JPH10199466A - Ion beam working observation device - Google Patents

Ion beam working observation device

Info

Publication number
JPH10199466A
JPH10199466A JP360097A JP360097A JPH10199466A JP H10199466 A JPH10199466 A JP H10199466A JP 360097 A JP360097 A JP 360097A JP 360097 A JP360097 A JP 360097A JP H10199466 A JPH10199466 A JP H10199466A
Authority
JP
Japan
Prior art keywords
sample
ion beam
processing
movement device
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP360097A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirose
博 広瀬
Hideki Koike
英己 小池
Yoshio Arima
義雄 有馬
Toru Ishitani
亨 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP360097A priority Critical patent/JPH10199466A/en
Publication of JPH10199466A publication Critical patent/JPH10199466A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance working efficiency and ensure safety without replacing a sample finely moving device by arranging a corresponding stage coaxially as an ion beam axis, and arranging a side entry stage on the upper side, a eucentric stage for wafer on the lower side, and a replacing focusing lens between both stages. SOLUTION: Gallium ions outgoing from an ion source 1 are accelerated with a drawing electrode 3, and focused on a sample 12 with a focusing lens 4 and an objective lens 7. Beam current is limited with a beam limiting device 5, scanned with the voltage of a scanning electrode 6 to conduct working and SIM image observation. When a large sample such as wafer is worked and observed, a holder 18 is drawn out, action of the objective lens 7 is stopped, an objective lens 2 is operated, operation of a detector 9 is stopped, a detector 14 is operated, and working observation similar to a usual focusing ion beam device is conducted. TEM sample working and large sample working are conducted without replacing a sample stage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はイオンビーム加工観
察装置に関する。
The present invention relates to an ion beam processing and observation apparatus.

【0002】[0002]

【従来の技術】従来の例えばFIB装置の応用は大きく
二つに分類される。すなわち、ウエハを加工観察する場
合と透過型電子顕微鏡(TEM)試料の加工をする場合
である。ウエハは6インチ,8インチ,12インチと大
きいのに対してTEM試料は数mmと小さい。TEM試料
を加工する場合、例えば、特願平4−247601 号明細書に
開示されているように、サイドエントリー共用ホルダを
用いると非常に便利である。この様な試料を加工する場
合、従来は試料ステージを交換して用いていた。
2. Description of the Related Art Conventional applications of, for example, FIB devices are roughly classified into two. That is, there are a case where a wafer is processed and observed and a case where a transmission electron microscope (TEM) sample is processed. The wafer is as large as 6 inches, 8 inches and 12 inches, whereas the TEM sample is as small as several mm. When processing a TEM sample, for example, as disclosed in Japanese Patent Application No. 4-247601, it is very convenient to use a common holder for side entry. Conventionally, when processing such a sample, the sample stage is replaced and used.

【0003】[0003]

【発明が解決しようとする課題】このように交換して使
用する場合、下記の問題点があった。
However, the following problems have been encountered in the case of replacement and use.

【0004】(1)交換作業に時間がかかる。(1) It takes a long time for the replacement operation.

【0005】(2)交換作業は重量物の運搬を伴うので
危険が伴う。
[0005] (2) The replacement operation involves carrying heavy objects, and thus involves danger.

【0006】(3)試料微動は精密機構であるため交換
に伴い設定位置の再設定が必要である。
(3) Since the fine movement of the sample is a precision mechanism, it is necessary to reset the set position with replacement.

【0007】(4)4インチウエハ程度までは交換でき
るが8,12インチになると交換は不可能となる。
(4) It is possible to replace a wafer up to a size of about 4 inches, but it is not possible to replace the wafer when it reaches 8,12 inches.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は対応するステージをイオンビーム軸と同
軸に配置し、上側にサイドエントリーステージ,下側に
ウエハ用ユーセントリックステージを、両ステージの間
に交換集束レンズを配置した。下側のステージ上の試料
を処理する場合はサイドエントリーステージのホルダを
引き抜き、更にレンズ条件を変える。
In order to solve the above-mentioned problems, the present invention arranges a corresponding stage coaxially with an ion beam axis, a side entry stage on the upper side, and a eucentric stage for wafer on the lower side. An exchange focusing lens was placed between both stages. When processing the sample on the lower stage, the holder of the side entry stage is pulled out, and the lens conditions are further changed.

【0009】[0009]

【発明の実施の形態】図1を用いて本発明の実施例を説
明する。図1はイオン源1,制御電極2,引出電極3,
集束レンズ4,ビーム制限絞り5,走査電極6,対物レ
ンズ7,試料室8,検出器1…10,第1試料微動装置
10,第2試料微動装置11,試料1…12,試料2…
13,検出器2…14,制御部15,対物レンズ2…1
6,アライナ/デフ電極17などから構成されている。
ここで、従来と異なる点は対物レンズが2式あること、
試料微動装置が2式あることである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 shows an ion source 1, a control electrode 2, an extraction electrode 3,
Focusing lens 4, Beam limiting aperture 5, Scanning electrode 6, Objective lens 7, Sample chamber 8, Detector 1 ... 10, First sample fine movement device 10, Second sample fine movement device 11, Sample 1 ... 12, Sample 2 ...
13, detector 2 ... 14, control unit 15, objective lens 2 ... 1
6, an aligner / differential electrode 17 and the like.
Here, the point different from the conventional one is that there are two objective lenses,
That is, there are two types of sample fine movement devices.

【0010】まず最初にTEM試料作成の場合について
説明する。イオン源1から出射したガリウムイオンは引
出電極3により30kVに加速され、集束レンズ4,対
物レンズ7で試料12上に集束される。この場合のビー
ム電流の制限はビーム制限絞り5によって行う。このビ
ームは走査電極7の電圧によって走査され、よく知られ
ている方法で、加工やSIM像観察を行う。この場合の
検出器は検出器1…9を用いる。第1試料微動装置10
は、特願平4−247601 号明細書に示されているような、
TEM−FIB共用サイドエントリーステージを用いて
いる。このステージは本体19とホルダ18から構成さ
れており、ホルダを抜き挿しすると同時に真空エアロッ
クバルブも開閉する構造になっている(図示なし)。試
料の大きさと加工および観察方向を図3に示す。加工前
の試料の形状を図3(a)に示す。試料の大きさは2mm
×500μm程度と非常に小さい。この形状に切り出す
方法は加工したい部分が図3(a)の20μmの範囲に
残るように機械的に加工する。次にホルダ18の先端に
この試料を固定する(図3(c))。このホルダをサイド
エントリーステージ本体19に挿入してFIB加工を行
う。FIB加工の範囲は図3(b)に示したように10
μm程度の幅で厚さ0.1μm 程度の厚みが残るように
加工する。加工後試料12をホルダ18から取り外すこ
となく透過型電子顕微鏡(TEM)に挿入し観察および
分析する。TEMにも同じ試料ステージ本体19が装着
されているので、観察はきわめて容易に行うことができ
る。観察後、試料の厚みが厚すぎたり、観察結果から更
に加工が必要になった場合も同様の方法で加工観察装置
に戻すことができる。これらの操作については特願平4
− 247601 号明細書に記されている。
First, the case of preparing a TEM sample will be described. Gallium ions emitted from the ion source 1 are accelerated to 30 kV by the extraction electrode 3 and focused on the sample 12 by the focusing lens 4 and the objective lens 7. In this case, the beam current is limited by the beam limiting aperture 5. This beam is scanned by the voltage of the scanning electrode 7, and processing and SIM image observation are performed by a well-known method. In this case, detectors 1 to 9 are used. First sample fine movement device 10
Is as shown in the specification of Japanese Patent Application No. 4-247601.
A TEM-FIB shared side entry stage is used. This stage is composed of a main body 19 and a holder 18, and has a structure in which the vacuum air lock valve is opened and closed at the same time as the holder is removed and inserted (not shown). FIG. 3 shows the size, processing, and observation direction of the sample. FIG. 3A shows the shape of the sample before processing. Sample size is 2mm
Very small, about × 500 μm. In the method of cutting into this shape, mechanical processing is performed so that the portion to be processed remains in the range of 20 μm in FIG. Next, this sample is fixed to the tip of the holder 18 (FIG. 3C). This holder is inserted into the side entry stage main body 19 to perform FIB processing. The range of FIB processing is 10 as shown in FIG.
Processing is performed so that a thickness of about 0.1 μm remains with a width of about μm. After processing, the sample 12 is inserted into a transmission electron microscope (TEM) without being removed from the holder 18 and observed and analyzed. Since the same sample stage main body 19 is mounted on the TEM, observation can be performed very easily. After the observation, if the sample is too thick or further processing is required based on the observation result, the sample can be returned to the processing observation apparatus in the same manner. Regarding these operations, refer to Japanese Patent Application
− 247601.

【0011】次に本装置でウエハなどの大きな試料を加
工観察する場合について説明する。第一にホルダ18を
引き抜く。次に対物レンズ1の作用を停止させ、対物レ
ンズ2を動作状態とする。次に検出器1の動作を停止さ
せ検出器2を動作させる。
Next, a case where a large sample such as a wafer is processed and observed by the present apparatus will be described. First, the holder 18 is pulled out. Next, the operation of the objective lens 1 is stopped, and the objective lens 2 is brought into an operating state. Next, the operation of the detector 1 is stopped and the detector 2 is operated.

【0012】この場合のレンズ条件,ビーム制限絞り5
の径,アライナ電圧,検出器の選択等は制御部15内の
記憶装置に書き込まれている(ファイル)。ファイルの
内容は調整時にその適正値を自動的に記憶する方式を採
用している。従って使用する場合は制御部のモニタ上
で、例えば、アッパーサンプル−ビームAのように指定
するだけでビーム条件を実現できるようになっている。
この場合のビーム切り替え説明を図2(a)に示した。
図2(a)はTEM試料加工モードでFIBビームは試
料12上に集束されている。
In this case, the lens condition and the beam limiting aperture 5
The diameter, aligner voltage, detector selection, and the like are written in a storage device in the control unit 15 (file). The content of the file adopts a method of automatically storing an appropriate value at the time of adjustment. Therefore, when used, the beam conditions can be realized only by designating, for example, upper sample-beam A on the monitor of the control unit.
FIG. 2A illustrates the beam switching in this case.
FIG. 2A shows a TEM sample processing mode in which the FIB beam is focused on the sample 12.

【0013】制御部のモニタ上でローアサンプル−ビー
ムAのように指定すると、ビームは図2(b)に示した
ように、試料2…13の上に集束する。この状態で通常
の集束イオンビーム装置と同様の加工観察が実行可能で
ある。
When a lower sample beam A is designated on the monitor of the controller, the beam is focused on the samples 2... 13 as shown in FIG. In this state, processing observation similar to that of a normal focused ion beam apparatus can be performed.

【0014】この場合の典型的な試料13はウエハであ
り、図4にその概略を示した。試料の径は現状300mm
程度が最大である。この場合の加工は5×10μm程度
のボックス加工であり、観察はボックス加工の壁面を斜
めからイオンビームで観察する。このため第2試料微動
装置11は60度程度傾斜するようになっている。
A typical sample 13 in this case is a wafer, which is schematically shown in FIG. Sample diameter is 300mm at present
The degree is the largest. The processing in this case is box processing of about 5 × 10 μm, and the observation is performed by obliquely observing the wall surface of the box processing with an ion beam. For this reason, the second sample fine movement device 11 is inclined about 60 degrees.

【0015】このように本発明の装置では微妙な加工ノ
ウハウを必要とするTEM試料加工とウエハの加工観察
を試料ステージの付け替えをしないで可能となり、装置
の付加価値が向上した。試料ステージを交換可能の場
合、従来、交換に約1時間,調整に約1時間を要してい
たがこの時間を節約できた。このため、従来は作業がま
とまってから交換作業をして、まとめて加工していた
が、本発明により加工の要求にしたがって作業すること
ができるようになった。
As described above, in the apparatus of the present invention, TEM sample processing and wafer processing observation that require delicate processing know-how can be performed without changing the sample stage, and the added value of the apparatus is improved. In the case where the sample stage can be exchanged, conventionally, it took about 1 hour for exchange and about 1 hour for adjustment, but this time was saved. For this reason, in the past, replacement work was performed after work was completed, and processing was performed collectively. However, according to the present invention, work can be performed according to processing requirements.

【0016】本実施例では対物レンズを2式用意し切り
替える方式としたが、ビームの要求性能によってはレン
ズ1個の電圧を変えるだけで上下試料に対応することも
可能である。また試料2の加工の際対物レンズ1および
2を同時に作用させる条件も考えられ、これらのすべて
はビーム条件ファイルを書き換えるのみで対応できる。
In this embodiment, two types of objective lenses are prepared and switched, but depending on the required performance of the beam, it is possible to cope with upper and lower samples only by changing the voltage of one lens. In processing the sample 2, conditions for simultaneously operating the objective lenses 1 and 2 can be considered. All of these conditions can be dealt with only by rewriting the beam condition file.

【0017】対物レンズは通常同時に使用しないのでこ
れの電源は1個の電源と切り替え装置20とビーム条件
ファイルからの電圧指定のみで対応可能とした。検出器
の制御も通常は切り替えのみで対応するため電源は1つ
で対応可能とした。
Since the objective lens is not usually used at the same time, the power supply for the objective lens can be dealt with only by one power supply, the switching device 20 and the voltage designation from the beam condition file. Normally, the control of the detector is also performed only by switching, so that only one power source can be used.

【0018】[0018]

【発明の効果】【The invention's effect】

(1)TEM−FIB共用ホルダを用いたTEM試料加
工と大型試料加工が試料微動装置の交換作業なしに可能
となった。
(1) TEM sample processing and large sample processing using the TEM-FIB shared holder can be performed without replacing the sample fine movement device.

【0019】(2)交換作業なしで上記が可能となった
ため重量物運搬に伴う危険,位置の再設定が不要となり
作業効率が大幅に向上した。
(2) Since the above-mentioned operations can be performed without replacement work, the danger involved in carrying heavy objects and the resetting of the position are not required, and the work efficiency is greatly improved.

【0020】(3)8,12インチなどの大型試料の加
工観察とTEM−FIB共用ホルダを用いたTEM試料
加工が可能となった。
(3) Processing and observation of a large sample such as 8, 12 inches and TEM sample processing using a TEM-FIB shared holder are enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】レンズモード切り替えの説明図。FIG. 2 is an explanatory diagram of switching a lens mode.

【図3】本発明の第二実施例の説明図。FIG. 3 is an explanatory view of a second embodiment of the present invention.

【図4】本発明の第三実施例の説明図。FIG. 4 is an explanatory view of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…イオン源、2…制御電極、3…引出電極、4…集束
レンズ、5…ビーム制限絞り、6…走査電極、7…対物
レンズ1、8…試料室、9…検出器1、10…第1試料
微動装置、11…第2試料微動装置、12…試料1、1
3…試料2、14…検出器2、15…制御部、16…対
物レンズ2、17…アライナ/デフ電極、18…ホル
ダ、19…サイドエントリステージ本体、20…切り替
え装置。
DESCRIPTION OF SYMBOLS 1 ... Ion source, 2 ... Control electrode, 3 ... Extraction electrode, 4 ... Focusing lens, 5 ... Beam limiting aperture, 6 ... Scanning electrode, 7 ... Objective lens 1, 8 ... Sample chamber, 9 ... Detector 1, 10 ... First sample fine movement device, 11: second sample fine movement device, 12: sample 1, 1
3 sample 2, 14 detector 2, 15 controller, 16 objective lens 2, 17 aligner / diff electrode, 18 holder, 19 side entry stage body, 20 switching device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石谷 亨 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器事業部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Ishitani 882 Mage, Oaza-shi, Hitachinaka-shi, Ibaraki Pref.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】荷電ビーム軸上に第1の試料微動装置と第
2の試料微動装置を備え荷電ビームのレンズ条件を変え
ることにより第1及び第2の試料微動装置上の試料の加
工又は観察が可能であることを特徴とするイオンビーム
加工観察装置。
A first sample fine-movement device and a second sample fine-movement device on a charged beam axis, and processing or observation of samples on the first and second sample fine-motion devices by changing lens conditions of the charged beam. An ion beam processing and observation apparatus characterized in that it is capable of performing ion beam processing.
【請求項2】前記第1の試料微動装置はサイドエントリ
ー方式の微動装置である請求項1のイオンビーム加工観
察装置。
2. The ion beam processing and observation apparatus according to claim 1, wherein said first sample fine movement device is a side entry type fine movement device.
【請求項3】前記第2の試料微動装置はユーセントリッ
ク方式の微動装置である請求項1のイオンビーム加工観
察装置。
3. The ion beam processing and observation apparatus according to claim 1, wherein said second sample fine movement device is a eucentric type fine movement device.
【請求項4】前記第1の試料微動装置と前記第2の試料
微動装置の間に変換集束レンズを配置した請求項1のイ
オンビーム加工観察装置。
4. An ion beam processing and observation apparatus according to claim 1, wherein a conversion focusing lens is arranged between said first sample fine movement device and said second sample fine movement device.
【請求項5】前記第1の試料微動装置と前記第2の試料
微動装置に対応するビーム条件ファイルを有する請求項
1のイオンビーム加工観察装置。
5. The ion beam processing and observation apparatus according to claim 1, further comprising a beam condition file corresponding to the first sample fine movement device and the second sample fine movement device.
【請求項6】前記第1と前記第2の試料微動上の試料の
加工又は観察に切り替える場合共用できる制御系は共用
する請求項1のイオンビーム加工観察装置。
6. The ion beam processing and observation apparatus according to claim 1, wherein a control system which can be shared when switching to processing or observation of the sample on the first and second sample fine movements is shared.
JP360097A 1997-01-13 1997-01-13 Ion beam working observation device Pending JPH10199466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP360097A JPH10199466A (en) 1997-01-13 1997-01-13 Ion beam working observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP360097A JPH10199466A (en) 1997-01-13 1997-01-13 Ion beam working observation device

Publications (1)

Publication Number Publication Date
JPH10199466A true JPH10199466A (en) 1998-07-31

Family

ID=11561988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP360097A Pending JPH10199466A (en) 1997-01-13 1997-01-13 Ion beam working observation device

Country Status (1)

Country Link
JP (1) JPH10199466A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351983B2 (en) 2004-10-19 2008-04-01 Jeol Ltd. Focused ion beam system
JP2009027197A (en) * 2008-10-31 2009-02-05 Hitachi Ltd Ion beam apparatus
WO2015011967A1 (en) * 2013-07-24 2015-01-29 株式会社 日立ハイテクノロジーズ Charged particle beam apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351983B2 (en) 2004-10-19 2008-04-01 Jeol Ltd. Focused ion beam system
JP2009027197A (en) * 2008-10-31 2009-02-05 Hitachi Ltd Ion beam apparatus
WO2015011967A1 (en) * 2013-07-24 2015-01-29 株式会社 日立ハイテクノロジーズ Charged particle beam apparatus

Similar Documents

Publication Publication Date Title
Nagatani et al. Development of an ultra high resolution scanning electron microscope by means of a field emission source and in-lens system
JP5222507B2 (en) Ion beam processing apparatus and sample processing method
US9601312B2 (en) Source for selectively providing positively or negatively charged particles for a focusing column
Giannuzzi et al. A review of focused ion beam milling techniques for TEM specimen preparation
US6300631B1 (en) Method of thinning an electron transparent thin film membrane on a TEM grid using a focused ion beam
JP6619043B2 (en) Particle beam system and method for processing TEM specimens
US6870161B2 (en) Apparatus for processing and observing a sample
JP2004087174A (en) Ion beam device, and working method of the same
EP2838109A1 (en) Method of using an environmental transmission electron microscope
JP2005114578A (en) Sample preparation method device and sample observation device
JP2006120331A (en) Focused ion beam device and aberration corrected focused ion beam device
JPH10199466A (en) Ion beam working observation device
JPH06103947A (en) Focusing ion beam device
US11664186B1 (en) Apparatus of electron beam comprising pinnacle limiting plate and method of reducing electron-electron interaction
JP2004295146A (en) Manipulator, probe device using it, and sample preparing device
US5304801A (en) Electron microscope
JPH07296756A (en) Fine working method, and device therefor
Ishitani et al. Proposals for exact-point transmission-electron microscopy using focused ion beam specimen-preparation technique
US11094503B2 (en) Method of preparing thin film sample piece and charged particle beam apparatus
JPH09257670A (en) Specimen preparing apparatus for electron microscope
JPH06215714A (en) Field emission type transmission electron microscope
JP3968144B2 (en) Focused ion beam processing method and processing apparatus
JP3064335B2 (en) Transmission electron microscope
Einstein et al. The design of an experimental electron beam machine
JP3746641B2 (en) Transmission electron microscope