JP3176757B2 - Method for producing toner for developing electrostatic images - Google Patents

Method for producing toner for developing electrostatic images

Info

Publication number
JP3176757B2
JP3176757B2 JP12312793A JP12312793A JP3176757B2 JP 3176757 B2 JP3176757 B2 JP 3176757B2 JP 12312793 A JP12312793 A JP 12312793A JP 12312793 A JP12312793 A JP 12312793A JP 3176757 B2 JP3176757 B2 JP 3176757B2
Authority
JP
Japan
Prior art keywords
fine powder
classification
powder
pulverized
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12312793A
Other languages
Japanese (ja)
Other versions
JPH06313990A (en
Inventor
聡 三ッ村
和幸 宮野
洋子 五箇
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12312793A priority Critical patent/JP3176757B2/en
Publication of JPH06313990A publication Critical patent/JPH06313990A/en
Application granted granted Critical
Publication of JP3176757B2 publication Critical patent/JP3176757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、結着樹脂を有する固体
粒子の粉砕及び分級を効率良く行なって所定の粒度を有
する静電荷像現像用トナーを得る為の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a production method for efficiently pulverizing and classifying solid particles having a binder resin to obtain a toner for developing an electrostatic image having a predetermined particle size.

【0002】[0002]

【従来の技術】電子写真法、静電写真法、静電印刷法の
如き画像形成方法では、静電荷像を現像する為にトナー
が使用される。近年、複写機やプリンター等の高画質化
及び高精細化に伴い、現像剤としてのトナーに要求され
る性能も一段とシビアになってきており、トナーの粒径
は小さくなり、トナーの粒度分布としては、粗粒子の無
い且つ微粉の少ないシャープなものが要求される様にな
ってきている。
2. Description of the Related Art In image forming methods such as electrophotography, electrostatography and electrostatic printing, toner is used to develop an electrostatic image. In recent years, along with high image quality and high definition of copiers and printers, the performance required for toner as a developer has become even more severe, the particle size of the toner has become smaller, and the toner particle size distribution has Are required to be sharp without any coarse particles and with few fine powders.

【0003】静電荷像現像用トナーの一般的な製造方法
としては、被転写材に定着させる為の結着樹脂、トナー
としての色味を出させる各種着色剤、粒子に電荷を付与
させる為の荷電制御剤、又、特開昭54−42141号
公報や特開昭55−18656号公報に示される様な所
謂一成分現像法において、トナー自身に搬送性等を付与
する為の各種磁性材料を用い、他に必要に応じて離型
剤、流動性付与剤を乾式混合し、しかる後にロールミル
やエクストルーダー等の汎用混練装置にて溶融混練し、
冷却固化した後にジェット気流式粉砕機や機械衝撃式粉
砕機等の各種粉砕装置により微砕化し、各種風力分級機
により分級を行うことにより、トナーとして必要な粒径
に揃える。
[0003] As a general method for producing a toner for developing an electrostatic image, there are a binder resin for fixing to a material to be transferred, various colorants for giving a color as a toner, and a method for giving a charge to particles. In a so-called one-component developing method as described in JP-A-54-42141 and JP-A-55-18656, various magnetic materials for imparting transportability and the like to the toner itself are used. Use, if necessary, dry-mixing release agent, fluidity imparting agent, then melt-kneaded in a general-purpose kneading device such as a roll mill or extruder,
After being cooled and solidified, it is pulverized by various pulverizers such as a jet air pulverizer or a mechanical impact pulverizer, and classified by various air classifiers so as to have a particle size required for the toner.

【0004】これに必要に応じて流動化剤や滑剤等々を
乾式混合しトナーとする。又、二成分現像方法に用いる
場合は、各種磁性キャリアとトナーとを混ぜ合わせた
後、画像形成に供する。上述の如く、微細粒子であるト
ナー粒子を得る為には、従来、図10のフローチャート
に示される方法が一般的に採用されている。トナー粗砕
物は、粗粉分級手段に連続的又は逐次供給されて分級さ
れ、分級された規定粒度以上の粗粒子群を主成分とする
粗粉は、粉砕手段に送って粉砕された後、再度、粗粉分
級手段に循環される。
[0004] If necessary, a fluidizing agent, a lubricant and the like are dry-mixed to form a toner. When used in a two-component development method, various magnetic carriers and a toner are mixed and then used for image formation. As described above, in order to obtain toner particles which are fine particles, a method shown in a flowchart of FIG. 10 has conventionally been generally adopted. The coarsely crushed toner is continuously or sequentially supplied to the coarse powder classifying means and classified, and the coarse powder mainly composed of the classified coarse particles having a particle size equal to or larger than the specified particle size is sent to the crushing means and crushed, and then re-crushed. Circulated to the coarse powder classification means.

【0005】他の規定粒径範囲内の粒子及び規定粒径以
下の粒子を主成分とするトナー微粉砕品は、微粉分級手
段に送られ、規定粒度を有する粒子群を主成分とする中
粉体と規定粒度以下の粒子群を主成分とする細粉体とに
分級される。粉砕手段としては、各種粉砕装置が用いら
れるが、結着樹脂を主とするトナー粗粉砕物の粉砕に
は、図11に示す如きジェット気流を用いたジェット気
流式粉砕機、特に衝突式気流粉砕機が用いられている。
[0005] A finely pulverized toner mainly composed of particles within the other specified particle size range and particles smaller than the specified particle size is sent to a fine powder classifying means, and a medium powder mainly composed of particles having a specified particle size is used. It is classified into a body and a fine powder mainly composed of a group of particles having a specified particle size or less. As the pulverizing means, various pulverizing devices are used. For pulverizing a coarsely pulverized toner mainly composed of a binder resin, a jet air flow type pulverizer using a jet air flow as shown in FIG. Machine is used.

【0006】ジェット気流の如き高圧気体を用いた衝突
式気流粉砕機は、ジェット気流で粉体原料を搬送し、加
速管の出口より噴射し、粉体原料を加速管の出口の開口
面に対向して設けた衝突部材の衝突面に衝突させて、そ
の衝撃力により粉体原料を粉砕している。
A collision type air flow pulverizer using a high-pressure gas such as a jet gas stream conveys a powder material by a jet gas stream, injects the powder material from an outlet of an accelerating tube, and opposes an opening surface of an outlet of the accelerating tube. Then, the powder material is crushed by the impact force of the collision member.

【0007】例えば、図11に示す衝突式気流粉砕機で
は、高圧気体供給ノズル47を接続した加速管46の出
口45に対向して衝突部材43を設け、前記加速管46
に供給した高圧気体により、加速管46の中途に連通さ
せた粉体原料供給口40から加速管46内に粉体原料を
吸引し、粉体原料を高圧気体と共に噴出して衝突部材4
3の衝突面に衝突させ、その衝撃によって粉砕してい
る。
For example, in the collision type air flow pulverizer shown in FIG. 11, a collision member 43 is provided opposite an outlet 45 of an acceleration tube 46 to which a high-pressure gas supply nozzle 47 is connected.
The powder material is sucked into the acceleration tube 46 from the powder material supply port 40 connected to the middle of the acceleration tube 46 by the high-pressure gas supplied to the collision member 46, and the powder material is ejected together with the high-pressure gas to cause collision with the collision member 4.
No. 3 is crushed by the impact surface and crushed by the impact.

【0008】しかしながら、図11の衝突式気流粉砕機
では、被粉砕物の供給口40が加速管46の中途に設け
られている為、加速管46内に吸引導入された被粉砕物
は、被粉砕物供給口40を通過直後に、高圧気体供給ノ
ズル47より噴出する高圧気流により加速管出口方向に
向かって流路を変更しながら高圧気流中に分散され急加
速される。この状態において被粉砕物の比較的粗粒子
は、慣性力の影響から加速管内の底流部を流れ、又、比
較的微粒子は、加速管内の高流部を流れるので、高圧気
流中に十分に均一に分散されずに、被粉砕物濃度の高い
流れと低い流れに分離したまま、被粉砕物が対向する衝
突部材に部分的に集中して衝突することになり、粉砕効
率が低下し易く、処理能力の低下を引き起こし易い。
However, in the collision type air-flow crusher shown in FIG. 11, since the supply port 40 for the crushed object is provided in the middle of the acceleration tube 46, the crushed object sucked and introduced into the acceleration tube 46 is not crushed. Immediately after passing through the pulverized material supply port 40, the fluid is dispersed in the high-pressure gas flow and rapidly accelerated while changing the flow path toward the outlet of the acceleration tube by the high-pressure gas flow ejected from the high-pressure gas supply nozzle 47. In this state, the relatively coarse particles of the material to be crushed flow through the bottom flow portion in the acceleration tube due to the effect of inertia force, and the relatively fine particles flow through the high flow portion in the acceleration tube, so that they are sufficiently uniform in the high-pressure airflow. The material to be crushed partially collides with the opposing collision member while being separated into a flow having a high concentration of the material to be crushed and a flow having a low concentration without being dispersed, and the crushing efficiency is likely to decrease, and It is easy to cause a decline in performance.

【0009】衝突面41は、その近傍において、局部的
に被粉砕物及び粉砕物からなる粉塵濃度の高い部分が発
生し易い為、被粉砕物が樹脂等の低融点物質を含有する
場合は、被粉砕物の融着、粗粒化及び凝集等が発生し易
い。又、被粉砕物に摩耗性がある場合は、衝突部材の衝
突面や、加速管に局部的な粉体摩耗が起こり易く、衝突
部材の交換頻度が多くなり、連続的に安定に生産すると
云う面では改良すべき点があった
In the vicinity of the collision surface 41, a portion having a high dust concentration composed of the material to be ground and the material to be ground is easily generated in the vicinity thereof. Therefore, when the material to be ground contains a low melting point substance such as a resin, Fusing, coarsening, agglomeration, and the like of the material to be ground are likely to occur. In addition, when the object to be ground has abrasion properties, local powder wear is likely to occur on the collision surface of the collision member and the accelerating tube, the frequency of replacement of the collision member increases, and continuous stable production can be said. There was a point to improve in terms of

【0010】衝突部材の衝突面の先端部分が、頂角11
0〜175°を有する円錐形状のもの(特開平1−25
4266号公報)や、衝突面が衝突部材の中心軸の延長
線と直角に交わる平面上に突起を有した衝突板形状(実
開平1−148740号公報)が提案されている。これ
らの粉砕機では、衝突面近傍での局部的な粉塵濃度の上
昇を抑えることが出来る為に、粉砕物の融着、粗粒化、
凝集等を多少和らげることが出来、粉砕効率も若干向上
するが、更なる改良が望まれている。
The tip of the collision surface of the collision member has an apex angle of 11
Conical shape having 0 to 175 ° (JP-A 1-25
No. 4266) and a collision plate shape having a projection on a plane where a collision surface intersects perpendicularly with the extension of the central axis of the collision member (Japanese Utility Model Application Laid-Open No. 1-148740). In these pulverizers, it is possible to suppress the local increase in the dust concentration near the collision surface, so that the pulverized material is fused, coarsened,
Aggregation and the like can be somewhat reduced and the pulverization efficiency is slightly improved, but further improvement is desired.

【0011】例えば、重量平均径が8μmであり、且つ
個数分布の変動係数A(定義は後記)が33である粒子
群を得る場合は、粗粉域を除去する為の分級機構を備え
た衝突式気流粉砕機の如き粉砕手段で所定の平均粒径ま
で原料を粉砕して分級し、粗粉体を除去した後の粉砕物
を別の分級機にかけ、微粉体を除去して所望の中粉体を
得ている。尚、ここで記している重量平均粒径は、コー
ルターエレクトロニクス社(米国)製のコールターカウ
ンターTA−II型で100μmのアパーチャーを用いて
測定したデータである。
For example, when obtaining a particle group having a weight average diameter of 8 μm and a coefficient of variation A of the number distribution (to be described later) of 33, a collision equipped with a classification mechanism for removing a coarse powder region is required. The raw material is pulverized to a predetermined average particle size by a pulverizing means such as an air-flow pulverizer and classified, and the pulverized material after removing the coarse powder is subjected to another classifier to remove the fine powder and remove the desired medium powder. Gaining body. In addition, the weight average particle diameter described here is data measured using a Coulter Counter TA-II manufactured by Coulter Electronics Co., Ltd. (USA) using an aperture of 100 μm.

【0012】この様な従来の製造法では、特にトナーの
重量平均粒径が8μm以下で、更にその重量平均粒径が
小さくなればなる程、粉砕手段におけるエネルギー効率
の低下及び微粉分級手段においての分級収率の低下を招
くと云う問題が起こる。
In such a conventional production method, in particular, as the weight average particle diameter of the toner is 8 μm or less, and the smaller the weight average particle diameter, the lower the energy efficiency in the pulverizing means and the smaller the fine powder classifying means. The problem of lowering the classification yield occurs.

【0013】従来の微粉分級手段での収率低下を向上さ
せる方法として、中山仁郎、米沢一裕;粉体と工業、4
月号、45頁(1984)、最新超微粉砕プロセス技
術、347頁(1985)に記載されている様に、分級
手段を多段に設け、後流側に小型機を使用する方法が提
案されている。この様な分級手段により、収率の向上が
ある程度の幅で図れるが、主に分級手段の容量アップに
伴う分級精度の低下や分級収率の低下を軽減することに
主体が置かれているので、更なる分級精度の向上及び分
級収率の向上が望まれている。
As a method for improving the yield reduction by the conventional fine powder classifying means, Jiro Nakayama and Kazuhiro Yonezawa;
As described in the monthly issue, p. 45 (1984), latest ultrafine grinding process technology, p. 347 (1985), a method has been proposed in which classification means are provided in multiple stages and a small machine is used on the downstream side. I have. With such a classification means, the yield can be improved to a certain extent, but the main focus is on reducing the reduction in classification accuracy and the reduction in classification yield mainly due to the increase in the capacity of the classification means. It is desired to further improve the classification accuracy and the classification yield.

【0014】又、トナーの重量平均粒径が8μm以下で
あり、尚、且つ重量平均粒径が小さくなればなる程、ト
ナー粒子の凝集度が増加と共に、極微粒子の生成が多く
なる為、粉砕手段で生成した極微粒子の除去する技術が
非常に困難になる。事実上、従来技術を示す図10の如
く、微粉分級手段が1段の場合は、この極微粒子を除去
する機構が1回しか行われず、極微粒子が除去しきれな
い欠点がある。
Further, the smaller the weight average particle diameter of the toner is 8 μm or less, and the smaller the weight average particle diameter is, the more the degree of aggregation of the toner particles is increased and the more fine particles are generated. The technique for removing the ultrafine particles generated by the means becomes very difficult. In fact, as shown in FIG. 10 showing the prior art, when the fine powder classifying means has one stage, the mechanism for removing the ultrafine particles is performed only once, and there is a disadvantage that the ultrafine particles cannot be completely removed.

【0015】更に前記記載の公知例では、微粉分級手段
が多段の場合は、1段分級の場合に比較して、この極微
粒子の除去は向上させることが出来る。しかしながら、
トナーの品質としてかかわる画像としては不十分であ
り、更なる高画質化が望まれる。従って、最近のニーズ
として、より高精細及び高画質を実現させる為に、トナ
ーの微粒子化が望まれており、更に効率良く、更に極微
粒子が少なく且つ重量平均粒径8μm以下のトナーを製
造する方法が待望されている。
Further, in the above-mentioned known example, the removal of the ultrafine particles can be improved when the fine powder classification means is multi-stage as compared with the case of single-stage classification. However,
The quality of the toner is not sufficient for an image, and further improvement in image quality is desired. Therefore, as a recent need, in order to realize higher definition and higher image quality, it is desired to make the toner finer, and to produce a toner having a smaller amount of ultrafine particles and a weight average particle size of 8 μm or less more efficiently. The way is long-awaited.

【0016】[0016]

【発明が解決しようとする課題】本発明は、従来の静電
荷像現像用トナーの製造方法に於ける前述の各種問題点
を解決した製造方法を提供することを目的とする。即
ち、本発明は、精緻な粒度分布を有する静電荷像現像用
トナーを効率良く生成する製造方法を提供することを目
的とする。本発明は、結着樹脂、着色剤及び添加剤を含
有する混合物を溶融混練し、溶融混練物を冷却後、粉砕
により生成した固体粒子群から精緻な所定の粒度分布を
有する粒子製品(トナーとして使用される)を効率的
に、収率良く製造する方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method which solves the above-mentioned various problems in a conventional method for manufacturing a toner for developing an electrostatic image. That is, an object of the present invention is to provide a method for efficiently producing a toner for developing an electrostatic image having a fine particle size distribution. The present invention relates to a method of melting and kneading a mixture containing a binder resin, a colorant and an additive, cooling the melt-kneaded product, and then obtaining a fine particle product having a precise predetermined particle size distribution from a group of solid particles produced by pulverization (as toner). To be used efficiently and in good yield.

【0017】又、本発明は、重量平均粒径3〜8μm
(好ましくは、3〜7μm)の静電荷像現像用トナーを
効率良く製造する為の方法を提供することを目的とす
る。
Further, the present invention provides a method for producing a powder having a weight average particle size of 3 to 8 μm.
It is an object of the present invention to provide a method for efficiently producing a toner (preferably 3 to 7 μm) for developing an electrostatic image.

【0018】[0018]

【課題を解決する為の手段】上記目的は以下の本発明に
よって達成される。即ち、本発明は、結着樹脂及び着色
剤を少なくとも含有する混合物を溶融混練し、混合物を
冷却し、冷却物を粉砕手段によって粉砕して粉砕物を得
て、得られた粉砕物を粗粉分級手段で、粗粉と細粉とに
分級し、分級された粗粉を衝突式気流粉砕手段により微
粉砕して微粉体を生成し、生成した微粉体を粗砕分級手
段に循環し、分級された細粉を少なくとも二段以上の微
粉分級手段からなる多段微粉分級手段に導入して、分級
して得られた所定粒径範囲の中粉体から静電荷像現像用
トナーを製造する方法において、
The above objects are achieved by the present invention described below. That is, the present invention melts and kneads a mixture containing at least a binder resin and a colorant, cools the mixture, pulverizes the cooled material by a pulverizing means to obtain a pulverized product, and obtains a pulverized product. The classification means classifies the coarse powder into fine powder and fine powder, and the classified coarse powder is finely pulverized by an impingement airflow pulverizing means to produce fine powder. The fine powder obtained is introduced into a multi-stage fine powder classification means comprising at least two or more fine powder classification means, and a method for producing a toner for developing an electrostatic image from a powder having a predetermined particle size range obtained by classification. ,

【0019】前記衝突式気流粉砕手段では、高圧気体に
より被粉砕物を搬送加速する為の加速管と被粉砕物
粉砕する為の粉砕室とを有し、加速管内に供給され、加
速された被粉砕物を粉砕室内に加速管出口から吐出し、
該加速管の出口の開口面に対向して設けた突出中央部と
該突出中央部の外周に設けられた外周衝突面部とを有す
る衝突部材の突出中央部で一次粉砕し、一次粉砕され
た一次粉砕物を該外周衝突面で二次粉砕し、二次粉砕
された二次粉砕物を更に粉砕室内の側壁で三次粉砕を行
った後、粗粉分級手段に循環し、粗粉分級手段で分級さ
れた細粉は、少なくとも2段以上の微粉分級手段からな
る多段微粉分級手段に導入し、所定粒径以下の粒子群を
主成分とする中粉体を分級及び捕集する多段微粉分級工
程を有する静電荷像用現像用トナーを製造する方法であ
って、
The impingement type air current pulverizing means has an accelerating tube for conveying and accelerating the object to be pulverized by a high-pressure gas and a pulverizing chamber for finely pulverizing the object to be pulverized. The crushed material is discharged from the acceleration tube outlet into the grinding chamber,
A projecting central portion provided opposite to the opening surface of the outlet of the acceleration tube ;
Projecting central portion outer peripheral a primary ground in the projecting central portion of the collision member having a periphery collision surface provided in the, secondarily pulverized primary pulverized product is a primary ground in the outer peripheral colliding surface portion, the secondary After the crushed secondary pulverized material is further subjected to tertiary pulverization on the side wall in the pulverizing chamber, it is circulated to coarse powder classification means, and the fine powder classified by the coarse powder classification means is separated from at least two stages of fine powder classification means. A method for producing a toner for developing an electrostatic charge image having a multi-stage fine powder classifying step of classifying and collecting a medium powder mainly composed of particles having a particle size equal to or smaller than a predetermined particle size, which is introduced into a multi-stage fine powder classifying means. ,

【0020】多段微粉分級手段の分級点Aが下記条件 (1)式 1.0<A1……<An-1<5.0 (2)式 1.5<An<7.0 (3)式 A1<……<An-1<An (4)式 2≦n≦5 [式中の分級点Aは、部分分級効率曲線の50%分級径
P50(μm)であり、nは多段微粉分級手段を構成す
る微粉分級手段の段数を示し、多段微粉分級手段の1段
目の分級点はA1、2段目の分級点はA2、n段目の分級
点はAnと定義する。部分分級効率は、下記(ア)式に
より求めた。
The classification point A of the multistage fine powder classification means is as follows: (1) Equation 1.0 <A 1 ... <A n-1 <5.0 (2) Equation 1.5 <A n <7.0 ( 3) Formula A 1 <... <A n-1 <A n (4) Formula 2 ≦ n ≦ 5 [Classification point A in the formula is a 50% classification diameter D P50 (μm) of the partial classification efficiency curve. , N indicates the number of stages of the fine powder classification means constituting the multi-stage fine powder classification means, the first-stage classification point of the multi-stage fine powder classification means is A 1 , the second-stage classification point is A 2 , and the n-th classification point is An is defined. The partial classification efficiency was determined by the following equation (A).

【0021】[0021]

【式1】 i:i番目の粒径 Rc(Di):分級後の粗粉の累積粒度分布 R0(Di):原料の累積粒度分布 ηc:粗粉の収率 η(D):部分分級効率(Equation 1) D i : i-th particle size R c (D i ): cumulative particle size distribution of coarse powder after classification R 0 (D i ): cumulative particle size distribution of raw material η c : yield of coarse powder η (D): partial Classification efficiency

【0022】ここで云う累積粒度分布はコールターエレ
クトロニクス社(米国)製のコールターカウンターTA
−II型で100μmのアパーチャーを用いて測定した体
積累積粒度分布である。更にηは多段微粉分級手段を構
成する微粉分級手段の段数を示し、多段微粉分級手段の
1段目の分級点はA、2段の分級点はA、n段目は
と定義する。]を満足し、且つ多段微粉分級工程に
より捕集された中粉体は、重量平均粒径Dが3〜8μ
mであり、且つ個数分布の変動係数Bが下記条件 (5)式 20≦B≦40 [式中Bは、中粉体の個数分布における変動係数(S/
)×100を示す。但し、Sは中粉体中の個数分布
における標準偏差を示し、Dは中粉体中の個数平均径
(μm)を示す。]を満足することを特徴とする静電荷
像現像用トナーの製造方法に関する。
The cumulative particle size distribution referred to herein is a Coulter Counter TA manufactured by Coulter Electronics (USA).
-It is a volume cumulative particle size distribution measured using an aperture of 100 µm in Form II. Further η denotes the number of stages of the fine powder classifying means constituting a multistage fine powder classifying means, defined first stage classification point of a multi-stage fine powder classifying means classifying points A 1, 2 stage A 2, n-th stage and A n I do. And the weight average particle diameter D4 of the middle powder collected in the multi-stage fine powder classification step is 3 to 8 μm.
m, and the variation coefficient B of the number distribution is the following condition (5) Equation 20 ≦ B ≦ 40 [where B is the variation coefficient (S /
D 1 ) × 100. However, S is represents the standard deviation in the number distribution in Chukonatai, D 1 represents the number average diameter in Chukonatai ([mu] m). And a method for producing a toner for developing electrostatic images.

【0023】更に、本発明の好ましい実施態様では、衝
突部材の衝突面に突出している突出中央部の頂角をα
(°)とし、外周衝突面の加速管の中心軸の垂直面に対
する傾斜角をβ(°)とした場合、該α及び該βが下記
式 0<α<90、β>0、30≦α+2β≦90 を満足する静電荷像現像用トナーの製造方法に関する。
Further, in a preferred embodiment of the present invention, the apex angle of a central portion of the collision member projecting from the collision surface is α
(°), and when the inclination angle of the outer peripheral collision surface with respect to the vertical plane of the central axis of the acceleration tube is β (°), α and β are expressed by the following formulas: 0 <α <90, β> 0, 30 ≦ α + 2β The present invention relates to a method for producing an electrostatic image developing toner satisfying ≦ 90.

【0024】[0024]

【好ましい実施態様】以下に、本発明を添付図面を参照
しながら更に詳しく説明する。図1は、本発明の製造方
法の概要を示すフローチャートの一例である。本発明に
おいて、所定量の粉砕原料が粗粉分級手段に供給され、
粗粉分級手段において粗粉と細粉に分級される。粗粉は
粉砕手段に導入されて粉砕され、粉砕後に粗粉分級手段
に導入される。所定量の細粉は、少なくとも2段以上の
多段微粉分級手段に供給され、微粉体及び中粉体に分級
される。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is an example of a flowchart showing an outline of the manufacturing method of the present invention. In the present invention, a predetermined amount of the pulverized raw material is supplied to coarse powder classification means,
The coarse powder is classified into coarse powder and fine powder by a coarse powder classification means. The coarse powder is introduced into the pulverizing means and pulverized, and after the pulverization, is introduced into the coarse powder classification means. A predetermined amount of the fine powder is supplied to a multi-stage fine powder classification means of at least two or more stages and classified into fine powder and medium powder.

【0025】分級された中粉体は、そのままトナーとし
て使用されるか、又は疎水性コロイダルシリカの如き添
加剤と混合されて後にトナーとして使用される。分級さ
れた微粉体は、一般に粉砕原料を生成する為の溶融混練
工程に供給されて再利用されるか、又は廃棄される。本
発明の製造方法に於いては、粉砕及び分級条件をコント
ロールすることにより、重量平均粒径が3〜8μm、好
ましくは3〜7μmであり、個数分布の変動係数Aが2
0〜40である粒径の小さいトナーを効率良く生成する
ことが出来る。
The classified medium powder is used as a toner as it is, or is mixed with an additive such as hydrophobic colloidal silica and used later as a toner. The classified fine powder is generally supplied to a melt-kneading process for producing a pulverized raw material and is reused or discarded. In the production method of the present invention, by controlling the pulverization and classification conditions, the weight average particle diameter is 3 to 8 μm, preferably 3 to 7 μm, and the coefficient of variation A of the number distribution is 2 μm.
A toner having a small particle size of 0 to 40 can be efficiently produced.

【0026】図2に本発明の装置システムの一例を示
す。この装置システムにおいて、トナー粉原料となる粉
砕原料は、第1定量供給機102を介して粗粉分級機1
09に導入され、分級された1次細粉は捕集サイクロン
107を介して、第2定量供給機110に送り込まれ、
1次細粉供給インジェクションフィーダー116を介し
て第1段微粉分級機101内に導入される。粗粉分級機
109で分級された粗粉は、粉砕機108に送り込まれ
て粉砕された後、新たに投入される粉砕原料と共に再度
粗粉分級機109に導入される。
FIG. 2 shows an example of the apparatus system of the present invention. In this apparatus system, a pulverized raw material serving as a toner powder raw material is supplied to a coarse powder classifier 1 via a first constant feeder 102.
09, and the classified primary fine powder is sent to the second quantitative feeder 110 via the collection cyclone 107,
The primary fine powder is introduced into the first fine powder classifier 101 via the injection feeder 116. The coarse powder classified by the coarse powder classifier 109 is sent to the pulverizer 108 to be pulverized, and then re-introduced to the coarse powder classifier 109 together with the newly added raw material.

【0027】第1段微粉分級機101内に導入された細
粉は、1次微粉体と2次細粉に分級され1次微粉体は捕
集サイクロン106で捕集される。更に、2次細粉は2
次細粉供給インジェクションフィーダー160を介し
て、第2段微粉分級機161内に導入される。第2段微
粉分級機161に導入された2次細粉は、2次微粉体と
中粉体に分級され、各々捕集サイクロン104及び10
5で捕集される。
The fine powder introduced into the first-stage fine powder classifier 101 is classified into primary fine powder and secondary fine powder, and the primary fine powder is collected by the collecting cyclone 106. Furthermore, the secondary fine powder is 2
It is introduced into the second stage fine powder classifier 161 via the next fine powder supply injection feeder 160. The secondary fine powder introduced into the second-stage fine classifier 161 is classified into a secondary fine powder and a medium powder, and each of the collected cyclones 104 and 10 is collected.
Collected at 5.

【0028】図3は、本発明に用いた粉砕手段の概略的
断面図及び該粉砕機を使用した衝突式気流粉砕機及び粗
粉分級機を組み合わせた粉砕装置のフローチャートを示
した図である。粉砕されるべき粉体原料7は、加速管3
の上方の粉砕機壁11に設けられた粉体原料投入口1よ
り、加速管3に供給される。加速管3には圧縮空気の如
き圧縮気体が圧縮気体供給ノズル2から導入されてお
り、加速管3に供給された粉体原料7は瞬時に加速され
て高速度を有する様になる。高速度で加速管出口13か
ら粉砕室8に吐出された粉体原料7は、衝突部材4の衝
突面に衝突して粉砕される。図3の粉砕機において、衝
突部材の衝突面には錐体状の突出している突出中央部1
4と、該突出中央部の周囲に突出中央部で粉砕された被
粉砕物の一次粉砕物を更に衝突により粉砕する為の外周
衝突面15を有している。又、粉砕室8には外周衝突面
で二次粉砕された二次粉砕物を、衝突により三次粉砕す
る為の側壁6を有している。
FIG. 3 is a schematic sectional view of a pulverizing means used in the present invention and a flow chart of a pulverizing apparatus combining an impingement type air pulverizer and a coarse powder classifier using the pulverizer. The powder raw material 7 to be ground is
Is supplied to the accelerating tube 3 from the powder material inlet 1 provided in the pulverizer wall 11 above. A compressed gas such as compressed air is introduced into the acceleration tube 3 from the compressed gas supply nozzle 2, and the powder raw material 7 supplied to the acceleration tube 3 is instantaneously accelerated to have a high speed. The powdery raw material 7 discharged from the acceleration pipe outlet 13 into the pulverizing chamber 8 at a high speed collides with the collision surface of the collision member 4 and is pulverized. In the pulverizer shown in FIG. 3, the collision surface of the collision member has a protruding central portion 1 having a cone shape.
4 and an outer peripheral collision surface 15 around the projecting central portion for further crushing the primary crushed material crushed at the projecting central portion by collision. Further, the pulverizing chamber 8 has a side wall 6 for tertiary pulverizing the secondary pulverized material pulverized at the outer collision surface by collision.

【0029】図4は、図5の横断平面図を示し、更に詳
しく説明する。上記の様に、原料衝突面に中央部が突出
している錐体状の突起14を設けることにより、加速管
から噴出された粉砕原料と圧縮空気の固気混合流は、突
起14の表面で一次粉砕され、更に外周衝突面15で二
次粉砕された後、粉砕室側壁6で三次粉砕される。この
時、衝突部材の衝突面に突出している突出中央部の頂角
α(°)と、外周衝突面の加速管の中心軸の直面に対す
る傾斜角β(°)が 0<α<90、β>0 30≦α+2β≦90 を満足するときに、非常に効率良く粉砕が行われる。
FIG. 4 shows a cross-sectional plan view of FIG. 5 and will be described in further detail. As described above, by providing the conical projection 14 having a central portion protruding on the raw material collision surface, the solid-gas mixed flow of the pulverized raw material and the compressed air ejected from the accelerating tube causes the primary After being pulverized and further pulverized at the outer peripheral collision surface 15, it is pulverized tertiarily at the pulverizing chamber side wall 6. At this time, the vertex angle α (°) of the central portion of the collision member protruding from the collision surface and the inclination angle β (°) of the outer collision surface with respect to the face of the central axis of the acceleration tube are 0 <α <90, β. When> 0 30 ≦ α + 2β ≦ 90, grinding is performed very efficiently.

【0030】α≧90の時は、突起表面で一次粉砕され
た粉砕物の反射流が、加速管から噴出する固気混合流の
流れを乱すことになり好ましくない。β=0のとき、即
ち図14に示した様に、外周衝突面15が固気混合流に
対して直角の場合には、外周衝突面での反射流が固気混
合流に向かって流れる為、固気混合流の乱れを生じ好ま
しくない。又、β=0のときには、外周衝突面上での粉
体濃度が大きくなり、熱可塑性樹脂の粉体又は熱可塑性
樹脂を主成分とする粉体を原料とした場合、外周衝突面
上で融着物及び凝集物を生じ易い。斯かる融着物が生じ
た場合、装置の安定した運転が困難となる。
When α ≧ 90, the reflected flow of the pulverized material pulverized on the projection surface undesirably disturbs the flow of the solid-gas mixed flow ejected from the accelerating tube. When β = 0, that is, when the outer peripheral collision surface 15 is perpendicular to the solid-gas mixed flow as shown in FIG. 14, the reflected flow at the outer peripheral collision surface flows toward the solid-gas mixed flow. Turbulence of the solid-gas mixed flow is not preferred. When β = 0, the powder concentration on the outer peripheral collision surface increases, and when a powder of a thermoplastic resin or a powder containing a thermoplastic resin as a main component is used as a raw material, the powder concentration on the outer peripheral collision surface is increased. Kimonos and agglomerates are easily formed. When such a fusion occurs, stable operation of the apparatus becomes difficult.

【0031】又、αとβとがα+2β<30の時には、
突起表面での一次粉砕の衝撃力が弱められる為、粉砕効
率の低下を招く為好ましくない。又、αとβとがα+2
β>90の時には、外周衝突面での反射流が固気混合流
の下流側に流れる為、粉砕室側壁での三次粉砕の衝撃力
が弱くなり、粉砕効率の低下を引き起こす。以上述べた
様に、αとβとが0<α<90、β>0、30≦α+2
β≦90、更に好ましい範囲としては10<α<80、
5<β<40を満たすときに、図4に示す如く、一次、
二次及び三次の粉砕が効率良く行われ、粉砕効率を向上
させることが出来る。
When α and β satisfy α + 2β <30,
Since the impact force of the primary pulverization on the projection surface is weakened, the pulverization efficiency is lowered, which is not preferable. Α and β are α + 2
When β> 90, the reflected flow at the outer peripheral collision surface flows downstream of the solid-gas mixed flow, so that the impact force of the tertiary pulverization on the side wall of the pulverization chamber is weakened, and the pulverization efficiency is reduced. As described above, α and β are 0 <α <90, β> 0, 30 ≦ α + 2
β ≦ 90, more preferably 10 <α <80,
When 5 <β <40 is satisfied, as shown in FIG.
The secondary and tertiary pulverization are performed efficiently, and the pulverization efficiency can be improved.

【0032】従来の粉砕機に較べ、衝突回数を増やし、
且つより効果的に衝突させることが本発明の特徴であ
り、粉砕効率の向上が図れ、及び粉砕時における融着物
の発生を防止することが出来、安定した運転を行うこと
が出来る。本発明で使用する粉砕機の構成は図3に示し
た構成に限定されるものではない。図5は本発明の他の
好ましい実施例の粉砕機の概略断面図及び該粉砕機を使
用した粉砕工程及び分級機による分級工程を組み合わせ
た粉砕装置のフローチャート図であり、図6は図5のA
−A線における拡大断面図、図7は図5のB−B線にお
ける断面図である。
As compared with the conventional crusher, the number of collisions is increased,
The feature of the present invention is to make the collision more effective, and the pulverization efficiency can be improved, and the generation of fused material at the time of pulverization can be prevented, and stable operation can be performed. The configuration of the pulverizer used in the present invention is not limited to the configuration shown in FIG. FIG. 5 is a schematic sectional view of a pulverizer according to another preferred embodiment of the present invention, and a flowchart of a pulverizer that combines a pulverizing step using the pulverizer and a classification step using a classifier. FIG. A
FIG. 7 is an enlarged cross-sectional view taken along the line A, and FIG. 7 is a cross-sectional view taken along the line BB in FIG.

【0033】図5の粉砕機について説明すると、高圧気
体により被粉砕物を搬送加速する為の加速管21と、該
加速管出口に対向して設けた衝突面を有する衝突部材3
0を有し、該加速管21がラバルノズル状をなし、該加
速管21のスロート部上流に高圧気体噴出ノズル23を
配し、該高圧気体噴出ノズル23の外壁とスロート部2
2内壁間に被粉砕物供給口24を設け、更に該加速管2
1の出口に接続して設けた粉砕室の軸方向断面形状が円
形状を有している。
The pulverizer shown in FIG. 5 will be described. An accelerating tube 21 for conveying and accelerating an object to be pulverized by a high-pressure gas and a collision member 3 having a collision surface provided opposite to the outlet of the accelerating tube.
0, the acceleration pipe 21 has a Laval nozzle shape, and a high-pressure gas ejection nozzle 23 is disposed upstream of a throat portion of the acceleration pipe 21. The outer wall of the high-pressure gas ejection nozzle 23 and the throat portion 2
An object supply port 24 is provided between the inner walls of the
The grinding chamber provided in connection with the outlet of No. 1 has a circular cross section in the axial direction.

【0034】被粉砕物供給筒25より供給された被粉砕
物は、中心軸を鉛直方向に配設したラバルノズル形状を
なす加速管21の加速管スロート部22の内壁と、中心
が加速管21の中心軸と同軸上にある高圧気体噴出ノズ
ル23の外壁との間で形成された被粉砕物供給口24へ
到達する。一方、高圧気体は高圧気体供給口26より導
入され高圧気体チャンバー27を経て、一本、好ましく
は複数本の高圧気体導入管28を通り、高圧気体噴出ノ
ズル23より加速管出口29方向に向かって急激に膨張
しながら噴出する。
The crushed material supplied from the crushed material supply cylinder 25 is supplied to the inner wall of the acceleration tube throat portion 22 of the acceleration tube 21 having a Laval nozzle shape whose central axis is disposed in a vertical direction, and the center of the acceleration tube 21 is The material reaches a pulverized material supply port 24 formed between the central axis and the outer wall of the high-pressure gas ejection nozzle 23 coaxially. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 26, passes through the high-pressure gas chamber 27, passes through one, preferably a plurality of high-pressure gas introduction pipes 28, and moves from the high-pressure gas ejection nozzle 23 toward the acceleration pipe outlet 29. It gushes while expanding rapidly.

【0035】この時、加速管スロート部22の近傍で発
生するエゼクター効果により、被粉砕物はこれと共存し
ている気体に同伴されながら、被粉砕物供給口24より
加速管出口29方向に向けて吸引され、加速管スロート
部22において高圧気流と均一に混合されながら急加速
し、加速管出口29に対向配置された衝突部材30の衝
突面に粉塵濃度の偏りなく均一な固気混合気流の状態で
衝突する。衝突時に、発生する衝撃力は、十分分散した
個々の粒子(被粉砕物)に与えられる為、非常に効率の
良い粉砕が出来る。衝突部材30の衝突面にて粉砕され
た粉砕物は、更に粉砕室側壁32と衝突部材30表面の
間で衝突を繰り返し、より粉砕効率を上昇させ、衝突部
材30後方に配設された粉砕物排出口33より排出され
る。
At this time, due to the ejector effect generated near the accelerating tube throat portion 22, the object to be ground is directed from the object to be ground supply port 24 toward the acceleration tube outlet 29 while being entrained by the gas coexisting therewith. And accelerates rapidly while being uniformly mixed with the high-pressure airflow in the accelerating tube throat portion 22. The uniform solid-gas mixed airflow is uniformly distributed on the collision surface of the collision member 30 arranged opposite to the acceleration tube outlet 29 without unevenness of the dust concentration. Clash in state. The impact force generated at the time of collision is given to sufficiently dispersed individual particles (objects to be ground), so that very efficient grinding can be performed. The pulverized material pulverized on the collision surface of the collision member 30 further repeats collision between the pulverizing chamber side wall 32 and the surface of the collision member 30 to further increase the pulverization efficiency, and the pulverized material disposed behind the collision member 30 It is discharged from the discharge port 33.

【0036】衝突部材の衝突面には、突出している突出
中央部14と該突出中央部の周囲に突出中央部で粉砕さ
れた被粉砕物の一次粉砕物を更に衝突により粉砕する為
の外周衝突面15を有している。又、粉砕室34には外
周衝突面で二次粉砕された二次粉砕物を衝突により三次
粉砕する為の側壁32を有している。図3の粉砕機と同
様に、衝突面上の突起の表面で被粉砕物は一次粉砕さ
れ、更に外周衝突面15で二次粉砕された後、粉砕室側
壁32で三次粉砕される。
The collision surface of the collision member has a projecting central portion 14 and an outer peripheral collision for further crushing the primary pulverized material crushed at the projecting central portion around the projecting central portion by further collision. It has a surface 15. Further, the pulverizing chamber 34 has a side wall 32 for tertiary pulverization of the secondary pulverized material secondary pulverized on the outer peripheral collision surface by collision. Similar to the pulverizer of FIG. 3, the object to be pulverized is primarily pulverized on the surface of the projection on the collision surface, further pulverized at the outer collision surface 15, and then tertiary pulverized at the side wall 32 of the pulverizing chamber.

【0037】図8の粉砕機では、加速管の中心軸を鉛直
方向に配設し、加速管内壁と高圧気体噴出ノズル外壁間
より被粉砕物を供給せしめ、高圧気体の噴出方向と被粉
砕物の供給方向を同一方向とすることにより、被粉砕物
を粉塵濃度による偏りがない様に均一に噴出する高圧気
流中に分散させることが出来る。本発明に用いた他の装
置を図8及び図9に示す。尚、図9は図8のC−C線に
おける断面図である。
In the crusher shown in FIG. 8, the center axis of the accelerating tube is disposed vertically, and the material to be crushed is supplied from between the inner wall of the accelerating tube and the outer wall of the high-pressure gas ejection nozzle. By supplying the same direction of supply, the material to be ground can be dispersed in a high-pressure air stream that is uniformly jetted without deviation due to the dust concentration. Another apparatus used in the present invention is shown in FIGS. FIG. 9 is a sectional view taken along line CC in FIG.

【0038】図8の粉砕機について説明すると、高圧気
体により粉体原料を搬送加速する為の加速管21と、該
加速管21から噴出する粉体を衝突力により粉砕する為
の衝突面を具備する粉砕室34とを有し、且つ該衝突部
材30が加速管出口に対向して設けられている衝突式気
流粉砕機であって、ラバール形状を有する加速管21の
スロート部36と加速管出口37との間に加速管の全円
周方向の粉体原料供給口24が設けられており、且つ該
粉砕室断面形状が実質円形状を有し、且つ該衝突部材3
0後方に粉砕物排出口33を設けた衝突式気流粉砕機で
ある。
The pulverizer shown in FIG. 8 will be described. The pulverizer has an accelerating tube 21 for conveying and accelerating the powdery raw material by a high-pressure gas, and a collision surface for pulverizing the powder ejected from the accelerating tube 21 by a collision force. A thrust portion 36 of a Laval-shaped accelerating tube 21 and an accelerating tube outlet, wherein the impingement member 30 is provided to face the accelerating tube outlet. 37, a powder material supply port 24 in the entire circumferential direction of the accelerating tube is provided, and the crushing chamber has a substantially circular cross section, and the collision member 3
This is a collision type airflow pulverizer provided with a pulverized material discharge port 33 at the rear.

【0039】又、該加速管21の中心軸が鉛直方向を有
し、該衝突部材30の衝突面には、突出している突出中
央部14と該突出中央部の周囲に突出中央部で粉砕され
た被粉砕物の一次粉砕物を更に衝突により粉砕する為の
外周衝突面15を有している。又、粉砕室34には、外
周衝突面で二次粉砕された二次粉砕物を衝突により三次
粉砕する為の側壁32を有している。高圧気体の作用を
説明すると、高圧気体は先ず高圧気体チャンバー27の
左右にある高圧気体供給口27から入り、圧力の変動
等、動脈が均一にされた後、被粉砕物供給筒25の中心
部に設けられたラバルノズル35から加速管21に流入
される。
The center axis of the accelerating tube 21 has a vertical direction, and the collision surface of the collision member 30 has a protruding central portion 14 and pulverized around the protruding central portion at the protruding central portion. It has an outer peripheral collision surface 15 for further crushing the primary crushed material by collision. The pulverizing chamber 34 has a side wall 32 for tertiary pulverizing the secondary pulverized material secondary pulverized on the outer peripheral collision surface by collision. The operation of the high-pressure gas will be described. First, the high-pressure gas enters from the high-pressure gas supply ports 27 on the left and right sides of the high-pressure gas chamber 27, and after the arteries are made uniform, such as pressure fluctuations, the central portion of the supply tube 25 for the material to be pulverized. From the Laval nozzle 35 provided to the acceleration tube 21.

【0040】加速管21もラバルノズル35と同様に末
広がりのラバル状の形状を有し、加速管21に流入され
た高圧気体は膨脹しながら超音速領域まで加速される。
その過程で高圧気体が減圧され、加速管21を出たとこ
ろで気体の圧力は粉砕室34の圧力と略同一になる。一
方、円形状の粉砕室34では、出口部33で粉砕室34
内の気体を吸引すると粉砕室内部に吸引流が発生する。
そして、この吸引流の作用により衝突部材30の表面は
減圧状態となる。尚、粉砕室の形状はこれに限定される
ものではない。この衝突部材30の表面の減圧作用によ
り加速管21より出た噴流は更に加速され、衝突部材3
0の表面に衝突する。この時、衝突部材30の衝突面上
の突起14の表面で被粉砕物が一次粉砕され、更に外周
衝突面15で二次粉砕された後、粉砕室側壁32で三次
粉砕される。
The accelerating tube 21 also has a flared Laval shape like the Laval nozzle 35, and the high-pressure gas flowing into the accelerating tube 21 is expanded and accelerated to a supersonic region.
In the process, the high-pressure gas is decompressed, and when the gas exits the acceleration tube 21, the pressure of the gas becomes substantially the same as the pressure of the pulverizing chamber 34. On the other hand, in the circular crushing chamber 34, the crushing chamber 34
When the gas inside is sucked, a suction flow is generated inside the grinding chamber.
Then, the surface of the collision member 30 is reduced in pressure by the action of the suction flow. The shape of the crushing chamber is not limited to this. The jet flow from the accelerating tube 21 is further accelerated by the depressurizing action on the surface of the collision member 30, and the collision member 3
Hit the zero surface. At this time, the object to be pulverized is primarily pulverized on the surface of the protrusion 14 on the collision surface of the collision member 30, further pulverized at the outer collision surface 15, and then tertiarily pulverized at the pulverization chamber side wall 32.

【0041】次に供給される粉体原料が受ける作用につ
いて説明する。被粉砕物である粉体原料は被粉砕物供給
筒25より供給される。供給された粉体原料は供給筒下
部にある粉体原料供給口24から、加速管21へ吸引排
出される。原料の吸引排出の原理は前述した高圧気体の
加速管における膨脹減圧によるエゼクター効果による。
この時、ラバール形状を有する加速管のスロート部と加
速管出口との間に加速管の全円周方向に粉体原料供給口
24を設けている為、高速気流により十分分散及び加速
される。
Next, the operation of the supplied powdery raw material will be described. The powder raw material, which is the material to be crushed, is supplied from the material supply tube 25 to be crushed. The supplied powder raw material is sucked and discharged to the acceleration tube 21 from the powder raw material supply port 24 at the lower part of the supply cylinder. The principle of the suction and discharge of the raw material is based on the ejector effect caused by the expansion and decompression of the high-pressure gas in the acceleration tube.
At this time, since the powder material supply port 24 is provided in the entire circumferential direction of the acceleration tube between the throat portion of the acceleration tube having the Laval shape and the exit of the acceleration tube, the powder material is sufficiently dispersed and accelerated by the high-speed airflow.

【0042】尚、粉体原料供給口24は、全円周方向若
しくは複数個(n≧2)設けることが好ましい。粉体原
料供給口が1ケ所の場合には、加速管内の原料の分散状
態が偏ったものとなる為、粉砕効率の低下を招くので好
ましくない。この様にして加速管21内部に分散されて
吸引された粉体原料は、被粉砕物供給筒25の中央部に
設けられているラバルノズル35から放射される高速気
流により完全に分散される。次に、分散された原料は加
速管21内部を流れる高速気流に乗って加速され、超音
速固気混合流れとなる。この固気混合流れは加速管21
を出た後固気混合噴流となり、前述の噴流と同様の作用
を受け衝突部材30に衝突する。
It is preferable that the powder material supply port 24 is provided in the entire circumferential direction or in a plurality (n ≧ 2). If the powder material supply port is provided at one location, the dispersion state of the material in the accelerating tube becomes uneven, which is not preferable because it lowers the pulverization efficiency. The powdery raw material dispersed and sucked in the accelerating tube 21 in this manner is completely dispersed by the high-speed airflow radiated from the Laval nozzle 35 provided at the center of the crushed object supply cylinder 25. Next, the dispersed raw material is accelerated by a high-speed airflow flowing through the inside of the accelerating tube 21, and becomes a supersonic solid-gas mixed flow. This solid-gas mixed flow is supplied to the accelerating tube 21
After exiting, the jet becomes a solid-gas mixed jet, and collides with the collision member 30 under the same action as the jet described above.

【0043】図8の粉砕機では、加速管の中心軸を鉛直
方向に配設し、特定の原料供給方法を有しており、被粉
砕物である原料粉体がより強く分散されて粉砕効率を向
上させることが出来、優れた粉砕処理能力が得られる。
又、被粉砕物の強分散による粉塵濃度の均一化により、
衝突部材、加速管及び粉砕室における被粉砕物の局部的
な融着や摩耗も、従来の衝突式気流粉砕機に比べて大幅
に低減させることが出来、装置を安定稼動させることが
出来る。
In the pulverizer shown in FIG. 8, the central axis of the accelerating tube is disposed vertically, and a specific raw material supply method is employed. And an excellent pulverization processing ability can be obtained.
Also, by uniformizing the dust concentration by strong dispersion of the material to be ground,
Local fusion and abrasion of the material to be ground in the collision member, the acceleration tube, and the grinding chamber can be significantly reduced as compared with the conventional collision-type airflow pulverizer, and the apparatus can be stably operated.

【0044】図5及び図8の粉砕機は、図3の構成の粉
砕機に較べ加速管への原料投入方法が異なっており、加
速管中の粉体原料をより均一に分散させることが出来、
その為、より粉砕効率を向上させることが出来る。尚、
図5及び図8の粉砕機においても、αとβとが0<α<
90、β>0、30≦α+2β≦90を満たす時に、一
次、二次及び三次粉砕が効率良く行われ、粉砕効率を向
上させることが出来る。
The pulverizers of FIGS. 5 and 8 differ from the pulverizer of FIG. 3 in the method of charging the raw materials into the accelerating tube, so that the powder raw material in the accelerating tubes can be more uniformly dispersed. ,
Therefore, the pulverization efficiency can be further improved. still,
Also in the pulverizers of FIGS. 5 and 8, α and β are 0 <α <
When 90, β> 0, and 30 ≦ α + 2β ≦ 90, the primary, secondary, and tertiary pulverization can be performed efficiently, and the pulverization efficiency can be improved.

【0045】本発明の粉砕機において、加速管出口の内
径は衝突部材の直径bよりも小さい内径を有することが
好ましい。衝突部材の衝突面に突出している突出中央部
の先端と加速管の中心軸とは、実質的に一致させるのが
粉砕の均一化と云う点で好ましい。加速管出口と衝突部
材の衝突面端部との距離aは該衝突部材の直径の0.1
倍から2.5倍以下が好ましく、0.2倍から1.0倍
がより好ましい。0.1倍未満では衝突面近傍の粉塵濃
度が高くなり、2.5倍を越える場合には衝撃力が弱ま
り、粉砕効率が低下する傾向がある。
In the crusher of the present invention, it is preferable that the inner diameter of the outlet of the acceleration tube has an inner diameter smaller than the diameter b of the collision member. It is preferable that the tip of the central portion of the protrusion protruding from the collision surface of the collision member substantially coincides with the center axis of the accelerating tube from the viewpoint of uniformity of pulverization. The distance a between the accelerator tube outlet and the end of the collision surface of the collision member is 0.1 mm of the diameter of the collision member.
It is preferably from 2.5 to 2.5 times, more preferably from 0.2 to 1.0 times. If it is less than 0.1 times, the dust concentration in the vicinity of the collision surface becomes high, and if it exceeds 2.5 times, the impact force is weakened and the pulverization efficiency tends to decrease.

【0046】又、衝突部材の衝突面端部と粉砕室側壁
(内壁)との最短距離cは、該衝突部材の直径bの0.
1倍から2倍以下が好ましい。0.1倍未満では高圧気
体の通過時の圧力損失が大きく、粉砕効率を低下させる
のみならず、粉砕物の流動がスムーズに行かない傾向が
あり、一方、2倍を越える場合は粉砕室側壁での被粉砕
物の三次衝突の効果が減少し、粉砕効率の低下を招く。
又、粉砕室形状は特に限定されるものではなく、衝突部
材の衝突面端部と粉砕室側壁間の距離が上記数値を満足
していればよい。
The shortest distance c between the end of the collision surface of the collision member and the side wall (inner wall) of the pulverizing chamber is equal to 0.1 mm of the diameter b of the collision member.
It is preferably 1 to 2 times or less. If it is less than 0.1 times, the pressure loss during passage of the high-pressure gas is large, not only lowering the pulverization efficiency, but also the flow of the pulverized material tends not to be smooth. In this case, the effect of the tertiary collision of the object to be crushed is reduced, and the crushing efficiency is reduced.
The shape of the crushing chamber is not particularly limited as long as the distance between the end of the collision surface of the collision member and the side wall of the crushing chamber satisfies the above value.

【0047】本発明に用いられる粗粉分級手段として気
流分級機が用いられる。例えば、日本ニューマチック工
業製DS型分級機、ホソカワミクロン社製ミクロンセパ
レーター、ATP型分級機、日清エンジニアリング社製
ターボクラッシファイヤー等が挙げられる。この様な気
流分級機と前述の衝突式気流粉砕機とを組み合わせて使
用することにより、微粉の粉砕機への混入が良好に抑制
又は阻止されて、粉砕物の過粉砕が防止され、又、分級
された粗粉が粉砕機へ円滑に供給され、更に加速管へ均
一に分散され、粉砕室で良好に粉砕されるので、粉砕物
の収率及び単位重量当たりのエネルギー効率を高めるこ
とが出来る。
An air flow classifier is used as a coarse powder classification means used in the present invention. For example, a DS type classifier manufactured by Nippon Pneumatic Industries, a micron separator manufactured by Hosokawa Micron Corporation, an ATP type classifier, a turbo classifier manufactured by Nisshin Engineering Co., Ltd. can be used. By using such an airflow classifier in combination with the above-mentioned collision airflow pulverizer, the incorporation of fine powder into the pulverizer is suppressed or prevented well, and excessive pulverization of the pulverized material is prevented. The classified coarse powder is smoothly supplied to the crusher, further uniformly dispersed in the accelerating tube, and satisfactorily crushed in the crushing chamber, so that the yield of the crushed material and the energy efficiency per unit weight can be increased. .

【0048】又、本発明に用いられる多段微粉分級手段
を構成する微粉分級手段として好ましくは、気流式分級
機が用いられる。例えば、前述と同様に、日本ニューマ
チック工業製DS型分級機、細川ミクロン社製ミクロン
セパレーター、ATP型分級機、日清エンジニアリング
社製ターボクラッシファイヤー等が挙げられる。
Further, as the fine powder classifying means constituting the multi-stage fine powder classifying means used in the present invention, an air flow classifier is preferably used. For example, in the same manner as described above, a DS classifier manufactured by Nippon Pneumatic Industries, a micron separator manufactured by Hosokawa Micron Co., Ltd., an ATP classifier, a turbo classifier manufactured by Nisshin Engineering Co., Ltd., etc. may be used.

【0049】多段微粉分級手段を構成する微粉分級手段
の段数は、好ましくは2段以上5段以下であり、より好
ましくは2段以上4段以下、更により好ましくは2段以
上3段以下にすることが良い。多段微粉分級手段を構成
する微粉分級手段の段数が1段の場合、即ち1段分級の
場合は、極微粒子の除去回数が少ない為、画像品質の低
下、特にカブリ性の低下を招く。特にトナーの重量平均
粒径が8μm以下の領域で、その重量平均粒径が小さく
なればなる程この傾向が著しい。又、多段微粉分級工程
の微粉分級手段が5段より多い場合は、画像品質が、カ
ブリ性等としては良好であるが、加工費が増大し好まし
くない。
The number of stages of the fine powder classifying means constituting the multi-stage fine powder classifying means is preferably 2 to 5 stages, more preferably 2 to 4 stages, still more preferably 2 to 3 stages. Good. When the number of stages of the fine powder classifying means constituting the multi-stage fine powder classifying means is one, that is, in the case of one-stage classification, the number of removal of the ultrafine particles is small, so that the image quality is reduced, particularly, the fogging property is reduced. In particular, in a region where the weight average particle diameter of the toner is 8 μm or less, this tendency becomes more remarkable as the weight average particle diameter becomes smaller. Further, when the number of fine powder classification means in the multi-stage fine powder classification step is more than five, the image quality is good in terms of fogging and the like, but the processing cost is undesirably increased.

【0050】多段微粉分級手段を構成する微粉分級手段
である分級機の組み合わせは、同機種の組み合わせ又は
異機種の組み合わせのいずれでも構わない。鋭意検討し
た結果、多段微粉分級手段を構成する微粉分級手段の分
級点を(1)式から(4)式を満足する様に分級条件を
設定することにより極微粒子の除去効率が極めて高く、
又、分級収率を良好に向上させることを見出した。
The combination of the classifiers, which are the fine powder classifying means constituting the multi-stage fine powder classifying means, may be either the same type or the different type. As a result of intensive studies, the classification point of fine powder classifying means constituting a multistage fine powder classifying hand stage (1) to (4) very high removal efficiency of Microparticles by setting the classification conditions so as to satisfy the
It has also been found that the classification yield can be improved satisfactorily.

【0051】従って、極微粒子の除去を効率良く行い、
画像品質(特にカブリ性)を良好に向上させ、更に分級
収率を良好に向上させるには、多段微粉分級手段を構成
する微粉分級手段の分級点Aは、下記条件(1)式から
(4)式に設定することが良い。下記条件の(3)式が
n-1>Anの場合、極微粒子の除去効率は良好である
が、分級収率が低下するので好ましくない。 (1)式 1.0<A1‥‥An-1<5.0 (2)式 1.5<An<7.0 (3)式 A1<‥‥<An-1<An (4)式 2≦n≦5 [式中の分級点Aは、部分分級効率曲線の50%分級径
P50(μm)と呼ばれているものであり、nは多段
微粉分級手段の段数を構成する微粉分級手段の段数を示
し、多段微粉分級手段の1段目の分級点はA1、2段目
の分級点はA2、n段目の分級点はAnと定義する。。] この分級点は、粉砕原料の粒子径、所望の中粉体の粒子
径及び粉体の真比重等により最適条件を採用すればよ
い。
Therefore, ultrafine particles can be efficiently removed,
In order to improve the image quality (especially the fogging property) well and further improve the classification yield, the classification point A of the fine powder classification means constituting the multi-stage fine powder classification means is determined by the following condition (1), It is good to set to the formula). When the formula (3) under the following condition satisfies An -1 > An, the efficiency of removing ultrafine particles is good, but the classification yield is undesirably low. (1) Equation 1.0 <A 1 ‥‥ A n-1 <5.0 (2) Equation 1.5 <A n <7.0 (3) Equation A 1 <‥‥ <A n-1 <A n (4) Formula 2 ≦ n ≦ 5 [Classification point A in the formula is referred to as a 50% classification diameter D P50 (μm) of the partial classification efficiency curve, and n is the number of stages of the multistage fine powder classification means. It indicates the number of stages of the fine powder classifying means constituting the first stage of classification point of a multi-stage fine powder classifying means a 1, 2-stage classification point is a 2, n-th classification point is defined as a n. . As the classification point, an optimal condition may be adopted depending on the particle size of the pulverized raw material, the desired medium powder particle size, the true specific gravity of the powder, and the like.

【0052】本発明において、図1のフローチャートに
示す粉砕工程はこれに限定されるものではなく、例え
ば、粉砕手段が1つに対して粗粉分級手段が2つ或は粉
砕手段及び粗粉分級手段が各々2つ以上であってもよ
い。どの様な組み合わせで粉砕工程を構成するかは、所
望の粒径、トナー粒子の構成材料等により適宜設定すれ
ばよい。
In the present invention, the pulverizing process shown in the flow chart of FIG. 1 is not limited to this. For example, two pulverizing means and two pulverizing means or one There may be more than one means each. What kind of combination constitutes the pulverizing step may be appropriately set according to a desired particle diameter, a constituent material of toner particles, and the like.

【0053】粗粉分級手段に導入する粉砕原料は、2m
m以下、好ましくは1mm以下にすることが良い。粉砕
原料を中粉砕工程に導入し、10〜100μm程度に粉
砕したものを本発明における原料としてもよい。従来の
方法では、特にトナーの重量平均粒径が8μm以下で、
その重量平均粒径が小さくなればなる程、粉砕手段にお
けるエネルギー効率の低下及び微粉分級手段においての
分級収率の低下を招き、更に又トナーの重量平均粒径が
小さくなればなる程、トナー粒子の凝集度が増加し、し
かも極微粒子の生成が多くなる為、粉砕手段において生
成された極微粒子が微粉分級手段で除去しきれずに画像
品質の低下を招いていた。
The raw material to be introduced into the coarse powder classification means is 2 m
m or less, preferably 1 mm or less. A material obtained by introducing the pulverized raw material into the medium pulverization step and pulverizing to about 10 to 100 μm may be used as the raw material in the present invention. In the conventional method, especially when the weight average particle diameter of the toner is 8 μm or less,
The smaller the weight average particle diameter, the lower the energy efficiency in the pulverizing means and the lower the classification yield in the fine powder classification means, and the smaller the weight average particle diameter of the toner, the more the toner particles Since the degree of agglomeration of the particles increases and the generation of ultrafine particles increases, the ultrafine particles generated by the pulverizing means cannot be completely removed by the fine powder classifying means, resulting in deterioration of image quality.

【0054】従来の方法において、微粉分級手段の収率
を向上させる方法として、多段微粉分級手段を用いるこ
とを試みられているが、主に分級手段の容量アップに伴
う分級精度の低下や分級収率の低下を軽減することに趣
きが置かれており、この方法ではある程度の分級収率の
向上が得られるものの、又、極微粒子の除去効率に関し
ても微粉分級手段が1段のものに比べて向上するが、い
まだ十分ではなく、画像品質として満足いくものではな
かった。
In the conventional method, attempts have been made to use a multi-stage fine powder classifying means as a method for improving the yield of the fine powder classifying means. The purpose of this method is to reduce the decrease in the rate of separation. Although this method can improve the classification yield to a certain extent, the efficiency of removing ultrafine particles is also smaller than that of a single-stage fine-particle classification means. Although improved, it was still not enough and the image quality was not satisfactory.

【0055】本発明の方法は、高効率粉砕手段により、
高いエネルギー効率でトナー原料の粉砕が可能となり、
加工費の大幅な低下が図れる。更に微粉分級手段を多段
に設け、多段微粉分級手段を構成し、分級点を段階的に
制御することにより、微粉分級手段(多段微粉分級手
段)での分級収率の良好な向上が得られ、しかも極微粒
子の除去効率を極めて高くすることが出来る。
The method of the present invention uses a highly efficient grinding means
It is possible to pulverize toner raw materials with high energy efficiency,
The processing cost can be significantly reduced. Further, by providing fine powder classification means in multiple stages, constituting a multi-stage fine powder classification means, and controlling the classification point stepwise, a good improvement in the classification yield in the fine powder classification means (multi-stage fine powder classification means) is obtained, Moreover, the removal efficiency of the ultrafine particles can be extremely increased.

【0056】この高効率粉砕手段と分級点を制御した多
段微粉分級手段の相乗効果により、加工費が低く、しか
も極微粒子が極めて少ない、画像品質が良好に向上する
トナーを製造することが出来る。従って、本発明の製造
方法は、静電荷像を現像する為に使用されるトナー粒子
の生成に好ましく使用することが出来る。
By the synergistic effect of the high-efficiency pulverizing means and the multi-stage fine-powder classifying means having a controlled classification point, it is possible to produce a toner which has a low processing cost, has very few ultrafine particles, and has an excellent image quality. Therefore, the production method of the present invention can be preferably used for producing toner particles used for developing an electrostatic image.

【0057】静電荷像現像用トナーを作製するには、着
色剤又は磁性粉及びビニル系、非ビニル系の熱可塑性樹
脂、必要に応じて荷電制御剤、その他の添加剤等をヘン
シェルミキサー又はボールミルの如き混合機により充分
混合してから、加熱ロール、ニーダー、エクストルーダ
ーの如き熱混練機を用いて熔融、捏和及び練肉して樹脂
類を互いに相溶せしめた中に顔料又は染料を分散又は溶
融せしめ、冷却固化後粉砕及び分級を行ってトナーを得
ることが出来る。トナー製造工程の内、粉砕工程及び分
級工程で本発明の製造方法が使用される。
To prepare a toner for developing an electrostatic image, a coloring agent or a magnetic powder, a vinyl-based or non-vinyl-based thermoplastic resin, a charge control agent, and other additives as necessary are added to a Henschel mixer or a ball mill. After thoroughly mixing with a mixer such as, a hot roll, kneader, extruder is melted, kneaded and kneaded using a hot kneader to disperse the pigments or dyes while the resins are mutually compatible. Alternatively, the toner can be obtained by melting, cooling, solidifying, and then pulverizing and classifying. In the toner production process, the production method of the present invention is used in the pulverization process and the classification process.

【0058】次にトナーの構成材料について説明する。
トナーに使用される結着樹脂としては、オイル塗布する
装置を有する加熱加圧定着装置又は加熱加圧ローラ定着
装置を使用する場合には、下記トナー用結着樹脂の使用
が可能である。
Next, the constituent materials of the toner will be described.
When a heat and pressure fixing device or a heat and pressure roller fixing device having a device for applying oil is used as the binder resin used for the toner, the following binder resins for toner can be used.

【0059】例えば、ポリスチレン、ポリ−p−クロル
スチレン、ポリビニルトルエン等のスチレン及びその置
換体の単重合体;スチレン−p−クロルスチレン共重合
体、スチレン−ビニルトルエン共重合体、スチレン−ビ
ニルナフタリン共重合体、スチレン−アクリル酸エステ
ル共重合体、スチレン−メタクリル酸エステル共重合
体、スチレン−α−クロルメタクリル酸メチル共重合
体、スチレン−アクリロニトリル共重合体、スチレン−
ビニルメチルエーテル共重合体、スチレン−ビニルエチ
ルエーテル共重合体、スチレン−ビニルメチルケトン共
重合体、スチレン−ブタジェン共重合体、スチレン−イ
ソプレン共重合体、スチレン−アクリロニトリル−イン
デン共重合体等のスチレン系共重合体;ポリ塩化ビニ
ル、フェノール樹脂、天然樹脂変性フェノール樹脂、天
然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル
樹脂、ポリ酢酸ビニール、シリコーン樹脂、ポリエステ
ル樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹
脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラー
ル、テルペン樹脂、クマロンインデン樹脂、石油系樹脂
等を使用することが出来る。
For example, homopolymers of styrene such as polystyrene, poly-p-chlorostyrene, and polyvinyltoluene and substituted products thereof; styrene-p-chlorostyrene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene Copolymer, styrene-acrylate copolymer, styrene-methacrylate copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-
Styrene such as vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer -Based copolymer; polyvinyl chloride, phenolic resin, natural resin modified phenolic resin, natural resin modified maleic acid resin, acrylic resin, methacrylic resin, polyvinyl acetate, silicone resin, polyester resin, polyurethane resin, polyamide resin, furan resin, Epoxy resins, xylene resins, polyvinyl butyral, terpene resins, coumarone indene resins, petroleum resins and the like can be used.

【0060】オイルを殆ど塗布しないか又は全く塗布し
ない加熱加圧定着方式又は加熱加圧ローラ定着方式にお
いては、トナー像支持体部材上のトナー像の一部がロー
ラに転移するいわゆるオフセット現像、及びトナー像支
持部材に対するトナーの密着性が重要な問題である。よ
り少ない熱エネルギーで定着するトナーは、通常保存中
若しくは現像器中でブロッキング若しくはケーキングし
易い性質があるので、同時にこれら問題も考慮しなかれ
ばならない。これらの現像には、トナー中の結着樹脂の
物性が最も大きく関与しているが、本発明者らの研究に
よれば、トナー中の磁性体の含有量を減らすと、定着時
にトナー像支持体に対するトナーの密着性は良くなる
が、オフセットが起こり易くなり、又、ブロッキング若
しくはケーキングも生じ易くなる。それゆえ、本発明に
おいてオイルを殆ど塗布しない加熱加圧ローラ定着方式
を用いる時には、結着樹脂の選択がより重要である。好
ましい結着物質としては、架橋されたスチレン系共重合
体若しくは架橋されたポリエステルがある。
In a heat and pressure fixing method or a heat and pressure roller fixing method in which little or no oil is applied, so-called offset development in which a part of a toner image on a toner image support member is transferred to a roller, and An important issue is the adhesion of the toner to the toner image supporting member. Toners that fix with less heat energy tend to block or cake during storage or in a developing unit, and these problems must also be considered at the same time. In these developments, the physical properties of the binder resin in the toner are the most important. However, according to the study of the present inventors, if the content of the magnetic substance in the toner is reduced, the toner image is not supported during fixing. Although the adhesion of the toner to the body is improved, offset tends to occur, and blocking or caking tends to occur. Therefore, in the present invention, when using the heating / pressing roller fixing method in which almost no oil is applied, the selection of the binder resin is more important. Preferred binders include cross-linked styrenic copolymers or cross-linked polyesters.

【0061】スチレン系共重合体のスチレンモノマーに
対するコモノマーとしては、例えば、アクリル酸、アク
リル酸メチル、アクリル酸エチル、アクリル酸ブチル、
アクリル酸ドデシル、アクリル酸オクチル、アクリル酸
−2−エチルヘキシル、アクリル酸フェニル、メタクリ
ル酸、メタクリル酸メチル、メタクリル酸エチル、メタ
クリル酸ブチル、メタクリル酸オクチル、アクリロニト
リル、メタクリニトリル、アクリルアミド等の様な二重
結合を有するモノカルボン酸若しくはその置換体;例え
ば、マレイン酸、マレイン酸ブチル、マレイン酸メチ
ル、マレイン酸ジメチル等の様な二重結合を有するジカ
ルボン酸及びその置換体;例えば、塩化ビニル、酢酸ビ
ニル、安息香酸ビニル等の様なビニルエステル類;例え
ば、エチレン、プロピレン、ブチレン等の様なエチレン
系オレフィン類;例えば、ビニルメチルケトン、ビニル
ヘキシルケトン等の様なビニルケトン類;例えば、ビニ
ルメチルエーテル、ビニルエチルエーテル、ビニルイソ
ブチルエーテル等の様なビニルエーテル類等のビニル単
量体が単独若しくは2つ以上用いられる。
Examples of comonomers for the styrene monomer of the styrene copolymer include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and the like.
Duplex such as dodecyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, etc. A monocarboxylic acid having a bond or a substituted product thereof; for example, a dicarboxylic acid having a double bond such as maleic acid, butyl maleate, methyl maleate, dimethyl maleate and the like; and a substituted product thereof; for example, vinyl chloride, vinyl acetate Vinyl esters such as vinyl benzoate; ethylene olefins such as ethylene, propylene and butylene; vinyl ketones such as vinyl methyl ketone and vinyl hexyl ketone; vinyl methyl ether; Sulfonyl ethyl ether, vinyl monomers such as such vinyl ethers and vinyl isobutyl ether is used alone or two or more.

【0062】ここで架橋剤としては主として2個以上の
重合可能な二重結合を有する化合物が用いられ、例え
ば、ジビニルベンゼン、ジビニルナフタレン等の様な芳
香族ジビニル化合物;例えば、エチレングリコールジア
クリレート、エチレングリコールジメタクリレート、
1,3−ブタンジオールジメタクリレート等の様な二重
結合を2個有するカルボン酸エステル;ジビニルアニリ
ン、ジビニルエーテル、ジビニルスルフィド、ジビニル
スルホン等のジビニル化合物;及び3個以上のビニル基
を有する化合物等が単独若しくは混合物として用いられ
る。
As the crosslinking agent, a compound having two or more polymerizable double bonds is mainly used, for example, an aromatic divinyl compound such as divinylbenzene, divinylnaphthalene or the like; for example, ethylene glycol diacrylate, Ethylene glycol dimethacrylate,
Carboxylic esters having two double bonds such as 1,3-butanediol dimethacrylate; divinyl compounds such as divinylaniline, divinylether, divinylsulfide, divinylsulfone; and compounds having three or more vinyl groups Are used alone or as a mixture.

【0063】又、加圧定着方式又は軽加熱加圧定着方式
を用いる場合には、圧力定着トナー用結着樹脂の使用が
可能であり、例えば、ポリエチレン、ポリプロピレン、
ポリメチレン、ポリウレタンエラストマー、エチレン−
エチルアクリレート共重合体、エチレン−酢酸ビニル共
重合体、アイオノマー樹脂、スチレン−ブタジェン共重
合体、スチレン−イソプレン共重合体、線状飽和ポリエ
ステル、パラフィン等がある。又、トナーには荷電制御
剤をトナー粒子に配合(内添)して用いることが好まし
い。
When the pressure fixing method or the light heat pressure fixing method is used, a binder resin for a pressure fixing toner can be used.
Polymethylene, polyurethane elastomer, ethylene-
Ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, ionomer resin, styrene-butadiene copolymer, styrene-isoprene copolymer, linear saturated polyester, paraffin and the like. Further, it is preferable that a charge control agent is mixed (internally added) to the toner particles and used in the toner.

【0064】荷電制御剤によって、現像システムに応じ
た最適の荷電量コントロールが可能となり、特に本発明
では粒度分布と荷電とのバランスを更に安定したものと
することが可能であり、荷電制御剤を用いることで先に
述べたところの粒径範囲毎による高画質化の為の機能分
離及び相互補完性をより明確にすることが出来る。正荷
電制御剤としては、ニグロシン及び脂肪酸金属塩等によ
る変成物;トリブチルベンジルアンモニウム−1−ヒド
ロキシ−4−ナフトスルフォン酸塩、テトラブチルアン
モニウムテトラフルオロボレート等の四級アンモニウム
塩等を単独で或は2種類以上組み合わせて用いることが
出来る。これらの中でも、ニグロシン系化合物及び四級
アンモニウム塩の如き荷電制御剤が特に好ましく用いら
れる。
The charge control agent makes it possible to control the amount of charge optimally according to the development system. In particular, in the present invention, it is possible to further stabilize the balance between the particle size distribution and the charge. By using the above, it is possible to further clarify the function separation and the complementarity for higher image quality for each particle size range described above. As the positive charge control agent, denatured products such as nigrosine and fatty acid metal salts; quaternary ammonium salts such as tributylbenzylammonium-1-hydroxy-4-naphthosulfonate and tetrabutylammonium tetrafluoroborate alone or Two or more types can be used in combination. Of these, charge control agents such as nigrosine compounds and quaternary ammonium salts are particularly preferably used.

【0065】又、一般式Also, the general formula

【化1】 :H、CH、R:置換又は未置換のアルキル基(好ましく
は、C〜C)で表されるモノマーの単重合体又は前
述した様なスチレン、アクリル酸エステル、メタクリル
酸エステル等の重合性モノマーとの共重合体を正荷電性
制御剤として用いることが出来、この場合これらの荷電
制御剤は、結着樹脂(の全部又は一部)としての作用を
も有する。
Embedded image R 1 : H, CH 3 R 2 , R 3 : a monopolymer of a monomer represented by a substituted or unsubstituted alkyl group (preferably C 1 to C 4 ) or styrene or acrylate as described above; Copolymers with polymerizable monomers such as methacrylates can be used as positive charge control agents, in which case these charge control agents also act as (all or part of) the binder resin .

【0066】負荷電性制御剤としては、例えば、有機金
属錯体、キレート化合物が有効で、その例としてはアル
ミニウムアセチルアセトナート、鉄(II)アセチルアセ
トナート、3,5−ジターシャリーブチルサリチル酸ク
ロム又は亜鉛等があり、特にアセチルアセトン金属錯
体、サリチル酸系金属錯体又は塩が好ましく、特にサリ
チル酸系金属錯体又はサリチル酸系金属塩が好ましい。
As the negative charge control agent, for example, organometallic complexes and chelate compounds are effective. Examples thereof are aluminum acetylacetonate, iron (II) acetylacetonate, chromium 3,5-ditert-butylsalicylate and Zinc and the like are preferable, and an acetylacetone metal complex, a salicylic acid-based metal complex or a salt is particularly preferable, and a salicylic acid-based metal complex or a salicylic acid-based metal salt is particularly preferable.

【0067】上述した荷電制御剤(結着樹脂としての作
用を有しないもの)は、微粒子状として用いることが好
ましい。この場合、この荷電制御剤の個数平均粒径は、
具体的には4μm以下(更には3μm以下)が好まし
い。トナーに内添する際、この様な荷電制御剤は結着樹
脂100重量部に対して0.1〜20重量部(更には
0.2〜10重量部)用いることが好ましい。
The above-mentioned charge control agent (having no action as a binder resin) is preferably used in the form of fine particles. In this case, the number average particle size of the charge control agent is
Specifically, it is preferably 4 μm or less (more preferably 3 μm or less). When internally added to the toner, such a charge control agent is preferably used in an amount of 0.1 to 20 parts by weight (more preferably 0.2 to 10 parts by weight) based on 100 parts by weight of the binder resin.

【0068】トナーが磁性の場合は、磁性トナー中に含
まれる磁性材料としては、マグネタイト、γ−酸化鉄、
フェライト、鉄過剰型フェライト等の酸化鉄;鉄、コバ
ルト、ニッケルの様な金属或はこれらの金属とアルミニ
ウム、コバルト、銅、鉛、マグネシウム、スズ、亜鉛、
アンチモン、ベリリウム、ビスマス、カドミウム、カル
シウム、マンガン、セレン、チタン、タングステン、バ
ナジウムの様な金属との合金及びその混合物等が挙げら
れる。
When the toner is magnetic, the magnetic materials contained in the magnetic toner include magnetite, γ-iron oxide,
Ferrite, iron oxides such as iron-rich ferrite; metals such as iron, cobalt, nickel or these metals and aluminum, cobalt, copper, lead, magnesium, tin, zinc,
Examples include alloys with metals such as antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, and vanadium, and mixtures thereof.

【0069】これらの強磁性体は平均粒径が0.1〜1
μm、好ましくは0.1〜0.5μm程度のものが望ま
しく、磁性トナー中に含有させる量としては樹脂成分1
00重量部に対し、60〜110重量部、好ましくは樹
脂成分100重量部に対し65〜100重量部である。
トナーに使用される着色剤としては従来より知られてい
る染料及び/又は顔料が使用可能である。例えば、カー
ボンブラック、フタロシアニンブルー、ピーコックブル
ー、パーマネントレッド、レーキレッド、ローダミンレ
ーキ、ハンザイエロー、パーマネントイエロー、ベンジ
ジンイエロー等を使用することが出来る。その含有量と
して、結着樹脂100部に対して0.1〜20重量部、
好ましくは0.5〜20重量部、更にトナー像を定着し
たOHPフイルムの透過性を良くする為には12重量部
以下が好ましく、更に好ましくは0.5〜9重量部が良
い。
These ferromagnetic materials have an average particle size of 0.1 to 1
μm, and preferably about 0.1 to 0.5 μm.
The amount is 60 to 110 parts by weight, preferably 65 to 100 parts by weight, per 100 parts by weight of the resin component.
As the colorant used in the toner, conventionally known dyes and / or pigments can be used. For example, carbon black, phthalocyanine blue, peacock blue, permanent red, lake red, rhodamine lake, Hanza yellow, permanent yellow, benzidine yellow and the like can be used. As its content, 0.1 to 20 parts by weight based on 100 parts of the binder resin,
It is preferably 0.5 to 20 parts by weight, more preferably 12 parts by weight or less, more preferably 0.5 to 9 parts by weight, in order to improve the transparency of the OHP film on which the toner image is fixed.

【0070】[0070]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。実施例1 ・スチレン−ブチルアクリレート−ジビニルベンゼン共重合体 100重量部 (モノマー重合重量比80.0/19.0/1.0、重量平均分子量Mw35 万) ・磁性酸化鉄(平均粒径0.18μm) 100重量部 ・ニグロシン 2重量部 ・低分子量エチレン−プロピレン共重合体 4重量部
Next, the present invention will be described more specifically with reference to examples and comparative examples. Example 1 100 parts by weight of styrene-butyl acrylate-divinylbenzene copolymer (monomer polymerization weight ratio: 80.0 / 19.0 / 1.0, weight average molecular weight Mw: 350,000) Magnetic iron oxide (average particle size: 0,1) 18 μm) 100 parts by weight ・ Nigrosine 2 parts by weight ・ Low molecular weight ethylene-propylene copolymer 4 parts by weight

【0071】上記の処方の材料をヘンシェルミキサー
(FM−75型、三井三池化工機製)で良く混合した
後、温度150℃に設定した2軸混練機(PCM−30
型、池貝鉄工製)にて混練した。得られた混練物を冷却
し、ハンマーミルにて1mm以下に粗粉砕し、トナー製
造用の粗砕物を得た。得られたトナー粉砕原料を図2に
示す装置システムで粉砕及び分級を行った。衝突式気流
粉砕機108は図3に示す構成の装置を用い、該衝突式
気流粉砕機は、衝突面の形状が頂角50°(α=50
°)の円錐状の突起を有し、外周衝突面の加速管の中心
軸の鉛直面に対する傾斜角が10°(β−10°)であ
った(α+2β=70°)。
After the above-mentioned ingredients were mixed well with a Henschel mixer (Model FM-75, manufactured by Mitsui Miike Kakoki), a twin-screw kneader (PCM-30) set at a temperature of 150 ° C.
(Made by Ikegai Iron Works). The obtained kneaded material was cooled and coarsely pulverized with a hammer mill to 1 mm or less to obtain a coarsely crushed material for toner production. The obtained toner pulverized raw material was pulverized and classified by the apparatus system shown in FIG. The collision-type air flow crusher 108 uses an apparatus having a configuration shown in FIG. 3, and the collision-type air flow crusher has a collision surface having an apex angle of 50 ° (α = 50).
°), and the inclination angle of the outer peripheral collision surface with respect to the vertical plane of the center axis of the accelerating tube was 10 ° (β-10 °) (α + 2β = 70 °).

【0072】又、衝突部材の直径は90mm(b=90
mm)であり衝突面端部と加速管出口との距離は50m
m(a=50mm)であり、粉砕室壁との最短距離は2
0mm(c=20mm)であり、粉砕室形状は箱型で行
った。定量供給機にて粉砕原料を30Kg/hr.の割
合で強制渦流式の分級機に供給し、分級された粗粉を該
衝突式気流粉砕機に導入し、圧力6.0Kg/cm
(G)、6.0Nm/minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行っ
た。
The diameter of the collision member is 90 mm (b = 90
mm) and the distance between the end of the collision surface and the exit of the accelerator is 50 m
m (a = 50 mm), and the shortest distance from the crushing chamber wall is 2
0 mm (c = 20 mm), and the grinding chamber was box-shaped. 30 kg / hr. , And the classified coarse powder was introduced into the impingement type air current pulverizer at a pressure of 6.0 kg / cm.
2 (G), using compressed air of 6.0 Nm 3 / min,
After the pulverization, the mixture was circulated again to the classifier to perform closed circuit pulverization.

【0073】その結果、分級された細粉として重量平均
径6.7μmのトナー用微粉砕品を得た。尚、この粉砕
品は融着物の発生はなく、安定した粉砕運転をすること
が出来、16μm以上の粗粒が実質含まれていないシャ
ープな粒度分布を有していた。トナーの粒度分布は種々
の方法によって測定することが出来るが、本実施例では
コールターカウンターを用いて行った。
As a result, a finely pulverized toner product having a weight average diameter of 6.7 μm was obtained as classified fine powder. In addition, this pulverized product did not generate a fused product, could perform a stable pulverizing operation, and had a sharp particle size distribution substantially free of coarse particles of 16 μm or more. The particle size distribution of the toner can be measured by various methods. In the present embodiment, the measurement was performed using a Coulter counter.

【0074】即ち、測定装置としてはコールターカウン
ターTA−II型(コールター社製)を用い、個数分布及
び体積分布を出力するインターフェイス(日科機製)及
びCX−1パーソナルコンピュータ(キヤノン製)を接
続し、電解液は1級塩化ナトリウムを用いて、1%Na
Cl水溶液を調製する。測定法としては前記電解水溶液
100〜150ml中に分散剤として界面活性剤、好ま
しくはアルキルベンゼンスルホン酸塩を0.1〜5ml
加え、更に測定試料を2〜20mg加える。試料を懸濁
した電解液は超音波分散器で約1〜3分間分散処理を行
い、前記コールターカウンターTA−II型により、アパ
チャーとして100μmアパチャーを用い、個数を基準
として2〜40μmの粒子の粒度分布を測定して、それ
から本発明に係るところの値を求めた。
That is, a Coulter counter TA-II type (manufactured by Coulter) was used as a measuring device, and an interface (manufactured by Nikkaki) for outputting the number distribution and volume distribution and a CX-1 personal computer (manufactured by Canon) were connected. The electrolyte is 1% NaCl using primary sodium chloride.
Prepare a Cl aqueous solution. As a measuring method, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is used as a dispersant in 100 to 150 ml of the electrolytic aqueous solution.
In addition, 2 to 20 mg of the measurement sample is further added. The electrolytic solution in which the sample was suspended was subjected to a dispersion treatment for about 1 to 3 minutes by an ultrasonic disperser, and a particle size of 2 to 40 μm based on the number was measured using the Coulter Counter TA-II, using a 100 μm aperture as an aperture. The distribution was measured and the values according to the invention were determined therefrom.

【0075】この得られた1次細粉を第2定量供給機1
10を介して、1次細粉供給インジェクションフィーダ
ー116を介して33.4Kg/hr.の割合で分級点
2.9μmに設定した多段微粉分級手段を構成する第1
段微粉分級機101に導入した。導入された細粉は分級
点2.9μmで1次微粉体と2次細粉に分級された。
The obtained primary fine powder is supplied to the second
10 via the primary fine powder supply injection feeder 116 to 33.4 kg / hr. Of the multi-stage fine powder classification means set at a classification point of 2.9 μm with the ratio of
It was introduced into a stage fine powder classifier 101. The introduced fine powder was classified into a primary fine powder and a secondary fine powder at a classification point of 2.9 μm.

【0076】分級された1次微粉体は捕集サイクロン1
06で捕集し、2次細粉は2次細粉供給インジェクショ
ンフィーダー160を介して、分級点4.1μmに設定
した多段微粉分級手段を構成する第2段微粉分級機16
1に導入した。導入された2次粉砕は、分級点4.1μ
mで2次粉体と中粉体に分級された。分級された2次粉
体及び中粉体は夫々の捕集サイクロン104、106で
捕集した。分級点は、部分分級効率曲線の50%分級径
p50(μm)である。第1段微粉分級装置及び第2
段微粉分級装置としてティープレックス超微粉分級機2
00ATP(ホソカワミクロン社製)を使用した。
The classified primary fine powder is collected by cyclone 1
The second fine powder is collected at 06 and the second fine powder classifier 16 constituting the multi-stage fine powder classification means set to a classification point of 4.1 μm via the secondary fine powder supply injection feeder 160.
1 was introduced. The introduced secondary grinding has a classification point of 4.1μ.
m, the powder was classified into a secondary powder and a medium powder. The classified secondary powder and medium powder were collected by the respective collecting cyclones 104 and 106. The classification point is the 50% classification diameter D p50 (μm) of the partial classification efficiency curve. 1st stage fine powder classifier and 2nd stage
Teaplex Ultra Fine Classifier 2 as a stage fine powder classifier
00ATP (manufactured by Hosokawa Micron) was used.

【0077】分級された中粉体は重量平均粒径が7.3
μm、個数分布の変動係数Bが26.3%(粒径4.0
μm以下の粒子を8.4個数%含有し、粒径8.0μm
以上の粒子を10.8個数%含有する)のシャープな分
布を有しており、トナー用として優れた性能を有してい
た。この時、投入された粉砕原料の全量に対する最終的
に得られた中粉体との分級1収率は73%であった。
尚、得られた中粉体を用いて画像評価を行ったところカ
ブリは殆どなく良好であった。
The classified medium powder has a weight average particle size of 7.3.
μm, the coefficient of variation B of the number distribution is 26.3% (particle size: 4.0
8.4% by number of particles having a particle size of 8.0 μm or less.
(Containing 10.8% by number of the above particles), and had excellent performance for toner. At this time, the classification 1 yield with the finally obtained medium powder with respect to the total amount of the charged raw materials was 73%.
In addition, when image evaluation was performed using the obtained medium powder, there was almost no fog and the result was good.

【0078】実施例2 実施例1と同様のトナー粉砕原料を用いて、同様の装置
システムで粉砕及び分級を行った。衝突式気流粉砕機及
び粗粉分級機は、実施例1と同様な装置を用い、第1段
微粉分級機及び第2段微粉分級機はターボクラッシファ
イアーTC−40(日清エンジニアリング社製)を使用
した。
Example 2 Using the same toner pulverizing raw material as in Example 1, pulverization and classification were carried out in the same apparatus system. The collision-type airflow crusher and the coarse powder classifier use the same apparatus as in Example 1, and the first-stage fine powder classifier and the second-stage fine powder classifier are Turbo Classifier TC-40 (manufactured by Nisshin Engineering). used.

【0079】粉砕原料を30.8Kg/hr.の割合で
供給し、重量平均粒径6.7μmの細粉を得、この細粉
を30.8Kg/hr.の割合で分級点が2.9μmに
設定されている第1段微粉分級機と分級点が4.2μm
に設定されている第2段微粉分級機からなる多段微粉分
級手段に導入し、重量平均粒径7.0μm、個数分布の
変動係数Bが25.9%(粒径4.0μm以下の粒子を
8.7個数%含有し、粒径8.0μm以上の粒子を9.
6個数%含有する)のシャープな分布を有する中粉体を
分級収率79.9%で得た。尚、得られた中粉体を用い
て画像評価を行ったところカブリは殆ど無く良好であっ
た。
The pulverized raw material was added at 30.8 kg / hr. , And a fine powder having a weight average particle size of 6.7 μm was obtained. This fine powder was 30.8 kg / hr. The first-stage fine powder classifier whose classification point is set to 2.9 μm with the ratio of 4.2 μm
Into a multi-stage fine powder classifying means comprising a second-stage fine particle classifier, which has a weight average particle diameter of 7.0 μm and a coefficient of variation B of the number distribution of 25.9% (particles having a particle diameter of 4.0 μm or less). 8. particles containing 8.7% by number and having a particle size of 8.0 μm or more;
(Having a content of 6% by number) having a sharp distribution of 79.9%. In addition, when image evaluation was performed using the obtained medium powder, there was almost no fog and the result was good.

【0080】実施例3 実施例2と同様のトナー粉砕原料を用いて、同様の装置
システムで粉砕及び分級を行った。衝突式気流粉砕機は
図5に示す構成の装置を用い、粗粉分級機、第1段微粉
分級機及び第2段微粉分級機は、実施例1と同様の装置
を用いた。図5に示す衝突式気流粉砕機で粉砕した。該
衝突式気流粉砕機は、衝突面の形状は頂角55°(a=
55°)の円錐状の突起を有し、外周衝突面の加速管の
中心軸の鉛直面に対する傾斜角が10°(β=10°)
であった(α+2β=75°)。
Example 3 Using the same raw material for toner pulverization as in Example 2, pulverization and classification were carried out in the same apparatus system. The apparatus of the structure shown in FIG. 5 was used for the collision-type airflow pulverizer, and the same apparatus as that of Example 1 was used for the coarse powder classifier, the first-stage fine powder classifier, and the second-stage fine powder classifier. The particles were pulverized by a collision type airflow pulverizer shown in FIG. In the collision type airflow pulverizer, the collision surface has a vertical angle of 55 ° (a =
55 °) conical projection, and the inclination angle of the outer peripheral collision surface with respect to the vertical plane of the central axis of the accelerator tube is 10 ° (β = 10 °)
(Α + 2β = 75 °).

【0081】又、衝突部材の直径は100mm(b=1
00mm)であり、衝突面端部と加速管出口との距離は
50mm(a=50mm)であり、粉砕室形状は内径1
50mmの円筒状粉砕室(c=25mm)を用いた。鉛
直線を基準とした加速管の長軸方向の傾きは実質的に0
°で行った。定量供給機にて粉砕原料を39.0Kg/
hr.の割合で強制渦流式の分級機に供給し、分級され
た粗粉を該衝突式気流粉砕機に導入し、圧力6.0kg
/cm(G)、6.0Nm/minの圧縮空気を用
いて、粉砕した後、再度分級機に循環し、閉回路粉砕を
行った。その結果、分級された細粉として重量平均径
7.3μmのトナー用微粉砕品を得た。尚、融着物の発
生はなく、安定した運転が出来た。
The diameter of the collision member is 100 mm (b = 1
00 mm), the distance between the end of the collision surface and the outlet of the accelerating tube is 50 mm (a = 50 mm), and the shape of the grinding chamber is 1
A 50 mm cylindrical grinding chamber (c = 25 mm) was used. The inclination of the accelerator tube in the major axis direction with respect to the vertical line is substantially zero.
° C. 39.0Kg /
hr. , And the classified coarse powder was introduced into the impingement type air current pulverizer, and the pressure was 6.0 kg.
/ Cm 2 (G), pulverized using 6.0 Nm 3 / min compressed air, circulated again to the classifier, and closed circuit pulverized. As a result, a finely pulverized toner product having a weight average diameter of 7.3 μm was obtained as classified fine powder. In addition, there was no generation of fused material, and stable operation was possible.

【0082】この細粉を44.2Kg/hr.の割合で
分級点が2.9μmに設定されている第1段微粉分級機
と分級点が4.2μmに設定されている第2段微粉分級
機からなる多段微粉分級手段に導入し、重量平均粒径
7.1μm、個数分布の変動係数Bが26.2%(粒径
4.0μm以下の粒子を8.3個数%含有し、粒径8.
0μm以上の粒子を9.9個数%含有する。)のシャー
プな分布を有する中粉体を分級収率74.5%で得た。
尚、得られた中粉体について画像評価を行ったところカ
ブリは殆ど無く良好であった。
This fine powder was added to 44.2 kg / hr. And a second stage fine powder classifier having a classification point set to 2.9 μm and a second stage fine powder classifier having a classification point set to 4.2 μm. The particle size is 7.1 μm, the coefficient of variation B of the number distribution is 26.2% (8.3% by number of particles having a particle size of 4.0 μm or less are contained, and the particle size is 8.3%).
It contains 9.9% by number of particles of 0 μm or more. ) Was obtained with a classification yield of 74.5%.
When the image evaluation was performed on the obtained middle powder, there was almost no fog and the result was good.

【0083】実施例4 実施例2と同様のトナー粉砕原料を用いて、同様の装置
システムで粉砕及び分級を行なった。衝突式気流粉砕機
は、図8に示す構成の装置を用い、粗粉分級機、第1段
微粉分級機及び第2段微粉分級機は、実施例1と同様の
装置を用いた。図8に示す衝突式気流粉砕機で粉砕し
た。該衝突式気流粉砕機は、衝突面の形状は頂角55°
(a=55°)の円錐状の突起を有し、外周衝突面の加
速管の中心軸の鉛直面に対する傾斜角が10°(β=1
0°)であった(α+2β=75°)。
Example 4 Using the same raw material for toner pulverization as in Example 2, pulverization and classification were carried out in the same apparatus system. The impact-type airflow pulverizer used was an apparatus having the configuration shown in FIG. 8, and the same apparatus as in Example 1 was used for the coarse powder classifier, the first-stage fine powder classifier, and the second-stage fine powder classifier. The particles were pulverized by a collision type airflow pulverizer shown in FIG. The collision type airflow pulverizer has a collision surface having a vertical angle of 55 °.
(A = 55 °), and the inclination angle of the outer peripheral collision surface with respect to the vertical plane of the central axis of the accelerator tube is 10 ° (β = 1).
0 °) (α + 2β = 75 °).

【0084】又、衝突部材の直径は100mm(b=1
00mm)であり、衝突面端部と加速管出口との距離は
50mm(a=50mm)であり、粉砕室形状は内径1
50mmの円筒状粉砕室(c=25mm)を用いた。鉛
直線を基準とした加速管の長軸方向の傾きは実質的に0
°であり、粉体原料供給口は加速管の全円周方向に開口
しているものを用いた。定量供給機にて粉砕原料を3
7.0Kg/hr.の割合で強制渦流式の分級機に供給
し、分級された粗粉を該衝突式気流粉砕機に導入し、圧
力6.0kg/cm(G)、6.0Nm/minの
圧縮空気を用いて粉砕した後、再度分級機に循環し、閉
回路粉砕を行った。その結果、分級された細粉として重
量平均径7.3μmのトナー用微粉砕品を得た。尚、融
着物の発生はなく、安定した運転が出来た。
The diameter of the collision member is 100 mm (b = 1
00 mm), the distance between the end of the collision surface and the outlet of the accelerating tube is 50 mm (a = 50 mm), and the shape of the grinding chamber is 1
A 50 mm cylindrical grinding chamber (c = 25 mm) was used. The inclination of the accelerator tube in the major axis direction with respect to the vertical line is substantially zero.
°, and the raw material supply port used was one that was open in the entire circumferential direction of the acceleration tube. 3 crushed raw materials with fixed quantity feeder
7.0 kg / hr. Is supplied to a forced vortex type classifier, and the classified coarse powder is introduced into the collision type air flow pulverizer, and compressed air having a pressure of 6.0 kg / cm 2 (G) and 6.0 Nm 3 / min is supplied. After being crushed using the crusher, the mixture was circulated again through a classifier to perform closed-circuit crushing. As a result, a finely pulverized toner product having a weight average diameter of 7.3 μm was obtained as classified fine powder. In addition, there was no generation of fused material, and stable operation was possible.

【0085】この細粉を41.0Kg/hr.の割合で
分級点が2.9μmに設定されている第1段微粉分級機
と分級点が4.2μmに設定されている第2段微粉分級
機からなる多段微粉分級手段に導入し、重量平均粒径
7.2μm、個数分布の変動係数Bが26.3%(粒径
4.0μm以下の粒子を8.1個数%含有し、粒径8.
0μm以上の粒子を10.0個数%含有する。)のシャ
ープな分布を有する中粉体を分級収率74%で得た。
尚、得られた中粉体について画像評価を行ったところカ
ブリは殆ど無く良好であった。
This fine powder was weighed at 41.0 kg / hr. And a second stage fine powder classifier having a classification point set to 2.9 μm and a second stage fine powder classifier having a classification point set to 4.2 μm. Particle size 7.2 μm, coefficient of variation B of number distribution is 26.3% (8.1% particle size of particles having a particle size of 4.0 μm or less is contained, and particle size is 8.
It contains 10.0% by number of particles of 0 μm or more. ) Was obtained with a classification yield of 74%.
When the image evaluation was performed on the obtained middle powder, there was almost no fog and the result was good.

【0086】比較例1 実施例1と同様のトナー粉砕原料を用いて、図10のフ
ローチャートに従って粉砕及び分級を行なった。衝突式
気流粉砕機として、図11に示した粉砕機を使用し、粗
粉分級機は実施例1と同様な装置を使用し、微粉分級装
置としてディスパージョンセパレーターDS5UR(日
本ニューマチック工業社製)を使用した。
Comparative Example 1 Using the same toner pulverizing raw material as in Example 1, pulverization and classification were performed according to the flowchart of FIG. The crusher shown in FIG. 11 is used as an impinging airflow crusher, the same apparatus as in Example 1 is used as a coarse powder classifier, and a dispersion separator DS5UR (manufactured by Nippon Pneumatic Industries, Ltd.) is used as a fine powder classifier. It was used.

【0087】該衝突式気流粉砕機は、衝突面の形状が加
速管の長軸方向に対して垂直な平面状のものを用いた。
衝突部材の直径は90mm(b=90mm)であり、衝
突面端部と加速管出口との距離は50mm(a=50m
m)であり、粉砕室壁との最短距離は20mm(c=2
0mm)であり、粉砕室形状は箱型で行った。定量供給
機にて粉砕原料を13.0Kg/hr.の割合で強制渦
流式の分級機に供給し、分級された粗粉を該衝突式気流
粉砕機に導入し、圧力6.0kg/cm(G)、6.
0Nm/minの圧縮空気を用いて粉砕した後、再度
分級機に循環し、閉回路粉砕を行った。
As the impingement type air current pulverizer, a plane type having a collision surface perpendicular to the longitudinal direction of the accelerating tube was used.
The diameter of the collision member is 90 mm (b = 90 mm), and the distance between the end of the collision surface and the outlet of the acceleration tube is 50 mm (a = 50 m).
m), and the shortest distance from the crushing chamber wall is 20 mm (c = 2
0 mm), and the grinding chamber shape was box-shaped. 13.0 Kg / hr. , And the classified coarse powder is introduced into the impingement type air current pulverizer at a pressure of 6.0 kg / cm 2 (G) and a pressure of 6.0 kg / cm 2 (G).
After pulverization using 0 Nm 3 / min compressed air, the mixture was circulated again to a classifier to perform closed circuit pulverization.

【0088】その結果、分級された細粉として重量平均
径7.0μmのトナー用微粉砕品を得た。供給量を13
Kg/hr.以上に増やすと得られる細粉の体積平均径
が大きくなり、又、衝突部材上で粉砕物の融着、凝集物
及び粗粒子が生じ始め、融着物が加速管の原料投入口を
詰まらせる場合があり、安定した運転が出来なかった。
粉砕原料を18.0Kg/hr.の割合で供給し、重量
平均粒径7.0μm、個数分布の変動係数Bが31.0
%(粒径4.0μm以下の粒子を19.2個数%含有
し、粒径8.0μm以上の粒子を12.8個数%含有す
る。)のブロードな粒度分布を有する中粉体を分級収率
54.3%で得た。尚、得られた中粉体を用いて画像評
価を行ったところカブリはかなり多く、良好な結果は得
られなかった。
As a result, a finely pulverized toner product having a weight average diameter of 7.0 μm was obtained as classified fine powder. 13 supply
Kg / hr. When the volume average diameter of the obtained fine powder increases when the amount is increased as above, fusion of the pulverized material, aggregates and coarse particles start to occur on the collision member, and the fused material clogs the raw material inlet of the acceleration tube. There was no stable operation.
18.0 kg / hr. , A weight average particle size of 7.0 μm, and a number distribution variation coefficient B of 31.0.
% (19.2% by number of particles having a particle size of 4.0 μm or less and 12.8% by number of particles having a particle size of 8.0 μm or more). Obtained at a rate of 54.3%. When image evaluation was performed using the obtained medium powder, fog was considerably large, and good results could not be obtained.

【0089】比較例2 実施例1と同様のトナー粉砕原料を用いて、図10のフ
ローチャートに従って粉砕及び分級を行なった。衝突式
気流粉砕機として、図13に示した粉砕機を使用し、粗
粉分級機は実施例1と同様な装置を使用し、微粉分級装
置としてディスパージョンセパレーターDS5UR(日
本ニューマチック工業社製)を使用した。該衝突式気流
粉砕機は、衝突面の形状が頂角160°の円錐形状のも
のを使用した。衝突部材の直径は90mm(b=90m
m)であり、衝突面端部と加速管出口との距離は50m
m(a=50mm)であり、粉砕室壁との最短距離は2
0mm(c=20mm)であり、粉砕室形状は箱型で行
った。
Comparative Example 2 Using the same toner pulverization raw material as in Example 1, pulverization and classification were performed according to the flowchart of FIG. The crusher shown in FIG. 13 is used as a collision-type airflow crusher, the same apparatus as in Example 1 is used as a coarse powder classifier, and a dispersion separator DS5UR (manufactured by Nippon Pneumatic Industries, Ltd.) is used as a fine powder classifier. It was used. The collision-type airflow pulverizer used had a collision surface having a conical shape with an apex angle of 160 °. The diameter of the collision member is 90 mm (b = 90 m
m), and the distance between the end of the collision surface and the outlet of the accelerator is 50 m
m (a = 50 mm), and the shortest distance from the crushing chamber wall is 2
0 mm (c = 20 mm), and the grinding chamber was box-shaped.

【0090】定量供給機にて粉砕原料を18Kg/h
r.の割合で強制渦流式の分級機に供給し、分級された
粗粉を該衝突式気流粉砕機に導入し、圧力6.0kg/
cm(G)、6.0Nm/minの圧縮空気を用い
て、粉砕した後、再度分級機に循環し、閉回路粉砕を行
った。その結果、分級された細粉として重量平均径6.
8μmのトナー用微粉砕品を得た。供給量を18.0K
g/hr.以上に増やすと得られる細粉の重量平均径が
大きくなった。尚、融着物の発生は認められなかった。
18 kg / h
r. , And the classified coarse powder is introduced into the impinging airflow pulverizer at a pressure of 6.0 kg /
cm 2 (G), using compressed air of 6.0 nm 3 / min, was pulverized, and circulated again classifier was performed a closed circuit pulverization. As a result, the weight average diameter of the classified fine powder is 6.
An 8 μm finely pulverized product for toner was obtained. Supply amount 18.0K
g / hr. With the increase, the weight average diameter of the obtained fine powder was increased. In addition, generation | occurrence | production of the fused material was not recognized.

【0091】粉砕原料を23.0Kg/hr.の割合で
供給し、重量平均粒径6.8μm、個数分布の変動係数
Bが26.4%のブロードな粒度分布を有する中粉体を
分級収率61.8%で得た。尚、得られた中粉体をレー
ザーショット(キャノン製)を用いて画像評価を行った
ところカブリは実施例1より軽減され、画像品質として
はやや良好な結果を得た。
The pulverized raw material was 23.0 kg / hr. And a medium powder having a broad particle size distribution with a weight average particle size of 6.8 μm and a number distribution variation coefficient B of 26.4% was obtained at a classification yield of 61.8%. When the obtained medium powder was subjected to image evaluation using a laser shot (manufactured by Canon), fog was reduced as compared with Example 1, and a slightly better image quality was obtained.

【0092】比較例3 実施例1と同様のトナー粉砕原料を用いて、図10のフ
ローチャートに従って粉砕及び分級を行なった。衝突式
気流粉砕機として、図14に示した粉砕機を使用し、粗
粉分級機は実施例1と同様な装置を使用し、微粉分級装
置としてディスパージョンセパレーターDS5UR(日
本ニューマチック工業社製)を使用した。該衝突式気流
粉砕機は、衝突部材の原料衝突面が加速管の軸芯に対し
て直角(β=0°)であり、その原料衝突面に頂角50
°(α=50°)の円錐状の突起を設けたものを用い
た。衝突部材の直径は90mm(b=90mm)であ
り、衝突面端部と加速管出口との距離は50mm(a=
50mm)であり、粉砕室壁との最短距離は20mm
(c=20mm)であり、粉砕室形状は箱型で行った。
Comparative Example 3 Using the same toner pulverization raw material as in Example 1, pulverization and classification were performed according to the flowchart of FIG. The crusher shown in FIG. 14 is used as the impingement airflow crusher, the same device as in Example 1 is used as the coarse powder classifier, and the dispersion separator DS5UR (manufactured by Nippon Pneumatic Industries, Ltd.) is used as the fine powder classifier. It was used. In the impingement type air current pulverizer, the material collision surface of the collision member is perpendicular to the axis of the acceleration tube (β = 0 °), and the material collision surface has an apex angle of 50 °.
The one provided with a conical protrusion of ° (α = 50 °) was used. The diameter of the collision member is 90 mm (b = 90 mm), and the distance between the end of the collision surface and the outlet of the acceleration tube is 50 mm (a =
50 mm) and the shortest distance from the crushing chamber wall is 20 mm
(C = 20 mm), and the grinding chamber was box-shaped.

【0093】定量供給機にて粉砕原料を22Kg/h
r.の割合で強制渦流式の分級機に供給し、分級された
粗粉を該衝突式気流粉砕機に導入し、圧力6.0kg/
cm(G)、6.0Nm/minの圧縮空気を用い
て粉砕した後、再度分級機に循環し、閉回路粉砕を行っ
た。その結果、分級された細粉として重量平均径6.8
μmのトナー微粉砕品を得た。供給量を18.0Kg/
hr.以上に増やすと得られる細粉の重量平均径が大き
くなった。尚、粗大融着物の発生は認められなかった
が、1時間運転後衝突部材を点検したところ、原料衝突
面にうっすらと粉砕物の融着物の層が付着しているのが
確認された。
Using a constant-rate feeder, pulverized raw material is reduced to 22 kg / h.
r. , And the classified coarse powder is introduced into the impinging airflow pulverizer at a pressure of 6.0 kg /
After pulverization using a compressed air of 6.0 Nm 3 / min at 2 cm (G), the mixture was circulated again to a classifier to perform closed-circuit pulverization. As a result, the classified fine powder had a weight average diameter of 6.8.
A μm toner finely pulverized product was obtained. Supply amount of 18.0Kg /
hr. With the increase, the weight average diameter of the obtained fine powder was increased. No occurrence of coarse fused matter was observed, but after one hour of operation, the collision member was inspected. As a result, it was confirmed that a layer of the fused matter of the crushed material was slightly adhered to the material collision surface.

【0094】粉砕原料を23.0Kg/hr.の割合で
供給し、重量平均粒径6.8μm、個数分布の変動係数
Bが31.2%(粒径4.0μm以下の粒子を20.0
個数%含有し、粒径8.0μm以上の粒子を12.8個
数%含有する。)のブロードな粒度分布を有する中粉体
を分級収率51.6%で得た。尚、得られた中粉体を用
いて画像評価を行ったところカブリがかなり多く、良好
な結果は得られなかった。
The pulverized raw material was 23.0 kg / hr. , A weight average particle diameter of 6.8 μm and a coefficient of variation B of the number distribution of 31.2% (particles having a particle diameter of 4.0 μm or less
12.8% by number of particles having a particle size of 8.0 μm or more. ) Was obtained with a classification yield of 51.6%. When image evaluation was performed using the obtained medium powder, fog was considerably large, and good results could not be obtained.

【0095】実施例5 実施例1と同様のトナー粉砕原料を用いて、同様の装置
システムで粉砕及び分級を行った。衝突式気流粉砕機及
び粗粉分級機は、実施例1と同様な装置を用い、第1段
微粉分級機及び第2段微粉分級機はターボクラッシファ
イアーTC−40(日清エンジニアリング社製)を使用
した。粉砕原料を30.8Kg/hr.の割合で供給
し、重量平均粒径6.7μmの細粉を得、この細粉を3
3.6Kg/hr.の割合で分級点が2.9μmに設定
されている第1段微粉分級機と分級点が4.1μmに設
定されている第2段微粉分級機からなる多段微粉分級手
段に導入し、重量平均粒径7.3μm、個数分布の変動
係数Bが26.1%(粒径4.0μm以下の粒子を8.
5個数%含有し、粒径8.0μm以上の粒子を9.9個
数%含有する)のシャープな分布を有する中粉体を分級
収率74%で得た。尚、得られた中粉体を用いて画像評
価を行ったところカブリは殆ど無く良好であった。
Example 5 Using the same toner pulverizing raw material as in Example 1, pulverization and classification were carried out in the same apparatus system. The collision-type airflow crusher and the coarse powder classifier use the same apparatus as in Example 1, and the first-stage fine powder classifier and the second-stage fine powder classifier are Turbo Classifier TC-40 (manufactured by Nisshin Engineering). used. 30.8 kg / hr. To obtain a fine powder having a weight average particle size of 6.7 μm.
3.6 kg / hr. And a second stage fine classifier comprising a first stage fine classifier whose classification point is set to 2.9 μm and a second stage fine classifier whose classification point is set to 4.1 μm. The particle diameter is 7.3 μm, and the coefficient of variation B of the number distribution is 26.1%.
An intermediate powder having a sharp distribution of 5% by number and containing 9.9% by number of particles having a particle size of 8.0 μm or more was obtained with a classification yield of 74%. In addition, when image evaluation was performed using the obtained medium powder, there was almost no fog and the result was good.

【0096】実施例6 ・不飽和ポリエステル樹脂 100重量部 ・銅フタロシアニン顔料 4.5重量部 (C.I.Pigment Blue 15) ・荷電制御剤(サリチル酸クロム錯体) 4.0重量部 上記の処方の材料をヘンシェルミキサー(FM−75
型、三井三池化工機製)で良く混合した後、温度100
℃に設定した2軸混練機(PCM−30型、池貝鉄工
製)にて混練分散を行った。得られた混練物を冷却し、
ハンマーミルにて1mm以下に粗粉砕し、トナー製造用
の粗砕物を得た。
Example 6 100 parts by weight of an unsaturated polyester resin 4.5 parts by weight of a copper phthalocyanine pigment (CI Pigment Blue 15) 4.0 parts by weight of a charge control agent (chromium salicylate complex) 4.0 parts by weight The material was mixed with a Henschel mixer (FM-75).
After mixing well with a mold (manufactured by Mitsui Miike Kakoki Co., Ltd.)
Kneading and dispersing were performed with a twin-screw kneader (PCM-30, manufactured by Ikegai Iron Works) set to ° C. Cool the obtained kneaded material,
The resultant was coarsely pulverized to 1 mm or less by a hammer mill to obtain a coarsely crushed product for toner production.

【0097】得られたトナー粉砕原料を、実施例1と同
様な装置システムを用いて粉砕及び分級を行った。衝突
式気流粉砕機、粗粉分級機、第1段微粉分級機及び第2
段微粉分級機は、実施例1と同様な装置を用いた。粉砕
原料を29.0Kg/hr.の割合で供給し、重量平均
粒径7.3μmの細粉を得、この細粉を32.0Kg/
hr.の割合で分級点が2.9μmに設定されている第
1段微粉分級機と分級点が4.2μmに設定されている
第2段微粉分級機からなる多段微粉分級手段に導入し、
重量平均粒径7.1μm、個数分布の変動係数Bが2
6.2%(粒径4.0μm以下の粒子を8.0個数%含
有し、粒径8.0μm以上の粒子を10.2個数%含有
する。)のシャープな分布を有する中粉体を分級収率6
8%で得た。尚、得られた中粉体を用いて画像評価を行
ったところカブリは殆ど無く良好であった。
The obtained toner pulverized raw material was pulverized and classified using the same apparatus system as in Example 1. Collision type air crusher, coarse powder classifier, first stage fine powder classifier and second
The same apparatus as in Example 1 was used for the stage fine powder classifier. The pulverized raw material was 29.0 kg / hr. To obtain a fine powder having a weight average particle size of 7.3 μm.
hr. And introduced into a multi-stage fine powder classification means comprising a first-stage fine powder classifier having a classification point set at 2.9 μm and a second-stage fine powder classifier having a classification point set at 4.2 μm.
Weight average particle size 7.1 μm, variation coefficient B of number distribution is 2
Medium powder having a sharp distribution of 6.2% (containing 8.0% by number of particles having a particle size of 4.0 µm or less and 10.2% by number of particles having a particle size of 8.0 µm or more). Classification yield 6
Obtained at 8%. In addition, when image evaluation was performed using the obtained medium powder, there was almost no fog and the result was good.

【0098】比較例4 実施例6と同様のトナー粉砕原料を用いて、同様の装置
システムで粉砕及び分級を行なった。衝突式気流粉砕機
として、図11に示した粉砕機を使用し、粗粉分級機、
第1段微粉分級機及び第2段微粉分級機は実施例1と同
様な装置を使用した。
Comparative Example 4 Using the same toner pulverizing raw material as in Example 6, pulverization and classification were carried out in the same apparatus system. As a collision-type airflow pulverizer, the pulverizer shown in FIG.
The same apparatus as in Example 1 was used for the first stage fine powder classifier and the second stage fine powder classifier.

【0099】粉砕原料を12.0Kg/hr.の割合で
供給し、重量平均粒径6.8μmの細粉を得、この細粉
を18.0Kg/hr.の割合で分級点が2.9μmに
設定されている第1段微粉分級機と分級点が2.9μm
に設定されている第2段微粉分級機からなる多段微粉分
級手段に導入し、重量平均粒径7.2μm、個数分布の
変動係数Bが31.0%(粒径4.0μm以下の粒子を
20.2個数%含有し、粒径8.0μm以上の粒子を1
2.6個数%含有する。)のブロードな粒度分布を有す
る中粉体を分級収率51%で得た。尚、得られた中粉体
について画像評価を行ったところ、カブリもかなり多く
画像品質としては良好な結果が得られなかった。
The pulverized raw material was 12.0 kg / hr. , And a fine powder having a weight average particle size of 6.8 μm was obtained. This fine powder was 18.0 kg / hr. The first stage fine powder classifier whose classification point is set to 2.9 μm with the ratio of 2.9 μm
Into a multi-stage fine powder classifier comprising a second-stage fine powder classifier, which has a weight average particle diameter of 7.2 μm and a number distribution coefficient of variation B of 31.0% (particles having a particle diameter of 4.0 μm or less). 1% of particles containing 20.2% by number and having a particle size of 8.0 μm or more.
2.6% by number is contained. ) Was obtained with a classification yield of 51%. When image evaluation was performed on the obtained medium powder, fog was considerably large and good results were not obtained as image quality.

【0100】[0100]

【効果】本発明のトナーの製造方法は、世の中に存在す
るトナー粒子ばかりではなく、究極の微粒子において
も、シャープな粒度分布のトナーが高い粉砕効率及び高
い分級収率で得られ、しかもトナーの融着、凝集、粗粒
化の発生を防止し、トナー成分による装置内の摩耗を防
ぎ、連続して安定した生産が行える利点がある。又、本
発明のトナー製造方法を用いることにより、従来法に比
べ、画像濃度が安定して高く、耐久性が良く、カブリ、
クリーニング不良等の欠陥のない優れた所定の粒度を有
する静電荷像現像用トナーが低コストで得られる。更に
は、小さな粒子径特に3〜8μmの静電荷像現像用トナ
ーを効果的に得ることが出来ると云う利点がある。
According to the method for producing a toner of the present invention, a toner having a sharp particle size distribution can be obtained with high pulverization efficiency and a high classification yield, not only for toner particles existing in the world but also for the ultimate fine particles. There is an advantage that generation of fusion, aggregation, and coarsening can be prevented, wear in the apparatus due to toner components can be prevented, and continuous stable production can be performed. Further, by using the toner manufacturing method of the present invention, the image density is stable and high, the durability is good, and the fog,
An electrostatic image developing toner having an excellent predetermined particle size without defects such as poor cleaning can be obtained at low cost. Further, there is an advantage that a toner for developing an electrostatic image having a small particle diameter, particularly 3 to 8 μm, can be effectively obtained.

【0101】[0101]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を説明する為のフローチャー
ト図。
FIG. 1 is a flowchart for explaining a manufacturing method of the present invention.

【図2】本発明の製造方法を実施する為の装置システム
の一具体例を示す概略図。
FIG. 2 is a schematic diagram showing a specific example of an apparatus system for performing the manufacturing method of the present invention.

【図3】本発明における衝突式気流粉砕手段を実施する
為の一具体例である粉砕装置の概略断面図。
FIG. 3 is a schematic cross-sectional view of a pulverizing apparatus as a specific example for implementing a collision type air pulverizing means in the present invention.

【図4】図5における粉砕室の拡大断面図。FIG. 4 is an enlarged sectional view of a grinding chamber in FIG.

【図5】本発明を実施した他の衝突式気流粉砕機の概略
断面図。
FIG. 5 is a schematic sectional view of another collision type airflow pulverizer embodying the present invention.

【図6】図5のA−A線における拡大断面図。FIG. 6 is an enlarged sectional view taken along line AA of FIG. 5;

【図7】図5のB−B線における拡大断面図。FIG. 7 is an enlarged sectional view taken along line BB of FIG. 5;

【0102】[0102]

【図8】本発明を実施した他の衝突式気流粉砕機の概略
断面図。
FIG. 8 is a schematic sectional view of another collision-type airflow pulverizer embodying the present invention.

【図9】図8のC−C線における拡大断面図。FIG. 9 is an enlarged sectional view taken along line CC of FIG. 8;

【図10】従来の製造方法を説明する為のフローチャー
ト図。
FIG. 10 is a flowchart for explaining a conventional manufacturing method.

【図11】従来例の粉砕機を示す概略断面図。FIG. 11 is a schematic sectional view showing a conventional pulverizer.

【図12】従来例の粉砕機を示す概略断面図。FIG. 12 is a schematic sectional view showing a conventional pulverizer.

【図13】従来例の粉砕機を示す概略断面図。FIG. 13 is a schematic sectional view showing a conventional pulverizer.

【図14】従来例の粉砕機を示す概略断面図。FIG. 14 is a schematic sectional view showing a conventional pulverizer.

【0103】[0103]

【符号の説明】[Explanation of symbols]

1……粉体原料投入口 2……圧縮気体供給ノズル 3……加速管 4……衝突部材 5……排出口 6……粉砕室側壁 7……粉体原料 8……粉砕室 13……加速管出口 14……突出中央部 15……外周衝突面 21……加速管 22……加速管スロート部 DESCRIPTION OF SYMBOLS 1 ... Powder material input port 2 ... Compressed gas supply nozzle 3 ... Accelerator tube 4 ... Collision member 5 ... Discharge port 6 ... Pulverization chamber side wall 7 ... Powder material 8 ... Pulverization chamber 13 ... Accelerator tube outlet 14 Projecting central part 15 Outer peripheral collision surface 21 Accelerator tube 22 Throat part of accelerator tube

【0104】23……高圧気体噴出ノズル 24……被粉砕物供給口 25……被粉砕物供給筒 26……高圧気体供給口 27……高圧気体チャンバー 28……高圧気体導入管 29……加速管出口 30……衝突部材 32……粉砕室側壁 33……粉砕物排出口 34……粉砕室 35……ラバルノズル 36……加速管スロート部 37……加速管出口23 ... High-pressure gas ejection nozzle 24 ... Pulverized object supply port 25 ... Pulverized object supply cylinder 26 ... High-pressure gas supply port 27 ... High-pressure gas chamber 28 ... High-pressure gas introduction pipe 29 ... Acceleration Pipe outlet 30 Collision member 32 Pulverization chamber side wall 33 Pulverized material discharge port 34 Pulverization chamber 35 Laval nozzle 36 Acceleration pipe throat 37 37 Acceleration pipe outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神田 仁志 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平1−254266(JP,A) 実開 平1−148740(JP,U) (58)調査した分野(Int.Cl.7,DB名) G03G 9/087 B02C 19/06 B02C 21/00 B07B 7/08 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Kanda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-1-254266 (JP, A) Japanese Utility Model 1 -148740 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G03G 9/087 B02C 19/06 B02C 21/00 B07B 7/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結着樹脂及び着色剤を少なくとも含有す
る混合物を溶融混練し、混合物を冷却し、冷却物を粉砕
手段によって粉砕して粉砕物を得て、得られた粉砕物を
粗粉分級手段で、粗粉と細粉とに分級し、分級された粗
粉を衝突式気流粉砕手段により微粉砕して微粉体を生成
し、生成した微粉体を粗砕分級手段に循環し、分級され
た細粉を少なくとも二段以上の微粉分級手段からなる多
段微粉分級手段に導入して、分級して得られた所定粒径
範囲の中粉体から静電荷像現像用トナーを製造する方法
において、 前記衝突式気流粉砕手段では、高圧気体により被粉砕物
を搬送加速する為の加速管と被粉砕物微粉砕する為の
粉砕室とを有し、加速管内に供給され、加速された被粉
砕物を粉砕室内に加速管出口から吐出し、該加速管の出
口の開口面に対向して設けた突出中央部と該突出中央部
の外周に設けられた外周衝突面部とを有する衝突部材の
突出中央部で一次粉砕し、一次粉砕された一次粉砕物
該外周衝突面で二次粉砕し、二次粉砕された二次粉
砕物を更に粉砕室内の側壁で三次粉砕を行った後、粗粉
分級手段に循環し、粗粉分級手段で分級された細粉は、
少なくとも2段以上の微粉分級手段からなる多段微粉分
級手段に導入し、所定粒径以下の粒子群を主成分とする
中粉体を分級及び捕集する多段微粉分級工程を有する静
電荷像用現像用トナーを製造する方法であって、 多段微粉分級手段を構成する微粉分級手段の分級点Aが
下記条件 (1)式 1.0<A1……<An-1<5.0 (2)式 1.5<An<7.0 (3)式 A1<……<An-1<An (4)式 2≦n≦5 [式中の分級点Aは、部分分級効率曲線の50%分級径
P50(μm)であり、nは多段微粉分級手段を構成す
る微粉分級手段の段数を示し、多段微粉分級手段の1段
目の分級点はA1、2段目の分級点はA2、n段目の分級
点はAnと定義する。]を満足し、且つ多段微粉分級工
程に捕集された中粉体は、重量平均径D4が3〜8μm
であり、且つ個数分布の変動係数Bが下記条件 (5)式 20≦B≦40 [式中Bは、中粉体の個数分布における変動係数(S/
1)×100を示す。但し、Sは中粉体中の個数分布
における標準偏差を示し、D1は中粉体中の個数平均径
(μm)を示す。]を満足することを特徴とする静電荷
像現像用トナーの製造方法。
1. A mixture containing at least a binder resin and a colorant is melt-kneaded, the mixture is cooled, and the cooled product is pulverized by a pulverizing means to obtain a pulverized product. Means, classified into coarse powder and fine powder, the classified coarse powder is finely pulverized by an impingement airflow pulverizing means to produce fine powder, and the generated fine powder is circulated to the coarse pulverizing and classifying means to be classified. The fine powder is introduced into a multi-stage fine powder classifying means comprising at least two or more fine powder classifying means, and a method for producing a toner for developing an electrostatic image from a medium powder having a predetermined particle size range obtained by classification. The collision-type airflow pulverizing means has an accelerating tube for conveying and accelerating the object to be pulverized by a high-pressure gas and a pulverizing chamber for finely pulverizing the object to be pulverized. The material is discharged from the acceleration tube outlet into the grinding chamber, and the outlet of the acceleration tube is opened. Protruding central portion provided to face the surface and projecting central portion
A collision member having an outer peripheral collision surface portion provided on the outer periphery of
The projecting central portion in a primary crushing, a primary pulverized product is primary crushed secondary ground in the outer peripheral colliding surface portions were subjected to tertiary pulverization by the side walls of further pulverizing chamber secondary milled secondary pulverized product Thereafter, the fine powder circulated to the coarse powder classification means, and the fine powder classified by the coarse powder classification means,
Electrostatic image development having a multi-stage fine powder classification step of introducing into a multi-stage fine powder classification device comprising at least two or more stages of fine powder classification devices and classifying and collecting medium powder mainly composed of a group of particles having a predetermined particle size or less. Wherein the classification point A of the fine powder classifying means constituting the multi-stage fine powder classifying means is represented by the following condition (1): 1.0 <A 1 ... <A n-1 <5.0 (2) ) Equation 1.5 <A n <7.0 (3) Equation A 1 <... <A n-1 <A n (4) Equation 2 ≦ n ≦ 5 [The classification point A in the equation is the partial classification efficiency. The 50% classification diameter D P50 (μm) of the curve, n indicates the number of stages of the fine powder classification means constituting the multi-stage fine powder classification means, the first-stage classification point of the multi-stage fine powder classification means is A 1 , the second-stage classification point is a 2, n-th classification point is defined as a n. And the middle powder collected in the multi-stage fine powder classification step has a weight average diameter D 4 of 3 to 8 μm.
And the variation coefficient B of the number distribution is the following condition (5) Equation 20 ≦ B ≦ 40 [where B is the variation coefficient (S /
D 1 ) × 100. Here, S indicates the standard deviation in the number distribution in the medium powder, and D 1 indicates the number average diameter (μm) in the medium powder. ] The method for producing a toner for developing an electrostatic image according to the present invention.
【請求項2】 衝突部材の衝突面に突出している突出中
央部の頂角をα(°)とし、外周衝突面の加速管の中心
軸の垂直面に対する傾斜角をβ(°)とした場合、 該α及び該βが下記式 0<α<90、β>0、30≦α+2β≦90 を満足する請求項1に記載の静電荷像現像用トナーの製
造方法。
2. A case in which the apex angle of the central portion of the collision member protruding from the collision surface is α (°), and the inclination angle of the outer peripheral collision surface with respect to the vertical plane of the central axis of the acceleration tube is β (°). The method according to claim 1, wherein α and β satisfy the following formula: 0 <α <90, β> 0, 30 ≦ α + 2β ≦ 90.
JP12312793A 1993-04-28 1993-04-28 Method for producing toner for developing electrostatic images Expired - Fee Related JP3176757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12312793A JP3176757B2 (en) 1993-04-28 1993-04-28 Method for producing toner for developing electrostatic images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12312793A JP3176757B2 (en) 1993-04-28 1993-04-28 Method for producing toner for developing electrostatic images

Publications (2)

Publication Number Publication Date
JPH06313990A JPH06313990A (en) 1994-11-08
JP3176757B2 true JP3176757B2 (en) 2001-06-18

Family

ID=14852853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12312793A Expired - Fee Related JP3176757B2 (en) 1993-04-28 1993-04-28 Method for producing toner for developing electrostatic images

Country Status (1)

Country Link
JP (1) JP3176757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295300B1 (en) 1998-07-30 2001-09-25 Nec Corporation Circuit and method for symmetric asynchronous interface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035216A1 (en) * 2002-10-18 2004-04-29 Showa Denko K.K. Dry type grinding device and dry type grinding method
US7083130B2 (en) 2002-10-18 2006-08-01 Showa Denko K.K. Dry grinding system and dry grinding method
JP5628228B2 (en) * 2012-02-13 2014-11-19 株式会社スギノマシン Atomizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295300B1 (en) 1998-07-30 2001-09-25 Nec Corporation Circuit and method for symmetric asynchronous interface

Also Published As

Publication number Publication date
JPH06313990A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
US5358183A (en) Pneumatic pulverizer and process for producing toner
EP0850690B1 (en) Pneumatic impact pulverizer and process for producing toner
JP3005132B2 (en) Method of manufacturing toner and manufacturing apparatus system therefor
JP3176757B2 (en) Method for producing toner for developing electrostatic images
JP3352313B2 (en) Manufacturing method of toner
JP3210132B2 (en) Method for producing toner for developing electrostatic images
JPH1115196A (en) Production of toner and production system
JP3486524B2 (en) Method and system for manufacturing toner
JPH1115194A (en) Production of toner
JP3451288B2 (en) Collision type air flow pulverizer, fine powder production apparatus and toner production method
JP3740202B2 (en) Toner production method
JP3155855B2 (en) Method for producing toner for developing electrostatic images
JP3327762B2 (en) Manufacturing method of toner
JP3138379B2 (en) Method for producing toner for developing electrostatic images
JPH1090948A (en) Manufacture of toner
JP3210774B2 (en) Manufacturing method of toner
JPH1090934A (en) Manufacture of toner
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP3302270B2 (en) Manufacturing method of toner
JPH0792735A (en) Manufacture of toner and device for manufacturing the same
JP3297635B2 (en) Collision type air flow pulverizer and method for producing toner
JP3382468B2 (en) Manufacturing method of toner
JP3220918B2 (en) Method and apparatus for manufacturing toner
JP2961463B2 (en) Collision type air flow pulverizer, fine powder production apparatus and toner production method
JPH1090935A (en) Manufacture of toner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees