JPH10195609A - Fcc metal in which crystal orientation is regulated and its production - Google Patents

Fcc metal in which crystal orientation is regulated and its production

Info

Publication number
JPH10195609A
JPH10195609A JP35817396A JP35817396A JPH10195609A JP H10195609 A JPH10195609 A JP H10195609A JP 35817396 A JP35817396 A JP 35817396A JP 35817396 A JP35817396 A JP 35817396A JP H10195609 A JPH10195609 A JP H10195609A
Authority
JP
Japan
Prior art keywords
fcc
fcc metal
rolling
metal
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35817396A
Other languages
Japanese (ja)
Inventor
Toshihiro Kanzaki
敏裕 神崎
Iku Tanabe
郁 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP35817396A priority Critical patent/JPH10195609A/en
Publication of JPH10195609A publication Critical patent/JPH10195609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an FCC metal in which crystal orientation is properly regulated and suitable for the material for a sputtering target by regulating the ratio of the integrated intensity of the (200) plane to that of the (111) plane in the crystals to specified value or above. SOLUTION: It is desirable that an FCC metal has (100) priority orientation for securing a sputtering rate and the uniformity of coating. As the evaluation therefor, heat treatment is executed so as to regulate the ratio of the integrated intensity of the (200) plane to that of the (111) plane in X-ray diffraction, i.e., I(200) /I(111) value to >=4.6, by which good FCC can be obtd. Furthermore, among FCC, particularly, the one having a Cu matrix is excellent in electromigration. Since the purity of this Cu exerts a remarkable influence on the fine structure of the coating, the purity of the Cu matrix is preferably regulated to >=6N. Furthermore, since the sputtering rate and the uniformity of the coating deteriorate in the case the average grain size is made coarse, it is regulated to <=200μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種ターゲット用
材料等として好適な結晶方位の制御されたFCC金属及
びその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FCC metal having a controlled crystal orientation suitable as a material for various targets and a method for producing the same.

【0002】[0002]

【従来の技術】近時、エレクトロニクス産業の発達に伴
ない、各種スパッタリングターゲット材料用についても
その使用量が増大するとともに、特性面でもより高特性
が望まれている。例えば、基板ウエハー上でのスパッタ
配線用材料として使用されるFCC金属においても以下
のような特性が要求されている。 (1) 結晶方位において(100)優先方位を有して
いること:スパッタリングを施されるFCC金属におい
てはスパッタレートを確保するために、(100)優先
方位を有していることが望まれる場合がある。 (2) エレクトロマイグレーションに優れること:ス
パッタにより形成された基板ウエハー上での配線におい
ては配線幅の微細化により短絡現象の一種であるエレク
トロマイグレーションが問題となっている。ここでこの
現象は、膜の組成に大きく影響されることが確認されて
いるので膜の組成をほぼ一義的に決定するスパッタリン
グターゲット用材料についてもエレクトロマイグレーシ
ョン性に優れていることが望まれる。 (3) 不純物が少ないこと:スパッタリング膜の配線
信頼性は膜の微細構造の影響を強く受けるが、この膜の
微細構造はガス成分を含めた不純物の影響が大きいこと
がわかっている。そこで、スパッタリングターゲット用
材料としても所定の成分以外の不純物が少ないことが望
まれる。 (4) 平均結晶粒径が細かいこと:スパッタリング膜
の均一性を高めるため、さらにスパッタリングレートの
向上のため、スパッタリングターゲット用材料は平均結
晶粒径が微細であることが望まれている。スパッタリン
グターゲット用材料としては以上のような諸特性が要求
されている。
2. Description of the Related Art In recent years, with the development of the electronics industry, the amount of various sputtering target materials used has increased, and higher characteristics have been desired in terms of characteristics. For example, the following characteristics are required for FCC metal used as a material for sputter wiring on a substrate wafer. (1) Having a (100) preferred orientation in the crystal orientation: When it is desired that the FCC metal to be sputtered has a (100) preferred orientation in order to secure a sputter rate. There is. (2) Excellent electromigration: In wiring on a substrate wafer formed by sputtering, electromigration, which is a kind of short-circuit phenomenon, has become a problem due to miniaturization of wiring width. Since this phenomenon has been confirmed to be greatly affected by the composition of the film, it is desired that the material for the sputtering target, which determines the composition of the film almost uniquely, also has excellent electromigration properties. (3) Fewer impurities: Although the wiring reliability of the sputtering film is strongly affected by the fine structure of the film, it is known that the fine structure of this film is greatly affected by impurities including gas components. Therefore, it is desired that the sputtering target material has a small amount of impurities other than the predetermined components. (4) Fine average crystal grain size: In order to increase the uniformity of the sputtering film and further improve the sputtering rate, it is desired that the sputtering target material has a fine average crystal grain size. Various properties as described above are required for a material for a sputtering target.

【0003】[0003]

【発明が解決しようとする課題】基板ウエハー上のスパ
ッタ配線用材料としては従来、Al等が用いられてきた
が、要求される諸特性を十分に満たしているものではな
かった。したがって本発明の目的は、結晶方位が制御さ
れているほか、スパッタリングターゲット用材料に要求
される諸特性を兼備したFCC金属およびその製造方法
を提供することにある。
Conventionally, Al or the like has been used as a material for sputter wiring on a substrate wafer, but does not sufficiently satisfy the required characteristics. Therefore, an object of the present invention is to provide an FCC metal having a crystal orientation controlled and having various characteristics required for a material for a sputtering target, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、スパッタリン
グターゲット用材料等に要求される上記のような諸特性
を兼備したFCCF金属、特に各種スパッタリング特性
を向上させるためにその結晶方位の制御されたFCC金
属を開発すべく、鋭意研究の結果開発されたものであっ
て、下記のFCC金属及びその製造法を提供するもので
ある。すなわち、本発明は:第1にX線回折における
(111)面の積分強度I(111) にたいする(200)
面の積分強度I(200) の比が、式: I(200) /I(111) ≧4.6 の関係を満たす比の値を有していることを特徴とする
(100)優先方位を持つFCC金属:第2に上記FC
C金属がCuマトリックスを有することを特徴とする前
記第1に記載のFCC金属:第3に上記Cuの純度が6
N以上であることを特徴とする前記第2に記載のFCC
金属:第4に平均結晶粒径が200μm以下であること
を特徴とする前記第2に記載のFCC金属:第5に純度
6N以上のCuマトリックスを有し、その平均結晶粒径
が200μm以下であり、かつX線回折における(11
1)面の積分強度I(111) に対する(220)面の積分
強度I(220) の比が、式: I(200) /I(111) ≧4.6 の関係を満たす比の値を有していることを特徴とする
(100)優先方位を持つFCC金属:第6に(10
0)優先方位を持つFCC金属の製造方法であって、全
パスの圧延軸のずれを±15°未満に制御しながら1方
向あるいは往復圧延を合計圧下率で20%以上施した後
再結晶を伴なう、完全焼鈍を施すことによりX線回折で
測定される結晶の(111)面の積分強度I(111) に対
する(200)面の積分強度I(200) の比が、式: I(200) /I(111) ≧4.6 の関係を満たす比の値を有していることを特徴とする
(100)優先方位を持つFCC金属の製造方法:第7
にCuマトリックスを有する(100)優先方位を持つ
FCC金属の製造方法であって、全パスの圧延軸のずれ
を±15°未満に制御しながら1方向あるいは往復圧延
を合計圧下率で20%以上施した後498〜823Kで
60〜7200secの熱処理を行うことを特徴とした
前記第6に記載のFCC金属の製造方法:第8にCuの
純度が6N以上ある(100)優先方位を持つことを特
徴とする前記第7に記載のFCC金属の製造方法:第9
に平均結晶粒径が200μm以下の(100)優先方位
を持つFCC金属の製造方法であって、623〜873
Kで加工率20%以上の熱間加工を施し、さらに加工率
10%以上の冷間加工と493〜823Kで60〜72
00secの熱処理を少なくとも2回以上繰り返し行
い、かつ、全パスの圧延軸のずれを±15°未満に制御
しながら1方向あるいは往復圧延を合計圧下率で20%
以上施した後498〜823Kで60〜7200sec
の熱処理を行うことを特徴とした前記第6に記載のFC
C金属の製造方法:第10に前記第1〜5のいずれかに
記載の(100)優先方位を持つFCC金属からなるタ
ーゲット用素材:第11に前記第6〜第9のいずれかの
方法で製造された(100)優先方位を持つFCC金属
からなるターゲット用素材を提供することである。
SUMMARY OF THE INVENTION The present invention relates to an FCCF metal having the above-mentioned various characteristics required for a material for a sputtering target and the like, and in particular, to control the crystal orientation of the FCCF metal in order to improve various sputtering characteristics. It has been developed as a result of intensive research to develop an FCC metal, and provides the following FCC metal and a method for producing the same. That is, the present invention firstly relates to (200) the integrated intensity I (111) of the (111) plane in X-ray diffraction.
The (100) preferred orientation is characterized in that the ratio of the integrated intensity I (200) of the surface has a value satisfying the relationship of the following formula: I (200) / I (111) ≧ 4.6. FCC metal with: 2nd FC
The FCC metal according to the first aspect, wherein the C metal has a Cu matrix: Third, the purity of the Cu is 6
N. The FCC according to item 2, wherein
Metal: Fourth, the average grain size is 200 μm or less. FCC metal according to the second aspect: Fifth, having a Cu matrix having a purity of 6N or more, and having an average grain size of 200 μm or less. And (11) in X-ray diffraction.
1) The ratio of the integrated intensity I (220) of the (220 ) plane to the integrated intensity I (111) of the plane has a value satisfying the relationship of I: (200) / I (111) ≧ 4.6. FCC metal having a (100) preferred orientation characterized by:
0) A method for producing an FCC metal having a preferred orientation, in which a unidirectional or reciprocal rolling is performed at a total draft of 20% or more while controlling a rolling axis deviation of all passes to less than ± 15 °, and then recrystallization is performed. accompanied, the ratio of the fully annealed measured by X-ray diffraction by the applying is of the crystal with respect to (111) integrated intensity I (111) of the plane (200) plane of the integrated intensity I (200) has the formula: I ( 200) / I (111) ≧ 4.6. A method for producing an FCC metal having a (100) preferred orientation, characterized in that the ratio has a value satisfying the relationship: 4.6.
A method for producing an FCC metal having a (100) preferred orientation having a Cu matrix, wherein the total rolling reduction in one direction or reciprocating rolling is 20% or more while controlling the deviation of the rolling axis in all passes to less than ± 15 °. The method for producing an FCC metal according to the sixth aspect, wherein the heat treatment is performed at 498 to 823 K for 60 to 7200 seconds after the application. Eighthly, the method has a (100) preferred orientation in which the purity of Cu is 6N or more. The method for producing an FCC metal according to the item 7, wherein the method is ninth.
A method for producing an FCC metal having a (100) preferred orientation with an average crystal grain size of 200 μm or less, comprising 623 to 873
Hot working at a working ratio of 20% or more at K, and cold working at a working ratio of 10% or more and 60-72 at 493-823K.
The heat treatment of 00sec is repeated at least twice or more, and one-way or reciprocating rolling is performed at a total draft of 20% while controlling the deviation of the rolling axis in all passes to less than ± 15 °.
After applying the above, 60 ~ 7200sec at 498 ~ 823K
7. The FC according to the item 6, wherein the heat treatment is performed.
C metal production method: Tenth, a target material made of the FCC metal having the (100) preferred orientation according to any one of the first to fifth aspects: Eleventh, according to any one of the sixth to ninth methods. An object of the present invention is to provide a target material made of a manufactured FCC metal having a (100) preferred orientation.

【0005】[0005]

【発明の実施の形態】本発明は、FCC金属において適
切な加工熱処理を施し、その結晶方位を制御することに
よりスパッタリングターゲット用材料等として好適なF
CC金属を提供し得たことに基本的な特徴がある。次
に、本発明に係るFCC金属及びその製造方法を上記の
通りに限定した理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides an FCC metal which is suitable as a material for a sputtering target or the like by controlling the crystal orientation by performing an appropriate working heat treatment.
A fundamental feature is that CC metal can be provided. Next, the reason why the FCC metal and the method for producing the FCC metal according to the present invention are limited as described above will be described.

【0006】結晶方位:結晶方位についてはスパッタリ
ングレートおよび膜の均一性を確保するために、スパッ
タリングターゲット用FCC金属において(100)優
先方位を有することが望まれる場合がある、その評価と
してはX線回折における(111)面と(200)面の
積分強度の比が用いられる。すなわち(111)面の積
分強度I(111) に対する(220)面の積分強度I
(220) の比:I(220) /I(111) の比の値が、4.6よ
り小さいと(100)優先方位とは言い難く、スパッタ
リングレートも劣化する。そこで、X線回折における
(111)面と(200)面の積分強度の比はI(200)
/I(111) ≧4.6となるようにすることを判定基準と
して熱処理の方法を工夫したところ、この基準を満たす
ものは良好な(100)優先方位を有するFCC金属で
あることが認められた。これは、X線回折法で結晶面の
積分強度を測定するとき、(111)面、(200)
面、(220)面の積分強度が最も強く現れるが、方位
制御しない場合、各方位の積分強度I(111)
(200) :I(220) の比は通常100:46:20とな
ることに基づいている。すなわち、I(200) /I(111)
の比が通常の場合の比の値0.46の10倍以上となる
ように方位制御するための熱処理時要件について研究し
たのである。
Crystal Orientation: Regarding the crystal orientation, in order to ensure the sputtering rate and the uniformity of the film, it is sometimes desired that the FCC metal for the sputtering target has a (100) preferred orientation. The ratio of the integrated intensity of the (111) plane and the (200) plane in diffraction is used. That is, the integrated intensity I of the (220) plane with respect to the integrated intensity I (111) of the ( 111 ) plane
If the value of the ratio of (220) : I (220) / I (111) is smaller than 4.6, the (100) preferred orientation is hard to say, and the sputtering rate is also deteriorated. Therefore, the ratio of the integrated intensity of the (111) plane and the (200) plane in X-ray diffraction is I (200)
/ I (111) ≧ 4.6 When the heat treatment method was devised on the basis of a criterion, it was confirmed that the FCC metal having a good (100) preferred orientation was found to satisfy this criterion. Was. This is because the (111) plane and (200)
Plane, the integrated intensity of the (220) plane appears most strongly, but when azimuth control is not performed, the integrated intensity I (111) of each azimuth:
The ratio of I (200) : I (220) is usually based on 100: 46: 20. That is, I (200) / I (111)
The purpose of this study was to study the requirements at the time of heat treatment for controlling the orientation so that the ratio of the ratio becomes 10 times or more of the ratio value of 0.46 in a normal case.

【0007】マトリックス:上記FCCの中では、特に
Cuマトリックスを有するものがエレクトロマイグレー
ションに優れている。従って、上記FCC金属はCuマ
トリックスを有するものであることが好ましい。
Matrix: Among the above FCCs, those having a Cu matrix are particularly excellent in electromigration. Therefore, the FCC metal preferably has a Cu matrix.

【0008】純度:上記Cuの純度は膜の微細構造に大
きく影響を与えるが、その純度が6Nより劣化するとス
パッタリング膜の結晶性が劣化しエレクトロマイグレー
ション特性等にも悪影響を及ぼす。従って、上記Cuマ
トリックス純度は6N以上であることが望ましい。
Purity: The purity of the Cu greatly affects the fine structure of the film. However, if the purity is lower than 6N, the crystallinity of the sputtered film is deteriorated, and the electromigration characteristics and the like are adversely affected. Therefore, the Cu matrix purity is desirably 6N or more.

【0009】平均結晶粒径:平均結晶粒径が粗大になる
と、スパッタリングレート、膜の均一性が劣化してく
る。この現象は特に平均結晶粒径が200μmより大き
くなると顕著である。従って、平均結晶粒径は200μ
m以下であることが好ましい。
Average crystal grain size: When the average crystal grain size becomes coarse, the sputtering rate and the uniformity of the film deteriorate. This phenomenon is particularly remarkable when the average crystal grain size is larger than 200 μm. Therefore, the average crystal grain size is 200 μ
m or less.

【0010】最終熱処理: (100)優先方位を有するFCC金属を製造するため
には、再結晶を伴なういわゆる完全焼鈍を施す必要があ
る。特にマトリックスがCuからなる場合には熱処理温
度が493K未満あるいは熱処理時間が60sec未満
では再結晶が十分進行せず、熱処理温度が823Kより
高くあるいは熱処理時間が7200secを越えると経
済的に不利になるばかりでなく結晶粒の粗大化も生じて
しまう。従って、熱処理条件は493〜823Kで60
〜7200secとした。
Final heat treatment: To produce an FCC metal having the (100) preferred orientation, it is necessary to perform a so-called complete annealing accompanied by recrystallization. In particular, when the matrix is made of Cu, recrystallization does not sufficiently proceed if the heat treatment temperature is less than 493 K or the heat treatment time is less than 60 sec. Instead, the crystal grains become coarse. Therefore, the heat treatment conditions are 493 to 823K and 60.
と し た 7200 sec.

【0011】最終加工: (100)優先方位を有するFCC金属を製造するため
には、1方向圧延を施す必要がある。ここで圧延軸のず
れを合計で15°以上あるいは合計圧下率を20%未満
とすると、(100)面の集積度が弱くなる。従って最
終加工は、全パスの圧延軸のずれを±15°未満に制御
しながら1方向あるいは往復圧延を合計圧下率で20%
以上施すこととした。
Final processing: In order to produce FCC metal having the (100) preferred orientation, it is necessary to perform unidirectional rolling. Here, if the total deviation of the rolling axis is 15 ° or more or the total draft is less than 20%, the degree of integration of the (100) plane is reduced. Therefore, in the final processing, one-way or reciprocating rolling is performed with a total rolling reduction of 20% while controlling the deviation of the rolling axis of all passes to less than ± 15 °.
It was decided to apply above.

【0012】最終前加工熱処理:最終前加工熱処理とし
ては623〜873Kで加工率20%以上の熱間加工を
施し、さらに加工率10%以上の冷間加工と493〜8
23Kで60〜7200secの熱処理を少なくとも2
回以上繰り返し行う必要がある。これらの条件を外れる
といずれも最終組織は混粒となり、かつ平均結晶粒径を
200μm以下に制御することは、最終加工熱処理をい
かに行うとも困難である。以上のように結晶方位の制御
されたFCC金属は各種電気電子部品用材料として使用
されるのはもちろんのこと、各種スパッタリングターゲ
ット用素材として好適な材料である。次に本発明を実施
例により詳細に説明する以下に示す製造方法によりスパ
ッタリングターゲット用材料を製造し、特性調査を行っ
た。
Final pre-processing heat treatment: The final pre-processing heat treatment includes hot working at a work rate of 20% or more at 623 to 873K, and cold working at a work rate of 10% or more and 493 to 8
Heat treatment at 23K for 60-7200 sec for at least 2
It needs to be repeated more than once. If these conditions are not satisfied, the final structure becomes mixed grains in any case, and it is difficult to control the average crystal grain size to 200 μm or less, no matter how the final working heat treatment is performed. As described above, the FCC metal whose crystal orientation is controlled is not only used as a material for various electric and electronic parts, but also a material suitable as a material for various sputtering targets. Next, a sputtering target material was manufactured by the following manufacturing method for describing the present invention in more detail with reference to examples, and the characteristics were investigated.

【0013】[0013]

【実施例1】265×265×60t mmの7N高純度
銅を用い723K熱間クロス圧延にて320×320×
42t mmに加工した。この時の合計圧下率は約30%
である。得られた熱延板の上下面を1mmずつ切削加工
を施し、320×320×40t mmに加工した。得ら
れた切削板を用い冷間一方向圧延にて380×320×
34t mmに加工した。この時の合計圧下率は約15%
である。得られた冷延板を用い673Kで3600se
cの熱処理を行った。得られた熱処理板を用い、一工程
前の冷間圧延と圧延軸を同じにして冷間一方向圧延を行
い450×320×29t mmに加工した。この時の合
計圧下率は約15%である。得られた冷延板を用い67
3Kで3600secの熱処理を行った。得られた熱処
理板を用い、一工程前の冷間圧延とは圧延軸を90°ず
らせて冷間一方向圧延を行い450×450×20t
mに加工した。このとき合計圧下率は約30%である。
得られた冷延板を用い623Kで1200secの熱処
理を行った。得られた熱処理板より切削加工により、直
径400φmm×15t mmのスパッタリングターゲッ
ト用材料を得た。
Embodiment 1 320 × 320 × by 723K hot cross rolling using 7N high-purity copper of 265 × 265 × 60 t mm.
It processed to 42 tmm . The total draft at this time is about 30%
It is. The upper and lower surfaces of the obtained hot rolled sheet were cut by 1 mm each, and processed into 320 × 320 × 40 tmm . 380 × 320 × by cold unidirectional rolling using the obtained cutting plate
It processed to 34 tmm . The total draft at this time is about 15%
It is. 3600 sec at 673K using the obtained cold rolled sheet
The heat treatment of c was performed. Using the obtained heat-treated plate, cold unidirectional rolling was performed by using the same rolling axis as that of the cold rolling one step before, and processed to 450 × 320 × 29 tmm . The total draft at this time is about 15%. Using the obtained cold rolled sheet, 67
Heat treatment was performed at 3K for 3600 seconds. Using the obtained heat-treated plate, cold rolling in one direction was performed by performing cold unidirectional rolling by shifting the rolling axis by 90 ° with 450 × 450 × 20 tm.
m. At this time, the total draft is about 30%.
The obtained cold-rolled sheet was subjected to a heat treatment at 623K for 1200 seconds. By cutting from the obtained heat-treated plate, to obtain a sputtering target material having a diameter of 400φmm × 15 t mm.

【0014】[0014]

【実施例2】265×265×60t mmの6N高純度
銅を用い723K熱間クロス圧延にて320×320×
42t mmに加工した。この時の合計圧下率は約30%
である。得られた熱延板の上下面を1mmずつ切削加工
を施し、320×320×40t mmに加工した。得ら
れた切削板を用い冷間一方向圧延にて380×320×
34t mmに加工した。この時の合計圧下率は約15%
である。得られた冷延板を用い673Kで3600se
cの熱処理を行った。得られた熱処理板を用い、一工程
前の冷間圧延とは圧延軸を同じにして冷間一方向圧延を
行い450×320×29t mmに加工した。この時の
合計圧下率は約15%である。得られた冷延板を用い6
73Kで3600secの熱処理を行った。得られた熱
処理板を用い、一工程前の冷間圧延とは圧延軸を90°
ずらせて冷間一方向圧延を行い、450×450×20
t mmに加工した。この時合計圧下率は約30%であ
る。得られた冷延板を用い623Kで1200secの
熱処理を行った。得られた熱処理板より切削加工によ
り、直径400φmm×15t mmのスパッタリングタ
ーゲット用材料を得た。
Example 2 320 × 320 × by 723K hot cross rolling using 6N high-purity copper of 265 × 265 × 60 t mm.
It processed to 42 tmm . The total draft at this time is about 30%
It is. The upper and lower surfaces of the obtained hot rolled sheet were cut by 1 mm each, and processed into 320 × 320 × 40 tmm . 380 × 320 × by cold unidirectional rolling using the obtained cutting plate
It processed to 34 tmm . The total draft at this time is about 15%
It is. 3600 sec at 673K using the obtained cold rolled sheet
The heat treatment of c was performed. Using the obtained heat-treated plate, cold unidirectional rolling was performed by using the same rolling axis as that of the cold rolling one step before, and processed to 450 × 320 × 29 t mm. The total draft at this time is about 15%. 6 using the obtained cold rolled sheet
Heat treatment was performed at 73K for 3600 seconds. Using the obtained heat-treated plate, the rolling axis is 90 ° with the cold rolling one step before.
Perform cold unidirectional rolling with a shift of 450 × 450 × 20
It was processed to t mm. At this time, the total draft is about 30%. The obtained cold-rolled sheet was subjected to a heat treatment at 623K for 1200 seconds. By cutting from the obtained heat-treated plate, to obtain a sputtering target material having a diameter of 400φmm × 15 t mm.

【0015】[0015]

【比較例1】265×265×60t mmの7N高純度
銅を用い冷間クロス圧延にて320×320×42t
mに加工した。この時の合計圧下率は約30%である。
得られた冷延板の上下面を1mmずつ切削加工を施し、
320×320×40t mmに加工した。得られた切削
板を用い冷間一方向圧延にて380×320×34t
mに加工した。この時の合計圧下率は約15%である。
得られた冷延板を用い673Kで3600secの熱処
理を行った。得られた熱処理板を用い、一工程前の冷間
圧延と圧延軸を同じにして冷間一方向圧延を行い450
×320×29t mmに加工した。この時の合計圧下率
は約15%である。得られた冷延板を用い673Kで3
600secの熱処理を行った。得られた熱処理板を用
い、一工程前の冷間圧延とは圧延軸を90°ずらせて冷
間一方向圧延を行い450×450×20t mmに加工
した。この時の合計圧下率は約30%である。得られた
冷延板を用い623Kで1200secの熱処理を行っ
た。得られた熱処理板より切削加工により、直径400
φmm×15t mmのスパッタリングターゲット用材料
を得た。
[Comparative Example 1] 265 × 265 × 60 t mm of 7N high purity copper 320 × 320 × at cold cross rolling with 42 t m
m. The total draft at this time is about 30%.
The upper and lower surfaces of the obtained cold rolled sheet are cut by 1 mm,
It processed to 320x320x40 tmm. 380 × 320 × 34 t m by cold unidirectional rolling using the obtained cutting plate
m. The total draft at this time is about 15%.
Using the obtained cold-rolled sheet, heat treatment was performed at 673K for 3600 seconds. Using the obtained heat-treated sheet, cold unidirectional rolling was performed by using the same rolling axis as that of the cold rolling one step before, and 450 ° C.
It processed to × 320 × 29 t mm. The total draft at this time is about 15%. 3 at 673K using the obtained cold rolled sheet
Heat treatment was performed for 600 seconds. Using the obtained heat-treated sheet, cold rolling in one direction was performed by performing cold unidirectional rolling with the rolling axis shifted by 90 ° from that of the cold rolling before one step, and processed to 450 × 450 × 20 tmm . The total draft at this time is about 30%. The obtained cold-rolled sheet was subjected to a heat treatment at 623K for 1200 seconds. 400 mm in diameter by cutting from the heat-treated plate obtained
It was obtained φmm × 15 t mm sputtering target material for.

【0016】[0016]

【比較例2】265×265×60t mmの7N高純度
銅を用い723K熱間クロス圧延にて320×320×
42t mmに加工した。この時の合計圧下率は約30%
である。得られた熱延板の上下面を1mmずつ切削加工
を施し、320×320×40t mmに加工した。得ら
れた切削板を用い冷間一方向圧延にて380×320×
34t mmに加工した。この時の合計圧下率は約15%
である。得られた冷延板を用い673Kで3600se
cの熱処理を行った。得られた熱処理板を用い、一工程
前の冷間圧延とは圧延軸を90°ずらせて冷間一方向圧
延を行い380×380×29t mmに加工した。この
時の合計圧下率は約15%である。得られた冷延板を用
い673Kで3600secの熱処理を行った。得られ
た熱処理板を用い、冷間一方向圧延にて450×380
×24t mmに加工した。この時合計圧下率は約17%
である。得られた冷延板を用い623Kで1200se
cの熱処理を行った。得られた熱処理板を用い、一工程
前の冷間圧延とは圧延軸を90°ずらせて冷間一方向圧
延を行い450×450×20t mmに加工した。この
時の合計圧下率は約15%である。得られた冷延板を用
い623Kで1200secの熱処理を行った。得られ
た熱処理板より切削加工により、直径400φmm×1
t mmのスパッタリングターゲット用材料を得た。得
られたスパッタリングターゲット用材料について、純
度、結晶粒径、結晶方位について測定を行った。その結
果を表1に示す。
COMPARATIVE EXAMPLE 2 320 × 320 × by 723K hot cross rolling using 7N high purity copper of 265 × 265 × 60 t mm.
It processed to 42 tmm . The total draft at this time is about 30%
It is. The upper and lower surfaces of the obtained hot rolled sheet were cut by 1 mm each, and processed into 320 × 320 × 40 tmm . 380 × 320 × by cold unidirectional rolling using the obtained cutting plate
It processed to 34 tmm . The total draft at this time is about 15%
It is. 3600 sec at 673K using the obtained cold rolled sheet
The heat treatment of c was performed. Using the obtained heat-treated plate, cold rolling in one direction was shifted by 90 ° from the cold rolling before one step, and cold rolling was performed in one direction to be processed to 380 × 380 × 29 tmm . The total draft at this time is about 15%. Using the obtained cold-rolled sheet, heat treatment was performed at 673K for 3600 seconds. Using the obtained heat-treated plate, 450 × 380 by cold unidirectional rolling
It processed to × 24 tmm . At this time, the total draft is about 17%
It is. 1200 sec at 623K using the obtained cold rolled sheet
The heat treatment of c was performed. Using the obtained heat-treated sheet, cold rolling in one direction was performed by performing cold unidirectional rolling with the rolling axis shifted by 90 ° from that of the cold rolling before one step, and processed to 450 × 450 × 20 tmm . The total draft at this time is about 15%. The obtained cold-rolled sheet was subjected to a heat treatment at 623K for 1200 seconds. 400mm in diameter x 1 by cutting from the obtained heat treated plate
A 5 tmm material for a sputtering target was obtained. The purity, crystal grain size, and crystal orientation of the obtained sputtering target material were measured. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】また実施例1にて製造したスパッタリング
ターゲット用高純度銅と現在基板ウエハー上のスパッタ
配線材料として使用されているAlターゲットにて製造
した膜についてBEM(breakdown energy of metals)
法によりエレクロトマイグレーション評価の平均故障エ
ネルギー(MEF=mdeian energy to fail )を求めた
その結果を表2に示す。
The BEM (breakdown energy of metals) of the film manufactured using the high-purity copper for the sputtering target manufactured in Example 1 and the Al target currently used as a sputter wiring material on the substrate wafer.
The average failure energy (MEF = mdeian energy to fail) of the electromigration evaluation obtained by the method is shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表2に示す結果より、本発明にて製造した
スパッタリングターゲット用高純度銅は現在基板ウエハ
ー上のスパッタ配線材料として使用されているAlター
ゲットに比べてエレクトロマイグレーション特性に優れ
ており、また、純度、結晶方位、結晶粒度も最適であ
り、スパッタリングターゲット用材料として極めて優れ
ていることは明らかである。
From the results shown in Table 2, the high-purity copper for a sputtering target manufactured by the present invention is superior in electromigration characteristics as compared with an Al target currently used as a sputter wiring material on a substrate wafer. The purity, crystal orientation, and crystal grain size are also optimal, and it is clear that they are extremely excellent as a material for a sputtering target.

【0021】[0021]

【発明の効果】以上の実施例から明らかなように、本発
明に係るFCC金属は適切な純度、結晶方位、結晶粒度
を有しており、各種用途に使用できることはもちろんで
あるが、特にスパッタリングターゲット用材料として使
用する時には、スパッタリングレート、膜の均一性に優
れ、製造した膜のエレクトロマイグレーション性にも優
れているものである。さらに、本発明では、その適切な
製造法も示したものである。
As is clear from the above examples, the FCC metal according to the present invention has an appropriate purity, crystal orientation and crystal grain size, and can be used for various purposes. When used as a target material, it is excellent in sputtering rate and film uniformity, and the manufactured film is also excellent in electromigration property. Furthermore, the present invention also shows an appropriate manufacturing method thereof.

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 685 C22F 1/00 685Z 686 686B 691 691B 691C 694 694A C23C 14/34 C23C 14/34 A Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 685 C22F 1/00 685Z 686 686B 691 691B 691C 694 694A C23C 14/34 C23C 14/34 A

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 X線回折法で測定される結晶の(11
1)面の積分強度I(111) に対する(200)面の積分
強度I(200) の比が、式: I(200) /I(111) ≧4.6 の関係を満たす比の値を有していることを特徴とする
(100)優先方位を持つFCC金属。
The present invention relates to a method for measuring (11)
1) The ratio of the integrated intensity I (200) of the (200 ) surface to the integrated intensity I (111) of the surface has a value satisfying the relationship of the following formula: I (200) / I (111) ≧ 4.6. An FCC metal having a (100) preferred orientation.
【請求項2】 上記FCC金属がCuマトリックスを有
することを特徴とする請求項1に記載のFCC金属。
2. The FCC metal of claim 1, wherein said FCC metal has a Cu matrix.
【請求項3】 上記Cuの純度が6N以上であることを
特徴とする請求項2に記載のFCC金属。
3. The FCC metal according to claim 2, wherein the purity of the Cu is 6N or more.
【請求項4】 平均結晶粒径が200μm以下であるこ
とを特徴とする請求項2に記載のFCC金属。
4. The FCC metal according to claim 2, wherein the average crystal grain size is 200 μm or less.
【請求項5】 純度6N以上のCuマトリックスを有
し、その平均結晶粒径が200μm以下であり、かつX
線回折における(111)面の積分強度I(111) に対す
る(200)面の積分強度I(200) の比が、式: I(200) /I(111) ≧4.6 の関係を満たす比の値を有していることを特徴とする
(100)優先方位を持つFCC金属。
5. It has a Cu matrix having a purity of 6 N or more, an average crystal grain size of 200 μm or less, and X
The ratio of the integrated intensity of the (111) plane in the line diffraction I (111) for (200) plane of the integrated intensity I (200) is of the formula: ratio satisfying I (200) / I (111) ≧ 4.6 Relationship An FCC metal having a (100) preferred orientation, characterized in that
【請求項6】 (100)優先方位を持つFCC金属の
製造方法であって、全パスの圧延軸のずれを±15°未
満に制御しながら1方向あるいは往復圧延を合計圧下率
で20%以上施した後再結晶を伴なう、完全焼鈍を施す
ことによりX線回折で測定される結晶の(111)面の
積分強度I(111) に対する(200)面の積分強度I
(200) の比が、式: I(200) /I(111) ≧4.6 の関係を満たす比の値を有していることを特徴とする
(100)優先方位を持つFCC金属の製造方法。
6. A method for producing an FCC metal having a (100) preferred orientation, wherein one-way or reciprocal rolling is performed in a total rolling reduction of 20% or more while controlling a deviation of a rolling axis in all passes to less than ± 15 °. The integrated intensity I of the (200) plane relative to the integrated intensity I (111) of the (111) plane of the crystal measured by X-ray diffraction by performing complete annealing accompanied by recrystallization after the application
(200) the ratio of the formula: I (200) / I (111), characterized in that it has a value of the ratio that satisfies the relation of ≧ 4.6 (100) the production of FCC metals with preferred orientation Method.
【請求項7】 Cuマトリックスを有する(100)優
先方位を持つFCC金属の製造方法であって、全パスの
圧延軸のずれを±15°未満に制御しながら1方向ある
いは往復圧延を合計圧下率で20%以上施した後498
〜823Kで60〜7200secの熱処理を行うこと
を特徴とした請求項6に記載のFCC金属の製造方法。
7. A method for producing an FCC metal having a (100) preferred orientation having a Cu matrix, wherein a rolling reduction in one direction or reciprocal rolling is controlled while controlling a deviation of a rolling axis in all passes to less than ± 15 °. 498 after applying 20% or more with
The method for producing an FCC metal according to claim 6, wherein the heat treatment is performed at 60 to 7200 sec at -823K.
【請求項8】 Cuの純度が6N以上である(100)
優先方位を持つことを特徴とする請求項7に記載のFC
C金属の製造方法。
8. The purity of Cu is 6N or more (100).
The FC according to claim 7, wherein the FC has a preferred direction.
Method for producing C metal.
【請求項9】 平均結晶粒径が200μm以下の(10
0)優先方位を持つFCC金属の製造方法であって、6
23〜873Kで加工率20%以上の熱間加工を施し、
さらに加工率10%以上の冷間加工と493〜823K
で60〜7200secの熱処理を少なくとも2回以上
繰り返し行い、かつ、全パスの圧延軸のずれを±15°
未満に制御しながら1方向あるいは往復圧延を合計圧下
率で20%以上施した後498〜823Kで60〜72
00secの熱処理を行うことを特徴とした請求項6に
記載のFCC金属の製造方法。
9. The method according to claim 1, wherein the average crystal grain size is 200 μm or less.
0) A method for producing an FCC metal having a preferred orientation,
Perform hot working at a working rate of 20% or more at 23 to 873K,
Furthermore, cold working with a working ratio of 10% or more and 493 to 823K
The heat treatment for 60 to 7200 sec is repeated at least twice or more, and the deviation of the rolling axis in all passes is ± 15 °.
After performing one-way or reciprocating rolling at a total reduction ratio of 20% or more while controlling to less than 60 to 72 at 498 to 823K.
The method for producing an FCC metal according to claim 6, wherein the heat treatment is performed for 00 seconds.
【請求項10】 請求項1〜5のいずれかに記載の(1
00)優先方位を持つFCC金属からなるターゲット用
素材。
10. The method according to claim 1, wherein (1)
00) Target material made of FCC metal with preferred orientation.
【請求項11】 請求項6〜9のいずれかの方法で製造
された(100)優先方位を持つFCC金属からなるタ
ーゲット用素材。
11. A target material made of an FCC metal having a (100) preferred orientation manufactured by the method according to claim 6. Description:
JP35817396A 1996-12-27 1996-12-27 Fcc metal in which crystal orientation is regulated and its production Pending JPH10195609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35817396A JPH10195609A (en) 1996-12-27 1996-12-27 Fcc metal in which crystal orientation is regulated and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35817396A JPH10195609A (en) 1996-12-27 1996-12-27 Fcc metal in which crystal orientation is regulated and its production

Publications (1)

Publication Number Publication Date
JPH10195609A true JPH10195609A (en) 1998-07-28

Family

ID=18457924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35817396A Pending JPH10195609A (en) 1996-12-27 1996-12-27 Fcc metal in which crystal orientation is regulated and its production

Country Status (1)

Country Link
JP (1) JPH10195609A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041535A1 (en) 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
JP2009108376A (en) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk Copper foil and flexible printed circuit board using the same
WO2011018895A1 (en) * 2009-08-12 2011-02-17 株式会社アルバック Sputtering target and method for manufacturing a sputtering target
WO2011024909A1 (en) * 2009-08-28 2011-03-03 古河電気工業株式会社 Copper material for use in a sputtering target, and manufacturing method therefor
WO2011034127A1 (en) * 2009-09-18 2011-03-24 古河電気工業株式会社 Copper material for use as sputtering target and process for producing same
JP2012172265A (en) * 2011-02-22 2012-09-10 Heraeus Materials Technology Gmbh & Co Kg Tubular sputter target
US20130008692A1 (en) * 2010-03-17 2013-01-10 Keiichi Kimura Metal tape material and interconnector for solar module current collection
JP2013019010A (en) * 2011-07-08 2013-01-31 Furukawa Electric Co Ltd:The Copper material for sputtering target and method for production thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041535A1 (en) 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
JP2009108376A (en) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk Copper foil and flexible printed circuit board using the same
US9017493B2 (en) 2009-08-12 2015-04-28 Ulvac, Inc. Method of manufacturing a sputtering target and sputtering target
WO2011018895A1 (en) * 2009-08-12 2011-02-17 株式会社アルバック Sputtering target and method for manufacturing a sputtering target
KR101273021B1 (en) * 2009-08-12 2013-06-10 가부시키가이샤 아루박 Sputtering target and method for manufacturing a sputtering target
JP5433684B2 (en) * 2009-08-12 2014-03-05 株式会社アルバック Manufacturing method of sputtering target
CN102171380A (en) * 2009-08-12 2011-08-31 株式会社爱发科 Sputtering target and method for manufacturing a sputtering target
TWI460298B (en) * 2009-08-12 2014-11-11 Ulvac Inc Method of manufacturing sputtering target and sputtering target
CN102482767A (en) * 2009-08-28 2012-05-30 古河电气工业株式会社 Copper material for use in a sputtering target, and manufacturing method therefor
JP4974197B2 (en) * 2009-08-28 2012-07-11 古河電気工業株式会社 Copper material for sputtering target and method for producing the same
TWI504769B (en) * 2009-08-28 2015-10-21 Furukawa Electric Co Ltd Copper material for sputtering target and method of manufacturing the same
WO2011024909A1 (en) * 2009-08-28 2011-03-03 古河電気工業株式会社 Copper material for use in a sputtering target, and manufacturing method therefor
JP4974198B2 (en) * 2009-09-18 2012-07-11 古河電気工業株式会社 Copper material used for sputtering target and method for producing the same
CN102482768A (en) * 2009-09-18 2012-05-30 古河电气工业株式会社 Copper material for use as sputtering target and process for producing same
WO2011034127A1 (en) * 2009-09-18 2011-03-24 古河電気工業株式会社 Copper material for use as sputtering target and process for producing same
EP2549489A4 (en) * 2010-03-17 2013-12-04 Nippon Steel & Sumitomo Metal Corp Metal tape material, and interconnector for solar cell collector
EP2549489A1 (en) * 2010-03-17 2013-01-23 Nippon Steel & Sumitomo Metal Corporation Metal tape material, and interconnector for solar cell collector
US20130008692A1 (en) * 2010-03-17 2013-01-10 Keiichi Kimura Metal tape material and interconnector for solar module current collection
US9382603B2 (en) * 2010-03-17 2016-07-05 Nippon Steel & Sumitomo Metal Corporation Metal tape material and interconnector for solar module current collection
JP2012172265A (en) * 2011-02-22 2012-09-10 Heraeus Materials Technology Gmbh & Co Kg Tubular sputter target
US9334564B2 (en) 2011-02-22 2016-05-10 Heraeus Deutschland GmbH & Co. KG Tube-shaped sputtering target
JP2013019010A (en) * 2011-07-08 2013-01-31 Furukawa Electric Co Ltd:The Copper material for sputtering target and method for production thereof

Similar Documents

Publication Publication Date Title
JP2857015B2 (en) Sputtering target made of high-purity aluminum or its alloy
KR100603079B1 (en) Ag-Bi-BASE ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING THE SAME
JP4883546B2 (en) Method for manufacturing tantalum sputtering target
WO2013027437A1 (en) Rolled copper foil
KR20220146466A (en) Pure copper plate, copper/ceramic bonded body, insulated circuit board
JP3798260B2 (en) Copper alloy for electric and electronic parts and electric and electronic parts
US6197134B1 (en) Processes for producing fcc metals
JP2001049369A (en) Copper alloy for electronic material and its production
JPH10195611A (en) Fcc metal in which crystal orientation is regulated and its production
JP2006274289A (en) Titanium-copper alloy having excellent strength and bending workability, and method for producing the same
EP3211118B1 (en) Tantalum sputtering target, and production method therefor
JPH10195609A (en) Fcc metal in which crystal orientation is regulated and its production
TWI695894B (en) Titanium target for sputtering and its manufacturing method, and manufacturing method of titanium-containing thin film
JP6293928B2 (en) Tantalum sputtering target and manufacturing method thereof
TWI627291B (en) Sputter target based on a silver alloy
JPH10195610A (en) Fcc metal in which crystal orientation is regulated and its production
JP2004027358A (en) Method for manufacturing target and target
JP2706635B2 (en) High purity titanium target for sputtering and method for producing the same
JP6182296B2 (en) Sputtering target and manufacturing method thereof
JPH0774420B2 (en) Method for producing beryllium copper alloy
JP6553813B2 (en) Tantalum sputtering target
JP2002069626A (en) Sputtering target and its production method
JPH0790560A (en) High purity titanium sputtering target
JPH0790564A (en) High-purity titanium sputtering target
JPH0790561A (en) High-purity titanium sputtering target

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Effective date: 20040318

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20040607

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040812

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A02