372997A JPH10202135A (en) 1997-01-28 1997-01-28 Collision type air flow pulverizing apparatus and electrophotographic toner production using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1372997A JPH10202135A (en) 1997-01-28 1997-01-28 Collision type air flow pulverizing apparatus and electrophotographic toner production using the same

Publications (1)

Publication Number Publication Date
JPH10202135A true JPH10202135A (en) 1998-08-04

Family

ID=11841339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1372997A Pending JPH10202135A (en) 1997-01-28 1997-01-28 Collision type air flow pulverizing apparatus and electrophotographic toner production using the same

Country Status (1)

Country Link
JP (1) JPH10202135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076085A1 (en) * 2004-02-10 2005-08-18 Kao Corporation Method of manufacturing toner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076085A1 (en) * 2004-02-10 2005-08-18 Kao Corporation Method of manufacturing toner
US7866581B2 (en) 2004-02-10 2011-01-11 Kao Corporation Method of manufacturing toner

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JPH0549349B2 (en)
JPH10202135A (en) Collision type air flow pulverizing apparatus and electrophotographic toner production using the same
US7560218B2 (en) Process for preparing toner
JP3114040B2 (en) Collision type air crusher
JPH10211438A (en) Mechanical type grinder and production of toner for electrophotography using said grinder
JPH10211440A (en) Impact type pneumatic conveying crusher, crushing method using the crusher and manufacture of electronic photograph toner using the crusher
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP2759499B2 (en) Powder grinding method
JP3176757B2 (en) Method for producing toner for developing electrostatic images
JP2805332B2 (en) Grinding method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2654989B2 (en) Powder grinding method
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3102902B2 (en) Collision type supersonic jet crusher
JP2663041B2 (en) Collision type air crusher
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JPH0792735A (en) Manufacture of toner and device for manufacturing the same
JPH09179345A (en) Production of toner
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3138379B2 (en) Method for producing toner for developing electrostatic images
JP2006106226A (en) Method for manufacturing toner
JP2961463B2 (en) Collision type air flow pulverizer, fine powder production apparatus and toner production method