JP3798260B2 - Copper alloy for electric and electronic parts and electric and electronic parts - Google Patents

Copper alloy for electric and electronic parts and electric and electronic parts Download PDF

Info

Publication number
JP3798260B2
JP3798260B2 JP2001148047A JP2001148047A JP3798260B2 JP 3798260 B2 JP3798260 B2 JP 3798260B2 JP 2001148047 A JP2001148047 A JP 2001148047A JP 2001148047 A JP2001148047 A JP 2001148047A JP 3798260 B2 JP3798260 B2 JP 3798260B2
Authority
JP
Japan
Prior art keywords
orientation
copper alloy
electronic parts
electrical
cube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001148047A
Other languages
Japanese (ja)
Other versions
JP2002339028A (en
Inventor
桂 梶原
康博 有賀
康昭 杉崎
義男 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001148047A priority Critical patent/JP3798260B2/en
Publication of JP2002339028A publication Critical patent/JP2002339028A/en
Application granted granted Critical
Publication of JP3798260B2 publication Critical patent/JP3798260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気電子部品用銅合金及び電気電子部品に関する技術分野に属し、特には、半導体用リードフレーム、端子、コネクター、ブスバー等の電気電子部品用の銅合金であって、加工性に優れた電気電子部品用銅合金に関する技術分野に属するものである。
【0002】
【従来の技術】
電子機器に用いられる半導体装置の大容量化、小型化、高機能化に伴い、半導体装置に使用されるリードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されている。
【0003】
半導体用リードフレーム等の電気電子部品材料としては、種々のFe含有銅合金(Feを含有する銅合金)が用いられている。即ち、銅母相中にFe又はFe−P、Fe−Si、Fe−Ti等の金属間化合物を析出させると、導電率および強度に優れる銅合金が比較的簡単に得られるため、C19400(Cu−2.35Fe−0.03P−0.12Zn)、C19500(Cu−1.5Fe−0.8Co−0.1P−0.6Sn)、C19700(Cu−0.6Fe−0.2P−0.05Mg)、Cu−Fe−Si、Cu−Fe−Ti等の多種のFe含有銅合金が半導体用リードフレーム、端子、コネクター等の電気、電子部品材料として大量に用いられている。
【0004】
しかし、これらの電気電子部品材料(Fe含有銅合金)を加工、成形する場合において、冷間圧延における板の波打ちや蛇行、残留応力の不均一、スリッターした条の蛇行、スタンピング加工における曲がりやバリの発生、リード曲げ加工部の肌荒れや割れ、製品での強度低下等の問題が発生することがあり、これが製品の歩留まりや加工時の生産性を低下させていた。
【0005】
従来、電気電子部品材料としては前記のようなFe含有銅合金が用いられているが、これらのFe含有銅合金の特性の制御はFe、P、Zn等の主成分の量の調整およびその他のSn、Mg等の微量添加元素による制御が主であった。しかし、近年では、リードフレーム用銅合金に対する更なる高品質化、特性向上が要求されており、単なる成分制御だけでは、かかる要求を満たすことができないことから、内部組織や析出状態の制御による方法が提案され、開示されている。例えば、特開平10−265873号公報には、圧延表面の板幅方向の平均結晶粒径が3〜60μm で、且つ、その値の80〜120%の寸法の結晶粒の数が全結晶粒の70%以上である電気電子部品用銅合金、即ち、このように結晶粒径、混粒組織を制御することにより、加工性を制御した電気電子部品用銅合金が開示されている。
【0006】
【発明が解決しようとする課題】
以上よりわかる如く、従来の電気電子部品用銅合金での特性の制御は、銅母相中にFe及び/又はFe系金属間化合物を析出させること及び/又は再結晶粒の制御によるものである。
【0007】
このような制御は、析出挙動や再結晶挙動の厳密な管理によって達成されていたが、その挙動を安定的に制御することが難しく、特に、コイル内の加工性がばらつき易いといった問題が生じる。
【0008】
また、近年の益々の軽薄短小化に伴い、従来の組織や析出物の制御では充分な加工性を満足させることはできない。
【0009】
そのため、加工性を更に安定的に向上させるためには、加工性、成形性の観点から、これらを支配する組織的因子を本質的に解明し、別の観点での改善が必要となっている。
【0010】
そこで、本発明者らは、Fe含有銅合金の加工性を支配する組織的因子について、鋭意検討を重ねた。その結果、成形性の悪いものでは、その原因は集合組織が十分に制御されていなかったことにあることを見出した。即ち、結晶方位の違いにより、板材の塑性異方性が変化し、プレス成形性が影響を受けることを見出し、これまで集合組織(ある特定の結晶方位が集合した組織)が制御されていなかったために、安定的な加工性が得られなかったことがわかった。その集合組織の発達度合により板材の部位による変形能の相違が大きくなり、前記の如き冷間圧延における板の波打ちや蛇行、残留応力の不均一、スリッターした条の蛇行、スタンピング加工における曲がりやバリの発生、リード曲げ加工部の肌荒れや割れ、製品での強度低下等の問題が発生することがわかった。
【0011】
本発明は、このような知見に基づいてなされたものであって、その目的は、前記従来の電気電子部品用銅合金(Fe含有銅合金)が有する問題点を解消し、加工性に優れた電気電子部品用銅合金および品質に優れた電気電子部品を提供しようとするものである。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る電気電子部品用銅合金および電気電子部品は、請求項1〜記載の電気電子部品用銅合金、請求項記載の電気電子部品としており、それは次のような構成としたものである。
【0013】
即ち、請求項1記載の電気電子部品用銅合金は、Fe:0.01〜4.0質量%を含有すると共に、P:0.0001〜0.7質量%、Si:0.001〜1.0質量%、Ti:0.001〜1.0質量%の1種以上を含有し、更に、Zn:0.02〜5.0質量%、Sn:0.01〜3.0質量%、Co:0.01〜3.0質量%、Mg:0.01〜3.0質量%、Mn:0.01〜1.5質量%の1種以上を含有し、残部がCu及び不可避的不純物からなる電気電子部品用銅合金であって、(200)面のX線回折強度:I(200)と(220)面のX線回折強度:I(220)との比:I(200)/I(220)が0.5以上10以下であり、Cube方位の方位密度:D(Cube方位)が1以上50以下であることを特徴とする電気電子部品用銅合金である(第1発明)。
【0014】
請求項2記載の電気電子部品用銅合金は、更に、Al:0.005質量%以下、Cr:0.001質量%以下、Ca:0.0003質量%以下、Ni:0.002質量%以下を含有する請求項記載の電気電子部品用銅合金である(第発明)。
【0015】
請求項3記載の電気電子部品用銅合金は、Cube方位の方位密度:D(Cube方位)とS方位の方位密度:D(S方位)との比:D(Cube方位)/D(S方位)が0.1以上5以下である請求項1または2記載の電気電子部品用銅合金である(第発明)。
【0016】
請求項記載の電気電子部品は、請求項1〜のいずれかに記載の電気電子部品用銅合金からなる電気電子部品である(第発明)。
【0017】
【発明の実施の形態】
本発明は、例えば次のような形態で実施する。
Fe含有銅合金(Feを含有する銅合金)よりなる鋳塊を面削加工してスラブにし、これを加熱して熱間圧延した後、面削加工し、しかる後、冷間圧延と中間焼鈍を繰り返して、電気電子部品用の板材を得る。このとき、特に冷間圧延での加工率と中間焼鈍条件を調整することにより、得られる板材の(200)面のX線回折強度:I(200)と(220)面のX線回折強度:I(220)との比:I(200)/I(220)が0.5以上10以下となるようにする。Cube方位の方位密度:D(Cube方位)が1以上50以下となるようにする。そうすると、本発明に係る電気電子部品用銅合金が得られる。
【0018】
かかる形態で本発明に係る電気電子部品用銅合金が得られる。そして、この電気電子部品用銅合金を加工することにより、本発明に係る電気電子部品が得られる。
【0019】
以下、本発明について主にその作用効果を説明する。
【0020】
通常の銅合金板の場合、主に、以下に示す如きCube方位、Goss方位、Brass 方位(以下、B方位ともいう)、Copper方位(以下、Cu方位ともいう)、S方位等と呼ばれる集合組織を形成し、それらに応じた結晶面が存在する。これらの集合組織のでき方は同じ結晶系の場合でも加工、熱処理方法によって異なり、圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延面は{ABC}で表現され、圧延方向は<DEF>で表現される。かかる表現に基づき、各方位は下記の如く表現される。
【0021】
Cube方位 {001}<100>
Goss方位 {011}<100>
Rotated-Goss方位 {011}<011>
Brass 方位(B方位) {011}<211>
Copper方位(Cu方位) {112}<111>
(若しくはD方位{4 4 11}<11 11 8 >
S方位 {123}<634>
B/G方位 {011}<511>
B/S方位 {168}<211>
P方位 {011}<111>
【0022】
本発明においては、基本的に、これらの結晶面から±10°以内のずれのものは同一の結晶面に属するものとする。ここで、B方位〜Cu方位〜S方位は各方位間で連続的に変化するファイバー集合組織(β-fiber)で存在している。
【0023】
これらの集合組織の評価、方位分布密度(Orientation Density)の測定は、通常のX線回折法を用いて行うことができる。X線回折強度比は、回折面の強度、即ち(200) 面、(220) 面、(110) 面のX線回折強度から求めることができる。更に、各方位の方位密度は、(100) 、(110) 、(111) の完全極点図又は不完全極点図(Pole Figure)を測定し、それから、結晶方位分布関数(Orientation Distribution Function : ODF )を用いて、各方位の強度ピーク値の合計に対する各方位の強度ピークの割合を計算することによって求められる(例えば、長島晋一編著「集合組織」,丸善株式会社刊,1984,P8-44 や、金属学会セミナー「集合組織」,日本金属学会編,1981,P3-7等)。あるいは、TEM による電子線回折法、又は、SEM(Scanning Electron Microscopy)-ECP(Electron Chaneling Pattern) 法、或いは、SEM-EBSP〔Electron Back Scattering(Scattered) Pattern 、若しくはEBSD(Diffraction) ともいう〕を用いて測定したデータを基に結晶方位分布関数を用いて方位密度を求めることができる。これらの方位分布は板厚方向に変化しているため、板厚方向に何点か任意にとって平均をとることによって求める方が好ましい。但し、リードフレーム等の半導体用材料に用いられる銅合金板の場合、板厚が0.1 〜0.3mmw程度であるため、そのままの板厚で測定した値でも評価できる。
【0024】
通常の銅合金板の集合組織は、上述のように、かなり多くの方位因子からなるが、これらの構成比率が変化すると板材の塑性異方性が変化し、加工性が変化することが判明した。そして、その中でも、特にCube方位の方位密度〔以下、D(Cube)ともいう〕を適正範囲に制御することにより、加工性の向上と安定化とを達成し得ることがわかった。
【0025】
スタンピング加工等の加工の際、変形中に均一変形することが望ましいが、Cube方位が強く発達し過ぎ、D(Cube)が上記適正範囲よりも高くなると、板面内の塑性異方性が強くなり、部分的に変形し易い個所と変形し難い個所が発生し、前述の如きスタンピング加工での曲がりやバリの発生等の問題が発生し易くなる。一方、Cube方位が少なく、D(Cube)が上記適正範囲よりも低くなると、これは他の結晶方位の発達が強くなることを意味し、別の面内異方性により、上記と同様の問題が発生する。このため、Cube方位粒の制御が重要である。
【0026】
上記D(Cube)の適正範囲は、1以上55以下である。(200) 面のX線回折強度:I(200) と(220) 面のX線回折強度:I(220) との比:I(200) /I(220) が0.5以上10以下であるとき、ほぼD(Cube)は1以上55以下となっている。ただし、I(200) /I(220) の値はCube方位以外の方位である(110) 面の強度によっても変化するので、I(200) /I(220) の値が本発明の範囲内であっても、D(Cube)の値が本発明の範囲外になることもある(逆の場合も同様である)。
【0027】
そこで、本発明に係る電気電子部品用銅合金は、Feを含有する電気電子部品用銅合金であって、(200) 面のX線回折強度:I(200) と(220) 面のX線回折強度:I(220) との比:I(200) /I(220) が0.5以上10以下であることとしている(第1発明)。この電気電子部品用銅合金は、前記知見よりわかる如く、加工性に優れている。ここで、I(200) /I(220) が0.5以上10以下であることとしているのは、0.5未満の場合にはCube方位以外の特定の結晶方位の発達が強くなり、異方性が強くなり、ひいては加工性が低下して不充分となり、10超の場合にはCube方位が強く発達し過ぎ、板面内の塑性異方性が強くなり、ひいては加工性が低下して不充分となるからである。
【0028】
上記I(200) /I(220) のより好ましい範囲は0.6以上9以下である。この場合、より高水準の加工性を有するものとなる。
【0029】
また、前記D(Cube)のより好ましい範囲は1以上50以下であり、この場合、D(Cube):1以上55以下の場合よりも、より高水準の加工性を有するものとなることから、本発明に係る電気電子部品用銅合金は、Feを含有する電気電子部品用銅合金であって、Cube方位の方位密度:D(Cube)が1以上50以下であることとしている(第1発明)。この電気電子部品用銅合金は、前記知見よりわかる如く、加工性に優れている。ここで、D(Cube)が1以上50以下であることとしているのは、1未満の場合にはCube方位以外の特定の結晶方位の発達が強くなり、異方性が強くなり、ひいては加工性が低下して不充分となり、50超の場合にはCube方位が強く発達し、板面内の塑性異方性が強くなり、ひいては加工性が低下して不充分となるからである。
【0030】
前記Cube方位の方位密度:D(Cube 方位) とS方位の方位密度:D(S方位)との比:D(Cube方位) /D(S方位)が0.1以上5以下である場合には、より好ましい高水準の加工性を有するものとなる(第発明)。即ち、前述のことからわかる如く板材の塑性異方性は各集合組織成分のバランスと深い関わりがあり、特に、Cube方位とS方位の方位密度の割合を制御することで、より好ましい加工性を得ることができ、D(Cube方位) /D(S方位)を0.1〜5とすることにより高水準の加工性を有するものとなる。ここで、D(Cube方位) /D(S方位)を0.1未満にすると、Cube方位よりS方位が相対的に強くなり、D(Cube方位) /D(S方位)を5超にすると、S方位よりCube方位が相対的に強くなり、いずれの場合も異方性が強くなり、加工性が低下する。更に、上記D(Cube方位) /D(S方位)を0.2〜4.5とした場合には、より一層高水準の加工性を有するものとなる。
【0031】
本発明において、電気電子部品用銅合金はFeを含有するが、その銅合金の成分や組成については特には限定されない。しかし、本発明の効果をより一層発揮させるため、あるいは、各種特性の点から、好ましい成分組成の範囲が存在する。かかる成分組成の範囲について、以下に説明する。尚、各成分の含有量の単位に関し質量%(重量%)は%と略して表示する。
【0032】
Fe量(含有量)が0.01%未満であると、Fe又はFe基金属間化合物の析出量が少ないため、リードフレーム、端子、コネクター等に要求される最近の高強度化に十分には応えることができず、また、特殊な加熱条件を設定しなくても整粒組織が得ることができるようにするため、Fe量は0.01%以上とすることが望ましい。一方、Fe量が4.0 %を超えると粗大なFeの晶出物が多量に発生し、これらの晶出物は強度向上に殆ど寄与せず、かえって曲げ加工性を劣化させ、プレス打抜き時に金型を摩耗させるため、Fe量は4.0 %以下とすることが望ましい。従って、Fe量は0.01〜4.0 %とすることが望ましい。この範囲の中で、より好ましい範囲は0.05〜3.0 %である。
【0033】
P,Si,TiはFeと安定な金属間化合物を形成し、Cuの母相に析出して銅合金の耐力、耐熱性を向上させる。金属間化合物を形成させるためにP,Si,Tiを添加する場合は、これらの一種以上を用いる。PはFeとFe2P又はFe3Pを形成し、SiはFeとFe3Si, Fe5Si3 又はFeSiを形成し、TiはFeとFe2Ti 又はFeTiを形成する。これらの含有量は、Pは0.0001〜0.7 %、Siは0.001 〜1.0 %、Tiは0.001 〜1.0 %とすることが好ましく、それぞれ下限値より少ないと、耐力、耐熱性が向上せず、上限値を超すと導電率が低下し、鋳造が難しくなり、熱延や冷延時に割れが発生しやすくなる。
【0034】
Zn,Sn,Co,Mg,Mnは強度を向上させる。Znはプレス加工性の向上(金型摩耗の低減)、マイグレーションの防止、錫めっき及びはんだの耐熱剥離防止等の効果を有する。Zn量が0.02%未満ではその効果が充分でなく、5.0 %を超えると、はんだ濡れ性が低下するので、Zn量は0.02〜5.0 %とすることが好ましい。Snはバネ限界値を向上させる。Sn量が0.01%未満ではその効果が充分でなく、3.0 %を超えると導電率が低下するので、Sn量は0.01〜3.0 %とすることが好ましい。Coは耐熱性を向上させる。Co量が0.01%未満ではその効果が充分でなく、3.0 %を超えると導電率が低下するので、Co量は0.01〜3.0 %とすることが好ましい。Mgはバネ限界値及びプレス加工性(金型摩耗)を改善し、マイグレーションを防止する他、Sと化合してMgS を形成し、鋳塊の熱間加工性を改善する。Mgが0.01%未満ではそれらの効果が充分でなく、3.0 %を超えて含有されると導電率を低下させ、鋳造が難しくなるので、Mg量は0.01〜3.0 %とすることが好ましい。Mnは耐熱性、鋳塊の熱間加工性を向上させる。Mn量が0.01%未満ではそれらの効果が充分でなく、1.5 %を超えると、はんだ濡れ性及び導電率が低下し、鋳造が難しくなるので、Mn量は0.01〜1.5 %とすることが好ましい。なお、上記元素中、Co,MnはそれぞれP,Siと化合物を形成するが、Fe−P、Fe−Si化合物以外に、Co,Mnのりん化物又は/及び珪化物が形成されても本発明に係る銅合金の効果を害するものではない。
【0035】
他の微量元素 Sn ,Pb,Ni,Mn,Cr,Al,Mg,Ca,Be,Si,Zr,In,Ag,Se,Te,Sb,Bi,S等についても、他の主特性である強度、導電率、めっき性等を改善する目的で、1種類又は2種類以上を添加することがあり、これらの添加は製品の特性を阻害しない限り許容される。
【0036】
従来の電気電子部品用銅合金の製造条件についての考え方は、成分設計と最適焼鈍条件の組み合わせによる制御であった。これは加工性と強度の観点で、析出物制御、結晶粒径の制御である。具体的な製造方法は、焼鈍条件の制御だけであった。これに対し、本発明は塑性異方性の改善という観点を集合組織の制御の観点から検討を行い、それ等に基づきなされたものである。集合組織の形成は、成分、加工条件、熱処理条件の単独の条件だけで決まるものではなく、それらの組み合わせで変化し、形成されるものである。特に、本発明者らは、加工の前工程での組織状態の影響を大きく受けることを見出したため、従来の方法では実現できなかった、組み合わせの条件により特性に影響を及ぼすCube方位の制御を可能とし、加工性の向上を実現することができた。
【0037】
本発明に係る電気電子部品用銅合金は、通常は鋳造、均質化熱処理、熱間圧延及び冷間圧延と焼鈍の繰り返しによる工程を経て製造されるが、化学成分や各工程の設定条件により、得られる集合組織は変わるので、一連の製造工程として、総合的に条件を選択する必要がある。目的とする集合組織が得られればよく、製造方法は特には限定されるものではないが、熱間圧延及び冷間圧延における製造条件の制御が特に重要である。
【0038】
本発明に係る電気電子部品用銅合金の製造に際し、好ましい製造条件や重要な事項等について、以下に具体的に説明する。
【0039】
鋳造方法としては一般にCu系合金で採用されている鋳造方法であればよく、連続鋳造が一般的である。鋳造後の均質化熱処理は、鋳塊内に生じたマクロ偏析を均質化する目的で行うため、900 〜1000℃程度の高温で行うのが一般的である。但し、本発明においては、ここでの固溶状態、析出物形態を所望の形態に制御することが重要である。それは、ここで生じる析出物または完全固溶せず残存した金属間化合物は、以降の熱処理過程での再結晶方位の優先核生成サイトとして働き、どのような集合組織が形成されるかを支配するからである。また、これらの析出物状態は、結晶粒径をも支配する。添加元素によって、Cu母相中への各金属間化合物の固溶温度は異なるため、最適均質化熱処理条件は添加元素に応じて適宜選択することが望ましい。
【0040】
均質化熱処理後の熱間圧延や冷間圧延の最適条件は、均質化熱処理後に形成される固溶状態、金属間化合物の分散状態によって変化するので、これらに応じて適宜選択することが望ましい。
【0041】
集合組織が形成される理由は、結晶には最もすべりやすい結晶面が存在するため、圧延加工により、ある特定の結晶方位に配向するからであり、その後の焼鈍によって更に特定の方位が発達するからである。本発明に係る銅合金の集合組織は、下記の如き圧延と焼鈍の組み合わせによる厳密な制御によって得ることができる。
【0042】
熱間圧延については、その総加工率を80%以上とすると共にパス数を5パス以上とすることが望ましい。熱間圧延の総加工率が80%未満の場合には、充分な集合組織が発達せず、また、板厚方向にも集合組織の不均一が生じ易く、特性ばらつきの面で好ましくない。パス数は熱間加工のパス間で生じる回復・再結晶挙動によってCube方位を制御する効果があり、5パス未満では充分ではない。
【0043】
熱間圧延後の冷間圧延については、冷間加工率50%以上の冷間圧延を行い、第1熱処理工程を施し、この後、冷間加工率90%以下(0%を含む)の冷間圧延を行い、第2熱処理工程を施した後、冷間加工率50%以上95%以下の最終冷間圧延を行うことが望ましい。途中の熱処理工程での熱処理温度は、合金成分における析出相によって変化させることが好ましい。上記の如く冷間加工率と熱処理(焼鈍)との組み合わせを制御することによって、本発明に係る銅合金の集合組織に制御することができる。
【0044】
尚、各冷間圧延工程での冷間加工率が上記冷間加工率の下限値になる場合は、Cube方位の方位密度がコイル内で部分的に高くなり、特性にばらつきが生じ易くなって好ましくない。一方、上記冷間加工率の上限値を超える場合は、Cube方位の発達が充分ではなく、他の圧延方位の発達が強くなり、塑性異方性が生じ易くなって好ましくない。
【0045】
上記第1熱処理工程及び第2熱処理工程は、基本的には、微細な析出物を出現させ、製品強度、導電率のレベルを制御する効果があり、添加元素、析出相の種類により、その析出温度は変化するため、熱処理条件は一律に限定されるものではない。但し、微細な析出物が多いほど、その後の冷間圧延工程で圧延集合組織成分(S方位、B方位、Cu方位等)の発達が強くなり、相対的にCube方位の量が低くなるため、最適に集合組織を得るためには、熱処理工程と冷間圧延工程の組み合わせにより制御することが重要である。
【0046】
本発明に係る電気電子部品用銅合金は、前記の如く加工性に優れているので、半導体用リードフレーム、端子、コネクター、ブスバー等の電気電子部品の材料として好適に用いることができ、それにより得られる電気電子部品は品質特性に優れ、電子機器用半導体装置の更なる大容量化、小型化、高機能化に寄与することができる(第発明)。
【0047】
【実施例】
本発明の実施例及び比較例を以下説明する。尚、本発明はこの実施例に限定されるものではない。
【0048】
表1に示す化学成分を有するFe含有銅合金をコアレス炉にて溶解し、種々の厚さの鋳塊を半連続鋳造法にて造塊した。次に、これらの鋳塊について表面面削量を調整して面削加工し、種々の厚さのスラブ(厚さ10mm〜300mm ×幅500mm ×長さ1000mm)スラブを得、これらのスラブを900 〜1000℃で1時間加熱した後、熱間圧延にて厚さ1〜20mmまで圧延した。このとき、熱間圧延の入り側の厚さ(スラブの厚さ)を鋳塊サイズ及び面削加工により調整し、熱間圧延で得る最終板の板厚を制御することにより、総圧下率(加工率)及びパス数を表2に示す如く変化させた。
【0049】
このようにして得られた熱間圧延板を面削加工した後、冷間圧延と中間焼鈍を繰り返して、厚さ:約0.25mmのリードフレーム用銅合金を製造した。このときの製造条件(初回冷間圧延での加工率、第1熱処理条件、第1熱処理後の冷間圧延での加工率、第2熱処理条件、第2熱処理後の最終冷間圧延での加工率)を表2に示す。得られた銅合金はコイル状のものである。
【0050】
このようにして得られたコイル状の銅合金について、コイル内から任意に試験材を採取し、下記の試験を行った。また、コイル内から任意に50mm角の板材を採取し、この4つ角それぞれの硬さの測定を行った。
【0051】
(X線回折強度、集合組織の測定)
前記コイルから採取された試験材について、通常のX線回折法により、ターゲットにCuを用い、管電圧50KV、管電流200mA の条件で測定した。X線回折強度については、リガク製X線回折装置を用いて、(200) 面〔=(100) 面〕、(220) 面〔=(110) 面〕の回折強度を測定し、それより、(200) 面/(220) 面のX線回折強度比を求めた。また、Cube方位の方位密度:D(Cube)等の各方位密度は、(100) 、(110) 、(111) の完全極点図を測定し、それから、結晶方位分布関数を用いて、各方位の強度ピーク値の合計に対する各方位の強度ピークの割合を計算することによって求めた。ここで、理想の面指数から±10°以内の方位のずれのものは同一の結晶面に属するものとした。
【0052】
(導電率の測定)
前記コイルから採取された試験材をミーリング加工によって短冊状の試験片に加工し、この試験片についてダブルブリッジ式抵抗測定装置により導電率を測定した。
【0053】
(プレス性の評価試験)
前記コイルから採取された試験材について機械式プレスにより0.3mm 幅のリードを打ち抜き、打ち抜いたリードのばり高さを測定し、プレス性を評価した。このとき、ばり高さは、10個のリードのばり面を走査型電子顕微鏡で観察する方法により測定し、各最大ばり高さの平均値で示した。
【0054】
(曲げ加工性の評価試験)
前記コイルから採取された試験材について0.25mmRで90°曲げを行い、曲げ部の外面側を光学顕微鏡で観察し、肌荒れの有無及びクラックの有無で評価した。
【0055】
(50mm角の板材の4つ角の硬さの測定)
前記コイルから採取された50mm角の板材について、ビッカース硬度計を用い、荷重500 gで4つ角それぞれの硬さの測定を行った。そして、4つ角それぞれの硬さ測定値の中で、最高値と最低値の差でもって硬さのばらつきを評価した。
【0056】
上記試験の結果を表3に示す。No.6〜13のものは比較例に該当し、(200) 面/(220) 面のX線回折強度比:I(200) /I(220) が0.5 未満あるいは10超であると共に、Cube方位の方位密度:D(Cube)が1未満あるいは55超であり、このため、プレス性の評価試験でのばり高さのコイル内での差が大きく、プレス加工性のばらつきが大きい。これは、コイル内の加工性がばらつき易く、安定していないことを示している。更に、この比較例の中には、曲げ加工性の評価試験で肌荒れ又は/及びクラックが発生するものがあり、これらは曲げ加工性が悪い。
【0057】
これに対し、No.4〜5のものは本発明の実施例に該当し、I(200) /I(220) が0.5 〜10の範囲内の値であると共に、D(Cube)が1〜55の範囲内の値であり、このため、プレス性の評価試験でのばり高さのコイル内での差が極めて小さく、プレス加工性のばらつきが著しく小さい。これは、コイル内の加工性がばらつき難く、安定していることを示している。更に、曲げ加工性の評価試験で肌荒れもクラックも発生せず、曲げ加工性に極めて優れている。
【0058】
No.1〜3のものは本発明の中の第発明の実施例に該当し、I(200) /I(220) が0.5 〜10の範囲内の値であると共に、D(Cube)が1〜50の範囲内の値であり、更にD(Cube)/D(S方位)が0.1 〜5の範囲内の値である。このため、前記No.4〜5の場合よりも、プレス性の評価試験でのばり高さのコイル内での差が極めて小さい。これは、前記No.4〜5の場合よりも、さらにコイル内の加工性がばらつき難く、安定していることを示している。
【0059】
【発明の効果】
本発明に係る電気電子部品用銅合金は、以上のように加工性に優れており、このため、電気電子部品用銅合金として好適に用いることができ、電気電子部品製造の際の製品歩留まりおよび加工時の生産性を向上させることができるという顕著な作用効果を奏する。
【0060】
【表1】

Figure 0003798260
【0061】
【表2】
Figure 0003798260
【0062】
【表3】
Figure 0003798260
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field related to copper alloys for electric and electronic parts and electric and electronic parts, and in particular, is a copper alloy for electric and electronic parts such as semiconductor lead frames, terminals, connectors, and bus bars, and has excellent workability. It belongs to the technical field related to copper alloys for electrical and electronic parts.
[0002]
[Prior art]
As the capacity, size, and functionality of semiconductor devices used in electronic devices have increased, the lead frames used in semiconductor devices have become smaller in cross-sectional area, requiring even greater strength, conductivity, and thermal conductivity. Has been.
[0003]
Various Fe-containing copper alloys (copper alloys containing Fe) are used as electrical and electronic component materials such as semiconductor lead frames. That is, when an intermetallic compound such as Fe or Fe—P, Fe—Si, Fe—Ti or the like is precipitated in the copper matrix, a copper alloy having excellent conductivity and strength can be obtained relatively easily. -2.35Fe-0.03P-0.12Zn), C19500 (Cu-1.5Fe-0.8Co-0.1P-0.6Sn), C19700 (Cu-0.6Fe-0.2P-0.05Mg) ), Various types of Fe-containing copper alloys such as Cu—Fe—Si and Cu—Fe—Ti are used in large quantities as electrical and electronic component materials for semiconductor lead frames, terminals, connectors and the like.
[0004]
However, when processing and forming these electrical and electronic component materials (Fe-containing copper alloys), the corrugation and meandering of the plate in cold rolling, the unevenness of the residual stress, the meandering of the slitted strip, the bending and burring in the stamping process. Occurrence of problems, such as roughening and cracking of the lead bending processed part, strength reduction in the product, etc. may occur, which has reduced the yield of the product and the productivity at the time of processing.
[0005]
Conventionally, Fe-containing copper alloys as described above have been used as electrical and electronic component materials. However, the control of the characteristics of these Fe-containing copper alloys is carried out by adjusting the amount of main components such as Fe, P, Zn and the like. The main control was by a trace additive element such as Sn and Mg. However, in recent years, there has been a demand for higher quality and improved characteristics for lead frame copper alloys, and it is not possible to satisfy such requirements by mere component control. Has been proposed and disclosed. For example, in JP-A-10-265873, the average crystal grain size in the sheet width direction of the rolling surface is 3 to 60 μm, and the number of crystal grains having a size of 80 to 120% of the value is the total crystal grains. There is disclosed a copper alloy for electric and electronic parts that is 70% or more, that is, a copper alloy for electric and electronic parts in which processability is controlled by controlling the crystal grain size and the mixed grain structure.
[0006]
[Problems to be solved by the invention]
As can be seen from the above, the control of the characteristics of the conventional copper alloy for electric and electronic parts is based on the precipitation of Fe and / or Fe-based intermetallic compounds in the copper matrix and / or the control of recrystallized grains. .
[0007]
Such control has been achieved by strict management of the precipitation behavior and the recrystallization behavior, but it is difficult to stably control the behavior, and in particular, there is a problem that workability in the coil tends to vary.
[0008]
In addition, along with the recent trend of lighter and thinner, sufficient processability cannot be satisfied by conventional control of the structure and precipitates.
[0009]
Therefore, in order to improve processability more stably, from the viewpoint of processability and moldability, it is essential to elucidate the organizational factors governing these and to improve it from another viewpoint. .
[0010]
Therefore, the present inventors have made extensive studies on the systematic factors that govern the workability of the Fe-containing copper alloy. As a result, it was found that the cause of the poor moldability was that the texture was not sufficiently controlled. That is, it was found that the plastic anisotropy of the plate material changes due to the difference in crystal orientation and the press formability is affected, and the texture (structure where a certain crystal orientation is gathered) has not been controlled so far. In addition, it was found that stable processability was not obtained. Due to the degree of development of the texture, the difference in deformability due to the part of the plate material becomes large, and the swelling and meandering of the plate in the cold rolling as described above, the unevenness of the residual stress, the meandering of the slittered strip, the bending and It has been found that problems such as the occurrence of cracks, rough skin and cracks in the lead bending part, and a decrease in strength of the product occur.
[0011]
The present invention has been made on the basis of such knowledge, and its object is to solve the problems of the conventional copper alloy for electric and electronic parts (Fe-containing copper alloy) and to have excellent workability. An object of the present invention is to provide a copper alloy for electrical and electronic parts and an electrical and electronic part having excellent quality.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the copper alloy for electrical and electronic parts and the electrical and electronic parts according to the present invention are as follows. 3 Claim copper alloy for electrical and electronic parts, claim 4 The electric / electronic component described is configured as follows.
[0013]
That is, the copper alloy for electrical and electronic parts according to claim 1 contains Fe: 0.01-4.0 mass%, P: 0.0001-0.7 mass%, Si: 0.001-1. 0.0 mass%, containing one or more of Ti: 0.001 to 1.0 mass%, Furthermore, Zn: 0.02-5.0 mass%, Sn: 0.01-3.0 mass%, Co: 0.01-3.0 mass%, Mg: 0.01-3.0 mass%, Mn: contains at least one of 0.01 to 1.5% by mass, The balance is a copper alloy for electrical and electronic parts consisting of Cu and inevitable impurities, and (200) plane X-ray diffraction intensity: I (200) and (220) plane X-ray diffraction intensity: I (220) Ratio: I (200) / I (220) is 0.5 or more and 10 or less, and orientation density of Cube orientation: D (Cube orientation) is 1 or more and 50 or less, copper alloy for electrical and electronic parts (First invention).
[0014]
The copper alloy for electrical and electronic parts according to claim 2 is Furthermore, Al: 0.005 mass% or less, Cr: 0.001 mass% or less, Ca: 0.0003 mass% or less, Ni: 0.002 mass% or less 1 It is a copper alloy for electrical and electronic parts described 2 invention).
[0015]
The copper alloy for electrical and electronic parts according to claim 3 is a ratio of orientation density of Cube orientation: D (Cube orientation) to orientation density of S orientation: D (S orientation): D (Cube orientation) / D (S orientation) ) Is 0.1 or more and 5 or less. Or 2 It is a copper alloy for electrical and electronic parts described 3 invention).
[0016]
Claim 4 The electrical and electronic component according to claim 1, 3 An electrical / electronic component comprising a copper alloy for electrical / electronic components according to any one of ( 4 invention).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is implemented, for example, in the following form.
An ingot made of Fe-containing copper alloy (copper alloy containing Fe) is chamfered into a slab, heated and hot-rolled, then chamfered, and then cold-rolled and intermediate-annealed. Is repeated to obtain a plate material for electric and electronic parts. At this time, in particular, by adjusting the processing rate in cold rolling and the intermediate annealing conditions, X-ray diffraction intensity of (200) plane of the obtained plate material: I (200) and X-ray diffraction intensity of (220) plane: Ratio with I (220): I (200) / I (220) is set to 0.5 or more and 10 or less. Orientation density of Cube orientation: D (Cube orientation) is 1 or more and 50 or less. If it does so, the copper alloy for electrical and electronic components which concerns on this invention will be obtained.
[0018]
In this manner, the copper alloy for electric and electronic parts according to the present invention is obtained. And the electrical and electronic component which concerns on this invention is obtained by processing this copper alloy for electrical and electronic components.
[0019]
Hereinafter, the effects of the present invention will be mainly described.
[0020]
In the case of a normal copper alloy sheet, the texture called Cube orientation, Goss orientation, Brass orientation (hereinafter also referred to as B orientation), Copper orientation (hereinafter also referred to as Cu orientation), S orientation, etc. as shown below. And there are crystal planes corresponding to them. How these textures are formed differs depending on the processing and heat treatment methods even in the case of the same crystal system, and in the case of a texture of a sheet material by rolling, it is expressed by a rolling surface and a rolling direction, and the rolling surface is expressed by {ABC}. The rolling direction is expressed by <DEF>. Based on this expression, each direction is expressed as follows.
[0021]
Cube orientation {001} <100>
Goss direction {011} <100>
Rotated-Goss orientation {011} <011>
Brass direction (B direction) {011} <211>
Copper orientation (Cu orientation) {112} <111>
(Or D direction {4 4 11} <11 11 8>
S orientation {123} <634>
B / G direction {011} <511>
B / S orientation {168} <211>
P direction {011} <111>
[0022]
In the present invention, basically, the deviations within ± 10 ° from these crystal planes belong to the same crystal plane. Here, the B orientation, the Cu orientation, and the S orientation exist in a fiber texture (β-fiber) that continuously changes between the orientations.
[0023]
Evaluation of these textures and measurement of orientation distribution density (Orientation Density) can be performed using a normal X-ray diffraction method. The X-ray diffraction intensity ratio can be obtained from the intensity of the diffraction surface, that is, the X-ray diffraction intensity of the (200) plane, (220) plane, and (110) plane. Furthermore, the orientation density of each orientation is measured by measuring the complete pole figure or the incomplete pole figure (Pole Figure) of (100), (110), (111), and then the orientation distribution function (Orientation Distribution Function: ODF). Is used to calculate the ratio of the intensity peak in each direction to the sum of the intensity peak values in each direction (for example, edited by Junichi Nagashima, “texture”, published by Maruzen Co., Ltd., 1984, P8-44, (Metal Society Seminar “Gene Tissue”, Japan Institute of Metals, 1981, P3-7). Alternatively, use TEM electron diffraction, SEM (Scanning Electron Microscopy) -ECP (Electron Chaneling Pattern), or SEM-EBSP (also known as Electron Back Scattering (Scattered) Pattern or EBSD (Diffraction)). The orientation density can be obtained using the crystal orientation distribution function based on the measured data. Since these azimuth distributions change in the thickness direction, it is preferable to obtain some points in the thickness direction by averaging them arbitrarily. However, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, the plate thickness is about 0.1 to 0.3 mmw. Therefore, even a value measured with the plate thickness can be evaluated.
[0024]
As described above, the texture of a normal copper alloy sheet is composed of a considerable number of orientation factors. However, it has been found that the plastic anisotropy of the sheet material changes and the workability changes when these constituent ratios change. . In particular, it has been found that, by controlling the orientation density of the Cube orientation (hereinafter also referred to as D (Cube)) within an appropriate range, improvement in workability and stabilization can be achieved.
[0025]
It is desirable to perform uniform deformation during deformation such as stamping. However, if the Cube orientation develops too much and D (Cube) is higher than the appropriate range, the plastic anisotropy in the plate surface is strong. Thus, a part that is easily deformed and a part that is difficult to deform are generated, and problems such as bending and burrs in the stamping process are likely to occur. On the other hand, if the Cube orientation is small and D (Cube) is lower than the appropriate range, this means that the development of other crystal orientations becomes stronger. Occurs. For this reason, control of Cube-oriented grains is important.
[0026]
The appropriate range of D (Cube) is 1 or more and 55 or less. X-ray diffraction intensity of (200) plane: I (200) and X-ray diffraction intensity of (220) plane: ratio of I (220): I (200) / I (220) is 0.5 or more and 10 or less In some cases, D (Cube) is approximately 1 or more and 55 or less. However, since the value of I (200) / I (220) also changes depending on the intensity of the (110) plane which is an orientation other than the Cube orientation, the value of I (200) / I (220) is within the scope of the present invention. Even so, the value of D (Cube) may fall outside the scope of the present invention (the reverse is also true).
[0027]
Therefore, the copper alloy for electrical and electronic parts according to the present invention is a copper alloy for electrical and electronic parts containing Fe, and (200) plane X-ray diffraction intensities: I (200) and (220) plane X-rays The ratio of diffraction intensity: I (220): I (200) / I (220) is 0.5 or more and 10 or less (first invention). This copper alloy for electric and electronic parts is excellent in workability as can be seen from the above knowledge. Here, it is assumed that I (200) / I (220) is 0.5 or more and 10 or less, and when it is less than 0.5, the development of a specific crystal orientation other than the Cube orientation becomes strong and different. In the case of more than 10, the Cube orientation develops too strongly, the plastic anisotropy in the plate surface becomes strong, and the workability decreases. This is because it becomes insufficient.
[0028]
A more preferable range of I (200) / I (220) is 0.6 or more and 9 or less. In this case, it has a higher level of workability.
[0029]
Further, the more preferable range of D (Cube) is 1 or more and 50 or less, and in this case, D (Cube): 1 to 55 or less, since it has a higher level of workability, The copper alloy for electrical and electronic parts according to the present invention is a copper alloy for electrical and electronic parts containing Fe, and the orientation density of Cube orientation: D (Cube) is 1 or more and 50 or less (first invention) ). This copper alloy for electric and electronic parts is excellent in workability as can be seen from the above knowledge. Here, it is assumed that D (Cube) is 1 or more and 50 or less, when it is less than 1, the development of a specific crystal orientation other than the Cube orientation becomes strong, the anisotropy becomes strong, and as a result, the workability. This is because the Cube orientation is strongly developed when it exceeds 50, the plastic anisotropy in the plate surface becomes strong, and the workability is lowered and becomes insufficient.
[0030]
When the orientation density of the Cube orientation: D (Cube orientation) and the orientation density of the S orientation: D (S orientation): D (Cube orientation) / D (S orientation) is 0.1 or more and 5 or less Has a more preferable high level of workability (No. 3 invention). That is, as can be seen from the foregoing, the plastic anisotropy of the plate material is closely related to the balance of each texture component, and in particular, by controlling the ratio of the orientation density of the Cube orientation and the S orientation, more preferable workability is achieved. It is possible to obtain a high level of workability by setting D (Cube orientation) / D (S orientation) to 0.1 to 5. Here, if D (Cube orientation) / D (S orientation) is less than 0.1, the S orientation becomes relatively stronger than Cube orientation, and if D (Cube orientation) / D (S orientation) exceeds 5. The Cube orientation is relatively stronger than the S orientation, and in either case, the anisotropy is increased and the workability is lowered. Further, when D (Cube orientation) / D (S orientation) is set to 0.2 to 4.5, a further higher level of workability is obtained.
[0031]
In the present invention, the copper alloy for electrical and electronic parts contains Fe, but the component and composition of the copper alloy are not particularly limited. However, there is a preferred component composition range in order to further exert the effects of the present invention or from the viewpoint of various characteristics. The range of such component composition will be described below. Note that mass% (% by weight) is abbreviated as% with respect to the unit of content of each component.
[0032]
If the Fe content (content) is less than 0.01%, the amount of precipitation of Fe or Fe-based intermetallic compound is small, so that it can fully meet the recent high strength required for lead frames, terminals, connectors, etc. In order to obtain a sized structure without setting special heating conditions, the Fe content is desirably 0.01% or more. On the other hand, if the amount of Fe exceeds 4.0%, a large amount of coarse crystallized Fe is generated, and these crystallized materials hardly contribute to the improvement of the strength. In order to cause wear, the Fe content is desirably 4.0% or less. Therefore, the Fe content is desirably 0.01 to 4.0%. In this range, a more preferable range is 0.05 to 3.0%.
[0033]
P, Si, and Ti form a stable intermetallic compound with Fe and precipitate in the parent phase of Cu to improve the proof stress and heat resistance of the copper alloy. When adding P, Si, or Ti to form an intermetallic compound, one or more of these are used. P is Fe and Fe 2 P or Fe Three P is formed, Si is Fe and Fe Three Si, Fe Five Si Three Or FeSi is formed, Ti is Fe and Fe 2 Ti or FeTi is formed. These contents are preferably 0.0001 to 0.7% for P, 0.001 to 1.0% for Si, and 0.001 to 1.0% for Ti. If the content is less than the lower limit, the yield strength and heat resistance are not improved, and the upper limit is set. If it exceeds 1, the electrical conductivity is lowered, casting becomes difficult, and cracks are likely to occur during hot rolling or cold rolling.
[0034]
Zn, Sn, Co, Mg and Mn improve the strength. Zn has effects such as improvement of press workability (reduction of mold wear), prevention of migration, tin plating and prevention of heat delamination of solder. If the Zn content is less than 0.02%, the effect is not sufficient, and if it exceeds 5.0%, the solder wettability is lowered. Therefore, the Zn content is preferably 0.02 to 5.0%. Sn improves the spring limit value. If the Sn content is less than 0.01%, the effect is not sufficient, and if it exceeds 3.0%, the electrical conductivity decreases, so the Sn content is preferably 0.01 to 3.0%. Co improves heat resistance. If the amount of Co is less than 0.01%, the effect is not sufficient, and if it exceeds 3.0%, the electrical conductivity decreases, so the amount of Co is preferably 0.01 to 3.0%. Mg improves the spring limit value and press workability (die wear), prevents migration, and combines with S to form MgS to improve the hot workability of the ingot. If Mg is less than 0.01%, those effects are not sufficient, and if it exceeds 3.0%, the electrical conductivity is lowered and casting becomes difficult, so the Mg content is preferably 0.01 to 3.0%. Mn improves heat resistance and hot workability of the ingot. If the amount of Mn is less than 0.01%, those effects are not sufficient, and if it exceeds 1.5%, solder wettability and electrical conductivity are lowered and casting becomes difficult. Therefore, the amount of Mn is preferably 0.01 to 1.5%. Of these elements, Co and Mn form compounds with P and Si, respectively. However, in addition to Fe-P and Fe-Si compounds, Co and Mn phosphides and / or silicides may be formed. It does not impair the effect of the copper alloy according to the above.
[0035]
Other trace elements Sn, Pb, Ni, Mn, Cr, Al, Mg, Ca, Be, Si, Zr, In, Ag, Se, Te, Sb, Bi, S, etc. are other main characteristics of strength In order to improve conductivity, plating properties and the like, one or more kinds may be added, and these additions are allowed as long as the properties of the product are not impaired.
[0036]
The conventional way of thinking about the manufacturing conditions of copper alloys for electric and electronic parts was control by a combination of component design and optimum annealing conditions. This is control of precipitates and control of crystal grain size from the viewpoint of workability and strength. The specific manufacturing method was only control of annealing conditions. On the other hand, the present invention has been studied based on the viewpoint of improving the plastic anisotropy from the viewpoint of control of the texture. Formation of a texture is not determined only by a single condition of components, processing conditions, and heat treatment conditions, but is formed by changing them in combination. In particular, the present inventors have found that it is greatly affected by the state of the structure in the pre-processing step, so it is possible to control the Cube orientation that affects the characteristics depending on the combination conditions, which could not be realized by the conventional method And improved workability.
[0037]
The copper alloy for electrical and electronic parts according to the present invention is usually produced through processes by casting, homogenization heat treatment, hot rolling and cold rolling and annealing, but depending on the chemical composition and setting conditions of each process, Since the resulting texture changes, it is necessary to select conditions comprehensively as a series of manufacturing steps. The production method is not particularly limited as long as the desired texture is obtained, but control of production conditions in hot rolling and cold rolling is particularly important.
[0038]
In the production of the copper alloy for electric and electronic parts according to the present invention, preferable production conditions and important matters will be specifically described below.
[0039]
As the casting method, any casting method generally used for Cu-based alloys may be used, and continuous casting is generally used. Since the homogenization heat treatment after casting is performed for the purpose of homogenizing macrosegregation generated in the ingot, it is generally performed at a high temperature of about 900 to 1000 ° C. However, in the present invention, it is important to control the solid solution state and the precipitate form to a desired form. That is, the precipitates generated here or the intermetallic compounds remaining without being completely dissolved act as preferential nucleation sites for the recrystallization orientation in the subsequent heat treatment process, and govern what kind of texture is formed. Because. These precipitate states also dominate the crystal grain size. Since the solid solution temperature of each intermetallic compound in the Cu matrix is different depending on the additive element, it is desirable that the optimum homogenization heat treatment condition is appropriately selected according to the additive element.
[0040]
The optimum conditions for hot rolling and cold rolling after the homogenization heat treatment vary depending on the solid solution state formed after the homogenization heat treatment and the dispersion state of the intermetallic compound, and therefore it is desirable to select appropriately according to these conditions.
[0041]
The reason why the texture is formed is that since the crystal surface that is most slippery exists in the crystal, it is oriented in a specific crystal orientation by rolling, and further specific orientation develops by subsequent annealing. It is. The texture of the copper alloy according to the present invention can be obtained by strict control by a combination of rolling and annealing as described below.
[0042]
For hot rolling, it is desirable that the total processing rate is 80% or more and the number of passes is 5 or more. When the total processing rate of hot rolling is less than 80%, a sufficient texture does not develop, and texture unevenness tends to occur in the thickness direction, which is not preferable in terms of variation in characteristics. The number of passes has the effect of controlling the Cube orientation by the recovery and recrystallization behavior that occurs between hot working passes, and less than 5 passes is not sufficient.
[0043]
For cold rolling after hot rolling, cold rolling with a cold working rate of 50% or more is performed, the first heat treatment step is performed, and then a cold working rate of 90% or less (including 0%) is applied. After performing the cold rolling and performing the second heat treatment step, it is desirable to perform final cold rolling with a cold working rate of 50% to 95%. It is preferable to change the heat treatment temperature in the intermediate heat treatment step depending on the precipitation phase in the alloy components. By controlling the combination of the cold working rate and the heat treatment (annealing) as described above, the texture of the copper alloy according to the present invention can be controlled.
[0044]
In addition, when the cold work rate in each cold rolling process becomes the lower limit value of the cold work rate, the orientation density of the Cube orientation is partially increased in the coil, and the characteristics are likely to vary. It is not preferable. On the other hand, when the upper limit value of the cold work rate is exceeded, the Cube orientation is not sufficiently developed, the development of other rolling orientations becomes strong, and plastic anisotropy tends to occur, which is not preferable.
[0045]
The first heat treatment step and the second heat treatment step basically have the effect of causing fine precipitates to appear and controlling the product strength and conductivity level. Since the temperature changes, the heat treatment conditions are not uniformly limited. However, the more fine precipitates, the stronger the development of the rolling texture components (S orientation, B orientation, Cu orientation, etc.) in the subsequent cold rolling process, and the relatively low amount of Cube orientation, In order to obtain an optimal texture, it is important to control by a combination of a heat treatment process and a cold rolling process.
[0046]
Since the copper alloy for electrical and electronic parts according to the present invention is excellent in workability as described above, it can be suitably used as a material for electrical and electronic parts such as semiconductor lead frames, terminals, connectors, and bus bars. The obtained electrical and electronic parts are excellent in quality characteristics, and can contribute to further increase in capacity, size and functionality of semiconductor devices for electronic devices (No. 1). 4 invention).
[0047]
【Example】
Examples of the present invention and comparative examples will be described below. In addition, this invention is not limited to this Example.
[0048]
Fe-containing copper alloys having chemical components shown in Table 1 were melted in a coreless furnace, and ingots having various thicknesses were formed by a semi-continuous casting method. Next, the surface chamfering amount of these ingots is adjusted and chamfered to obtain slabs of various thicknesses (thickness 10 mm to 300 mm x width 500 mm x length 1000 mm). After heating at ~ 1000 ° C for 1 hour, it was hot rolled to a thickness of 1 to 20 mm. At this time, the thickness (slab thickness) on the entry side of the hot rolling is adjusted by the ingot size and the face milling, and the total reduction ratio ( The processing rate) and the number of passes were changed as shown in Table 2.
[0049]
The hot-rolled sheet obtained in this way was chamfered, and then cold rolling and intermediate annealing were repeated to produce a copper alloy for lead frames having a thickness of about 0.25 mm. Manufacturing conditions at this time (processing rate in initial cold rolling, first heat treatment condition, processing rate in cold rolling after first heat treatment, second heat treatment condition, processing in final cold rolling after second heat treatment The rate is shown in Table 2. The obtained copper alloy is coil-shaped.
[0050]
With respect to the coiled copper alloy thus obtained, a test material was arbitrarily collected from the coil, and the following test was performed. In addition, a 50 mm square plate material was arbitrarily collected from the inside of the coil, and the hardness of each of the four corners was measured.
[0051]
(Measurement of X-ray diffraction intensity and texture)
The test material collected from the coil was measured by a normal X-ray diffraction method using Cu as a target under the conditions of a tube voltage of 50 KV and a tube current of 200 mA. For the X-ray diffraction intensity, the diffraction intensity of the (200) plane [= (100) plane], (220) plane [= (110) plane] was measured using a Rigaku X-ray diffractometer. The (200) plane / (220) plane X-ray diffraction intensity ratio was determined. Also, the orientation density of Cube orientation: each orientation density such as D (Cube) measures the complete pole figure of (100), (110), (111), and then uses each crystal orientation distribution function to measure each orientation It calculated | required by calculating the ratio of the intensity peak of each direction with respect to the sum total of intensity peak value of. Here, the deviation of the orientation within ± 10 ° from the ideal plane index belongs to the same crystal plane.
[0052]
(Measurement of conductivity)
The test material collected from the coil was processed into a strip-shaped test piece by milling, and the electrical conductivity of this test piece was measured with a double bridge resistance measuring device.
[0053]
(Pressability evaluation test)
The test material collected from the coil was punched with a 0.3 mm wide lead by a mechanical press, and the flash height of the punched lead was measured to evaluate the pressability. At this time, the burr height was measured by a method of observing the burr surfaces of 10 leads with a scanning electron microscope, and indicated by the average value of the maximum burr heights.
[0054]
(Evaluation test for bending workability)
The test material collected from the coil was bent at 90 ° at 0.25 mmR, and the outer surface side of the bent portion was observed with an optical microscope to evaluate the presence or absence of rough skin and the presence or absence of cracks.
[0055]
(Measures the hardness of the four corners of a 50mm square plate)
About the 50 mm square board | plate material extract | collected from the said coil, the hardness of each of four corners was measured with the load of 500 g using the Vickers hardness meter. And the hardness dispersion | variation was evaluated by the difference of the highest value and the lowest value in the hardness measurement value of each of four corners.
[0056]
The results of the above test are shown in Table 3. No. 6 to 13 correspond to comparative examples, and the X-ray diffraction intensity ratio of (200) plane / (220) plane: I (200) / I (220) is less than 0.5 or more than 10, and the Cube orientation Azimuth density: D (Cube) is less than 1 or more than 55. For this reason, there is a large difference in the height of the flash in the coil in the pressability evaluation test, and the variation in press workability is large. This indicates that the workability in the coil tends to vary and is not stable. Furthermore, some of these comparative examples cause rough skin or / and cracks in the bending workability evaluation test, and these have poor bending workability.
[0057]
In contrast, no. 4 to 5 correspond to examples of the present invention, and I (200) / I (220) is a value in the range of 0.5 to 10, and D (Cube) is a value in the range of 1 to 55. Therefore, the difference in the height of the burr height in the coil in the evaluation test for pressability is extremely small, and the variation in press workability is extremely small. This indicates that the workability in the coil is difficult to vary and is stable. Furthermore, in the evaluation test of bending workability, neither rough skin nor cracks occur, and the bending workability is extremely excellent.
[0058]
No. 1-3 are the first in the present invention. 3 It corresponds to an embodiment of the invention, and I (200) / I (220) is a value in the range of 0.5 to 10, D (Cube) is a value in the range of 1 to 50, and D (Cube ) / D (S orientation) is a value within the range of 0.1-5. For this reason, the above-mentioned No. Compared with the case of 4-5, the difference in the height of the burr height in the press evaluation test is extremely small. This is because the above-mentioned No. Compared to the cases of 4 to 5, the workability in the coil is less likely to vary and is stable.
[0059]
【The invention's effect】
The copper alloy for electrical and electronic parts according to the present invention is excellent in workability as described above, and can therefore be suitably used as a copper alloy for electrical and electronic parts. There is a remarkable effect that the productivity at the time of processing can be improved.
[0060]
[Table 1]
Figure 0003798260
[0061]
[Table 2]
Figure 0003798260
[0062]
[Table 3]
Figure 0003798260

Claims (4)

Fe:0.01〜4.0質量%を含有すると共に、P:0.0001〜0.7質量%、Si:0.001〜1.0質量%、Ti:0.001〜1.0質量%の1種以上を含有し、更に、Zn:0.02〜5.0質量%、Sn:0.01〜3.0質量%、Co:0.01〜3.0質量%、Mg:0.01〜3.0質量%、Mn:0.01〜1.5質量%の1種以上を含有し、残部がCu及び不可避的不純物からなる電気電子部品用銅合金であって、(200)面のX線回折強度:I(200)と(220)面のX線回折強度:I(220)との比:I(200)/I(220)が0.5以上10以下であり、Cube方位の方位密度:D(Cube方位)が1以上50以下であることを特徴とする電気電子部品用銅合金。Fe: 0.01 to 4.0% by mass, P: 0.0001 to 0.7% by mass, Si: 0.001 to 1.0% by mass, Ti: 0.001 to 1.0% by mass % : Zn: 0.02-5.0 mass%, Sn: 0.01-3.0 mass%, Co: 0.01-3.0 mass%, Mg: 0 A copper alloy for electrical and electronic parts comprising at least one of 0.01 to 3.0% by mass, Mn: 0.01 to 1.5% by mass, the balance being Cu and inevitable impurities, (200) X-ray diffraction intensity of surface: I (200) and X-ray diffraction intensity of (220) surface: ratio of I (220): I (200) / I (220) is 0.5-10, Cube Orientation density of orientation: D (Cube orientation) is 1 or more and 50 or less, copper alloy for electrical and electronic parts, 更に、Al:0.005質量%以下、Cr:0.001質量%以下、Ca:0.0003質量%以下、Ni:0.002質量%以下を含有する請求項1記載の電気電子部品用銅合金。 Furthermore, Al: 0.005 mass% or less, Cr: 0.001 mass% or less, Ca: 0.0003 mass% or less, Ni: 0.002 mass% or less, Copper for electrical and electronic components of Claim 1 alloy. Cube方位の方位密度:D(Cube方位)とS方位の方位密度:D(S方位)との比:D(Cube方位)/D(S方位)が0.1以上5以下である請求項1または2記載の電気電子部品用銅合金。 The ratio of orientation density of Cube orientation: D (Cube orientation) to orientation density of S orientation: D (S orientation): D (Cube orientation) / D (S orientation) is 0.1 or more and 5 or less. Or the copper alloy for electrical and electronic components of 2. 請求項1〜3のいずれかに記載の電気電子部品用銅合金からなる電気電子部品。The electrical / electronic component which consists of a copper alloy for electrical / electronic components in any one of Claims 1-3.
JP2001148047A 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts Expired - Fee Related JP3798260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148047A JP3798260B2 (en) 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148047A JP3798260B2 (en) 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts

Publications (2)

Publication Number Publication Date
JP2002339028A JP2002339028A (en) 2002-11-27
JP3798260B2 true JP3798260B2 (en) 2006-07-19

Family

ID=18993437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148047A Expired - Fee Related JP3798260B2 (en) 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts

Country Status (1)

Country Link
JP (1) JP3798260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060444A1 (en) * 2014-10-14 2016-04-21 Poongsan Corporation Copper alloy material for connectors with high strength, high thermal resistance, high corrosion resistance and excellent bending processability, and method for producing the same
CN108602097A (en) * 2015-12-28 2018-09-28 株式会社豊山 For automobile and the Cu alloy material and its production method of electric and electronic component

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041452B2 (en) * 2003-11-05 2008-01-30 株式会社神戸製鋼所 Manufacturing method of copper alloy with excellent heat resistance
US8715431B2 (en) 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
EP2439296B1 (en) 2005-07-07 2013-08-28 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having high strength and superior bending workability, and method for manufacturing copper alloy plates
KR101136265B1 (en) 2006-07-21 2012-04-23 가부시키가이샤 고베 세이코쇼 Copper alloy sheets for electrical/electronic part
JP4950584B2 (en) 2006-07-28 2012-06-13 株式会社神戸製鋼所 Copper alloy with high strength and heat resistance
US8063471B2 (en) 2006-10-02 2011-11-22 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic parts
US20110223056A1 (en) 2007-08-07 2011-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet
JP5320638B2 (en) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ Rolled copper foil and method for producing the same
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
JP5436349B2 (en) * 2010-01-30 2014-03-05 三菱伸銅株式会社 Bonding method of LED chip and lead frame
JP5525369B2 (en) * 2010-03-11 2014-06-18 三菱伸銅株式会社 Cu-Fe-P copper alloy strips for electronic equipment with excellent resin adhesion
JP4608025B1 (en) * 2010-06-03 2011-01-05 三菱伸銅株式会社 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
EP2610358A4 (en) * 2010-08-27 2017-05-03 Furukawa Electric Co., Ltd. Copper alloy sheet and manufacturing method for same
KR20150143893A (en) * 2010-08-31 2015-12-23 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material
JP5638357B2 (en) * 2010-11-18 2014-12-10 株式会社Shカッパープロダクツ Copper alloy for electrical and electronic parts and method for producing the same
JP5571616B2 (en) * 2011-05-17 2014-08-13 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060444A1 (en) * 2014-10-14 2016-04-21 Poongsan Corporation Copper alloy material for connectors with high strength, high thermal resistance, high corrosion resistance and excellent bending processability, and method for producing the same
CN108602097A (en) * 2015-12-28 2018-09-28 株式会社豊山 For automobile and the Cu alloy material and its production method of electric and electronic component
CN108602097B (en) * 2015-12-28 2020-02-11 株式会社豊山 Copper alloy material for automobile and electric and electronic components and production method thereof
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same

Also Published As

Publication number Publication date
JP2002339028A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP3798260B2 (en) Copper alloy for electric and electronic parts and electric and electronic parts
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
US8715431B2 (en) Copper alloy plate for electric and electronic parts having bending workability
US7182823B2 (en) Copper alloy containing cobalt, nickel and silicon
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
CN101981212A (en) Cu-Ni-Si alloy to be used in electrically conductive spring material
JP2011117034A (en) Copper-alloy material
JP2001207229A (en) Copper alloy for electronic material
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP4041452B2 (en) Manufacturing method of copper alloy with excellent heat resistance
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
CN104903478A (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
WO2009098810A1 (en) Process for producing precipitation-hardened copper alloy strip
JP4280287B2 (en) Copper alloy for electrical and electronic parts with excellent heat resistance
CN111575531B (en) High-conductivity copper alloy plate and manufacturing method thereof
CN112048637B (en) Copper alloy material and manufacturing method thereof
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
TWI391952B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP2012211355A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3798260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees