JPH10183029A - Photoelectrode-type conductive coating material - Google Patents

Photoelectrode-type conductive coating material

Info

Publication number
JPH10183029A
JPH10183029A JP35118496A JP35118496A JPH10183029A JP H10183029 A JPH10183029 A JP H10183029A JP 35118496 A JP35118496 A JP 35118496A JP 35118496 A JP35118496 A JP 35118496A JP H10183029 A JPH10183029 A JP H10183029A
Authority
JP
Japan
Prior art keywords
photoelectrode
polymer
conductive
function
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35118496A
Other languages
Japanese (ja)
Inventor
Hajime Wakabayashi
元 若林
Nobuhiko Kubota
伸彦 久保田
Tsuneo Ayabe
統夫 綾部
Yoichi Hirai
陽一 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP35118496A priority Critical patent/JPH10183029A/en
Publication of JPH10183029A publication Critical patent/JPH10183029A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a conductive coating material which can be simply applied by only coating a base metal therewith, effectively reveals the photoelectrode function of TiO2 , and gives a film having a function to remove NOx and SOx as well as anticorrosive, stainproof, antibacterial and deodorizing functions, by blending a binder comprising a conductive polymer with a specified amount of a fine powder of TiO2 having photoelectrode function. SOLUTION: This coating material is obtained by blending a binder comprising a conductive polymer with 10-70wt.% fine powder of TiO2 having photoelectrode function. It preferably comprises the one made from an n-type semiconductor obtained by adding 0.01-0.2wt.% pentavalent element such as Nb to TiO2 . The conductive polymer preferably comprises the one which is obtained by mixing an electrical insulator comprising a polymer, such as a polyester, phenolic, acrylic, melaine or epoxy polymer, with 10-70wt.% conductive filler comprising, e.g. silver, copper or a carbonaceous material and which has a conductivity of at least 10<-4> S/cm. In the figure, numerals 1, 2, 3, 4 and 5 respectively refer to fine particles of TiO2 , a conductive polymer binder, a base metal, a coating film, and light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】太陽光や照明などを当てたと
きに塗膜の光電極機能により、下地金属の防食作用の
他、防汚、抗菌、消臭やNOx,SOxの除去等の作用
を有する光電極型導電性塗料に関する。
BACKGROUND OF THE INVENTION The photoelectrode function of a coating film when exposed to sunlight, lighting, etc., has an anticorrosion effect on an underlying metal, and also has an effect on soiling, antibacterial action, deodorization and removal of NOx and SOx. The present invention relates to a photoelectrode-type conductive paint having the same.

【0002】[0002]

【従来の技術】鉄などの金属の防食に用いられる亜鉛や
錫のメッキは、イオン化傾向の大きい卑な金属である亜
鉛や錫が水溶液中でイオン化(酸化)し放出された電子
が鉄などのイオン化傾向の小さい金属のイオン化(酸
化)を妨害するという原理で成り立っている。また、通
常の塗料は、塗膜が空気や水を遮断することにより防食
が達成される。一方、TiO2 は光電極機能があること
が知られており、これにNb等を微量に添加し、n型半
導体化したものは特に強い光電極機能がある。ここで光
電極機能とはTiO2 に太陽光や照明により光を照射す
ると電子e- が外に飛び出し、そのあとに正孔h+ が残
る現象である。
2. Description of the Related Art Zinc and tin plating used for corrosion prevention of metals such as iron is performed by ionizing (oxidizing) zinc or tin, which is a base metal having a high ionization tendency, in an aqueous solution and releasing electrons such as iron. It is based on the principle of hindering ionization (oxidation) of metals with low ionization tendency. Further, in the case of ordinary paints, anticorrosion is achieved by the coating film blocking air and water. On the other hand, TiO 2 is known to have a photoelectrode function, and an N-type semiconductor obtained by adding a small amount of Nb or the like has a particularly strong photoelectrode function. Here, the photoelectrode function is a phenomenon in which, when TiO 2 is irradiated with light by sunlight or illumination, electrons e jump out, leaving holes h + behind.

【0003】TiO2 の光電極機能を利用した防食方法
として開示された技術には、例えば、特開平7−120
56号公報がある。該技術では、放射光の照射雰囲気に
晒される構造材の表面に、チタン酸化物半導体層を一体
に配する技術を適用し、還元雰囲気中で構造材の表面に
チタン酸化物の粉末溶射を行なうことにより、酸素欠損
構造を有するチタン酸化物半導体層を一体に形成するよ
うにしている。
Techniques disclosed as a method of preventing corrosion utilizing the photoelectrode function of TiO 2 include, for example, Japanese Patent Application Laid-Open No. 7-120.
No. 56 publication. In this technique, a technique of integrally disposing a titanium oxide semiconductor layer on the surface of a structural material exposed to a radiation light irradiation atmosphere is applied, and titanium oxide powder spraying is performed on the surface of the structural material in a reducing atmosphere. Thus, a titanium oxide semiconductor layer having an oxygen deficiency structure is integrally formed.

【0004】またTiO2 の光電極効果を利用したNO
xの除去装置がある。これはシリケート樹脂にTiO2
の微粉末を分散させた塗料を塗布した板にNOxを含む
空気を接触させてNOxを酸化し板に付着させるもので
ある。
In addition, NO using the photoelectrode effect of TiO 2
There is an x removal device. This is a silicate resin with TiO 2
NOx-containing air is brought into contact with a plate coated with a coating material in which fine powder is dispersed to oxidize NOx and adhere it to the plate.

【0005】[0005]

【発明が解決しようとする課題】以上説明したもののう
ち、通常の亜鉛や錫メッキによる防食は亜鉛等の卑な金
属自身が溶出することにより下地の金属の防食を図るも
のだから、溶出してしまうと当然防食効果がなくなる。
TiO2 を溶射し、その光電極機能を利用した防食技術
はTiO2 自身は変化しないので寿命は長いが、溶射の
ための機械が大型で、手間もかかり、適用範囲が限られ
るなどの問題がある。
Among the above-described components, the corrosion prevention by ordinary zinc or tin plating is intended to prevent corrosion of the underlying metal by dissolving the base metal itself such as zinc. As a matter of course, the anticorrosion effect is lost.
The TiO 2 was sprayed, anticorrosion technology using the photoelectrode feature is long life because TiO 2 itself does not change, the machine is large for spraying, labor also takes, problems such as the scope is limited is there.

【0006】通常の塗料に使用される樹脂をバインダと
してTiO2 を分散させた塗料は、機能性が塗膜表面に
限定されており、塗膜表面に電荷がたまるためTiO2
の光電極反応が阻害されてしまう。
[0006] coating the resin to be used in the normal coating is dispersed TiO 2 as binder, functionality is limited to the coating surface, TiO because accumulated charge on the coating film surface 2
Of the photoelectrode reaction is inhibited.

【0007】本発明は従来技術のかかる問題点に鑑み案
出されたもので、単に下地金属に塗布するだけで簡単に
施工でき、TiO2 の光電極機能が効果的に現われ、塗
膜が防食、防汚、抗菌、消臭の諸機能の他NOx,SO
xの除去機能を有する光電極型導電性塗料を提供するこ
とを目的とする。
The present invention has been devised in view of the above-mentioned problems of the prior art, and can be easily applied simply by applying it to a base metal, the photoelectrode function of TiO 2 is effectively exhibited, and the coating film is protected from corrosion. NOx, SO as well as antifouling, antibacterial and deodorizing functions
An object is to provide a photoelectrode-type conductive paint having a function of removing x.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明の光電極型導電性塗料は導電性高分子をバインダ
として、光電極機能を有するTiO2 の微粉末を10〜
70重量%混入したものである。
As a binder and conductive polymer photoelectrode type conductivity paint of the present invention for achieving the above object, according to the solution to ## 10 to a fine powder of TiO 2 having an optical electrode function
70% by weight.

【0009】TiO2 にNb等の5価の元素を0.01
〜0.2重量%添加してn型半導体とすることによりT
iO2 の光電極機能がより強く発揮する。
A pentavalent element such as Nb is added to TiO 2 by 0.01
To 0.2% by weight to form an n-type semiconductor,
The photoelectrode function of iO 2 is exerted more strongly.

【0010】導電性高分子は、電気の絶縁体であるポリ
エステル、フェノール、アクリル、メラミン、エポキシ
等の高分子に銀、銅、カーボン等の導電フィラーを重量
比で10〜70%混入して導電率を10-4S/cm以上
としたものであってもよい。
The conductive polymer is prepared by mixing a conductive filler such as silver, copper, carbon and the like into a polymer such as polyester, phenol, acrylic, melamine, epoxy or the like which is an electric insulator by 10 to 70% by weight. The rate may be 10 -4 S / cm or more.

【0011】導電性高分子は高分子中の主鎖の共役2重
結合のπ電子が電気伝導を担い、導電率が10-4〜10
5 S/cmであるポリアセチレン、ポリピロール、ポリ
チオフェン、ポリフラン、ポリイミノベンジル、ポリア
ニリン等であってもよい。
In a conductive polymer, π electrons of a conjugated double bond of a main chain in the polymer are responsible for electric conduction, and have a conductivity of 10 -4 to 10.
It may be polyacetylene, polypyrrole, polythiophene, polyfuran, polyiminobenzyl, polyaniline, or the like having 5 S / cm.

【0012】次に本発明の作用を説明する。塗料中に顔
料として混入したTiO2 の微粉末に光が照射されると
光電極反応により電子e- が飛び出し、そのあとに正孔
+が残る。電子e- は導電性の塗膜内を流れ下地金属
に達してアースされる。正孔h+ は電子e- の流れとは
逆に流れ、塗膜表面に達する。電子e- が下地金属に達
してその電位を下げることにより下地金属のイオン化
(酸化)が阻害され、従って防食作用がある。
Next, the operation of the present invention will be described. When the fine powder of TiO 2 mixed as a pigment in the paint is irradiated with light, electrons e fly out due to a photoelectrode reaction, and holes h + remain thereafter. The electrons e flow through the conductive coating and reach the underlying metal and are grounded. The holes h + flow in the opposite direction to the flow of the electrons e and reach the surface of the coating film. When the electron e reaches the base metal and lowers its potential, ionization (oxidation) of the base metal is inhibited, and thus has an anticorrosive action.

【0013】正孔h+ は空気中の酸素の存在下で、酸化
触媒に類似した作用をする。従って有機物は酸化されて
防汚、抗菌、消臭の効果が現れる。またSOx,NOx
は酸化されて塗膜表面に付着するか、酸化物が水と結合
して硝酸や硫酸となり、水洗により容易に除去される。
The holes h + have a function similar to an oxidation catalyst in the presence of oxygen in the air. Therefore, the organic matter is oxidized to exhibit antifouling, antibacterial and deodorizing effects. SOx, NOx
Is oxidized and adheres to the coating film surface, or the oxide combines with water to form nitric acid or sulfuric acid, which is easily removed by washing with water.

【0014】[0014]

【発明の実施の形態】以下本発明の1実施形態について
図面を参照しつつ説明する。図1は本発明の光電極型導
電性塗料の概要を示す説明図であり、下地金属表面に塗
膜を形成した状態を示す断面図である。図において1は
TiO2 の微粉末粒子であり、2は導電性高分子のバイ
ンダであり、3は下地金属である。4は塗膜であり、5
は太陽光や照明光などの光である。TiO2 の微粉末1
は高分子バインダ2中に10〜70重量%混入してあ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing an outline of a photoelectrode-type conductive paint of the present invention, and is a cross-sectional view showing a state in which a coating film is formed on the surface of a base metal. In the figure, 1 is TiO 2 fine powder particles, 2 is a conductive polymer binder, and 3 is a base metal. 4 is a coating film, 5
Is light such as sunlight or illumination light. TiO 2 fine powder 1
Is mixed in the polymer binder 2 by 10 to 70% by weight.

【0015】導電性高分子は次の2つのタイプがある。 (1)導電率が10-4S/cm未満のポリエステル、フ
ェノール、アクリル、メラミン、エポキシ等の高分子に
銀、銅、カーボン等の導電性のフィラーを10〜70重
量%混入させ、10-4S/cm以上の導電率を発現させ
たもので、市販されている。 (2)高分子自体が10-4〜105 S/cmの導電率を
示すもので、高分子中の主鎖の共役2重結合のπ電子が
電気伝導を担う。例としてはポリアセチレン、ポリピロ
ール、ポリチオフェン、ポリフラン、ポリイミノベンジ
ル、ポリアニリン等があり、多数の文献に開示されてい
る。文献としては、化学と教育;40巻12号(199
2)839〜840頁、プラスチックス;Vol.3
6、No8(1985)100〜108頁、ポリマダイ
ジェスト;1986・5、2〜13頁、機能材料;19
90年5月号、11〜19頁、などがある。
There are the following two types of conductive polymers. (1) Polyester conductivity of less than 10 -4 S / cm, phenol, acrylic, melamine, a polymeric epoxy such as silver, copper, a conductive filler such as carbon is mixed 10-70 wt%, 10 - It has a conductivity of 4 S / cm or more and is commercially available. (2) The polymer itself exhibits a conductivity of 10 -4 to 10 5 S / cm, and π electrons of the conjugated double bond of the main chain in the polymer are responsible for electric conduction. Examples include polyacetylene, polypyrrole, polythiophene, polyfuran, polyiminobenzyl, polyaniline, and the like, which are disclosed in numerous references. Literature includes Chemistry and Education; 40, 12 (199
2) Pages 839 to 840, Plastics; Vol. 3
6, No. 8 (1985) pp. 100-108, polymer digest; 1986.5, pp. 2-13, functional material;
May 1990, pp. 11-19.

【0016】次に本実施形態の作用を説明する。塗膜4
の内部に分散しているTiO2 の微粉末1に光4が照射
されるとTiO2 が光電極反応を起す。TiO2 粒子の
表面にある電子e- が光により励起され、図のように外
に飛び出す。そうすると電子e- の飛び出したあとに正
孔h+ が残る。電子e- は導電性塗膜4内を流れ下地金
属3の表面に達し、そこでアースされる。正孔h+ は電
子e- の流れとは逆に流れ、塗膜表面に達する。電子e
- が下地金属3の電位を下げることにより下地金属3の
イオン化(酸化)が阻害され、従って防食効果がある。
Next, the operation of the present embodiment will be described. Coating film 4
When the light 4 is irradiated to the fine powder 1 of TiO 2 dispersed inside the TiO 2 , the TiO 2 causes a photoelectrode reaction. Electrons e − on the surface of the TiO 2 particles are excited by light and jump out as shown in the figure. Then, holes h + remain after the electrons e jump out. The electrons e flow through the conductive coating 4 and reach the surface of the underlying metal 3 where they are grounded. The holes h + flow in the opposite direction to the flow of the electrons e and reach the surface of the coating film. Electronic e
- ionization of the base metal 3 (oxide) is inhibited by lowering the potential of the base metal 3, and therefore there is a corrosion protection.

【0017】正孔h+ は空気中の酸素の存在化で酸化触
媒に類似した作用をする。従って空気中の有機物は酸化
され、防汚、抗菌、消臭の効果が現れる。また空気中の
NOx、SOxは酸化されて塗膜4の表面に付着する
か、酸化されて生じたNO2 またはSO3 は水と反応し
て硝酸や硫酸になるので、水洗により容易に除去され
る。
The holes h + have a function similar to an oxidation catalyst in the presence of oxygen in the air. Therefore, organic substances in the air are oxidized, and the effects of antifouling, antibacterial and deodorizing appear. The NOx in the air, or SOx is attached to the surface of the coating film 4 is oxidized, NO 2 or SO 3 generated being oxidized. Therefore nitric or sulfuric acid reacts with water, is easily removed by washing with water You.

【0018】このように導電性高分子中を電子e- や正
孔h+ が流れるので、従来の絶縁体のバインダを用いた
塗料と異り、TiO2 の光電極作用が、電荷により阻害
されず、連続的に、かつ、活発に行われる。特にTiO
2 に0.01〜0.2重量%のNbを添加してn型半導
体化すれば、光電極反応が益々活発に起る。
As described above, since electrons e and holes h + flow in the conductive polymer, the photoelectrode function of TiO 2 is inhibited by electric charge unlike the conventional paint using an insulating binder. It is performed continuously and actively. Especially TiO
By adding 0.01 to 0.2% by weight of Nb to 2 to form an n-type semiconductor, the photoelectrode reaction is more and more active.

【0019】なお、TiO2 の混入率を、10重量%以
上としたのはそれ未満ではあまり効果が期待できないか
らであり、70%以下としたのはあまり混入率を高くす
ると塗膜が剥離しやすいなど塗料としての展着性に問題
が生じるからである。
The reason why the mixing ratio of TiO 2 is set to 10% by weight or more is that if the mixing ratio is less than 10%, the effect is not so expected. If the mixing ratio is too high, the coating film peels off. This is because there is a problem in spreadability as a paint, for example, because the paint is easy to spread.

【0020】本発明は以上説明した実施形態に限定され
るものではなく発明の要旨を逸脱しない範囲で種々の変
更が可能である。
The present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the invention.

【0021】[0021]

【実施例】以下本発明の光電極型導電性塗料の実施例に
ついて比較例と対比しつつ説明する。 (実施例1)キシレン、イソプロピルアルコール、トル
エン、酢酸ブチルの混合溶剤に溶解したエポキシに、導
電フィラーとしてカーボンを重量比40%混入した導電
性高分子を用意した。この中に、重量比で33%のTi
2 (n型半導体)を混入させ、光電極型導電性塗料を
調製した。このときの電導率は4.2〜10.6S/c
mであった。
EXAMPLES Examples of the photoelectrode-type conductive paint of the present invention will be described below in comparison with comparative examples. (Example 1) A conductive polymer prepared by mixing 40% by weight of carbon as a conductive filler in an epoxy dissolved in a mixed solvent of xylene, isopropyl alcohol, toluene and butyl acetate was prepared. In this, 33% by weight of Ti
O 2 (n-type semiconductor) was mixed to prepare a photoelectrode-type conductive paint. The conductivity at this time is 4.2 to 10.6 S / c.
m.

【0022】この光電極型導電性塗料をステンレス鋼板
(SUS316)に塗布し、16Wの紫外線ランプの光
照射による電位の変化を0.35%NaCl水溶液中で
計測した。光照射によって自然電位は0.15V低下
し、塗料の防食効果が確認された(図2点線)。なお図
2は縦軸に自然電位(標準電極としてSCE(Saturate
d Calomel Electrod)を用いて、それとの電位差)、横
軸に時間を取ったものである。照射中の電位の降下が確
認できた。 (実施例2)実施例1と同様な条件でTiO2 (n型半
導体)を重量比で50%混入させた光電極型導電性塗料
の電位変化を計測したところ、0.31Vの電位降下が
光照射下でみられた(図2実線)。 (比較例)導電性を示さないポリウレタン中に重量比で
50%のTiO2 (n型半導体)を混入させ、塗料を調
製した。
This photoelectrode-type conductive paint was applied to a stainless steel plate (SUS316), and a change in potential due to irradiation with light of a 16 W ultraviolet lamp was measured in a 0.35% NaCl aqueous solution. The natural potential decreased by 0.15 V by light irradiation, and the anticorrosion effect of the paint was confirmed (dotted line in FIG. 2). In FIG. 2, the vertical axis represents the natural potential (SCE (Saturate
d Calomel Electrod), the potential difference from that, and time is plotted on the horizontal axis. A decrease in potential during irradiation was confirmed. (Example 2) The potential change of a photoelectrode-type conductive paint in which TiO 2 (n-type semiconductor) was mixed at a weight ratio of 50% was measured under the same conditions as in Example 1, and a potential drop of 0.31 V was found. This was observed under light irradiation (FIG. 2, solid line). (Comparative Example) A coating material was prepared by mixing 50% by weight of TiO 2 (n-type semiconductor) into polyurethane having no conductivity.

【0023】この塗料をステンレス鋼板(SUS31
6)に塗布し、16Wの紫外線ランプの光照射による電
位の変化を0.35%NaCl水溶液中で計測した。光
照射による自然電位変化はなかった(図3)。
This paint is coated on a stainless steel plate (SUS31).
6), and the change in potential due to irradiation with light from a 16 W ultraviolet lamp was measured in a 0.35% NaCl aqueous solution. There was no change in spontaneous potential due to light irradiation (FIG. 3).

【0024】[0024]

【発明の効果】以上述べたように本発明の光電極型導電
性塗料は光電極機能のあるTiO2 の微粉末を導電性高
分子中に顔料として混入した塗料である。従って、塗膜
表面に電荷がたまることがないので、TiO2 の光電極
反応が阻害されること無しに活発に行われ、下地金属
の防食、有機物の分解による防汚、抗菌、消臭、N
Ox,SOxの除去などの効果がある。
Photoelectrode type conductive paint of the present invention as described above, according to the present invention is a mixed paint as a pigment a fine powder of TiO 2 with a photoelectrode function in the conductive polymer. Accordingly, since no charge is accumulated on the coating film surface, the TiO 2 photoelectrode reaction is vigorously performed without being hindered, and corrosion of the underlying metal, antifouling due to decomposition of organic substances, antibacterial, deodorant, N
There are effects such as removal of Ox and SOx.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電極型導電性塗料の原理の説明図で
ある。
FIG. 1 is an explanatory diagram of the principle of a photoelectrode-type conductive paint of the present invention.

【図2】実施例のテスト結果のグラフである。FIG. 2 is a graph of a test result of an example.

【図3】比較例のテスト結果のグラフである。FIG. 3 is a graph of a test result of a comparative example.

【符号の説明】[Explanation of symbols]

1 TiO2 微粉末 2 導電性高分子のバインダ 3 下地金属 4 塗膜 5 光1 TiO 2 fine powder 2 conductive polymer binder 3 base metal 4 coating 5 Light

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H01L 31/08 H01L 31/08 Z (72)発明者 平井 陽一 東京都江東区豊洲3丁目1番15号 石川島 播磨重工業株式会社技術研究所内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI // H01L 31/08 H01L 31/08 Z (72) Inventor Yoichi Hirai 3-1-1-15 Toyosu, Koto-ku, Tokyo Ishikawajima-Harima Heavy Industries Technology Laboratory Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性高分子をバインダとし、光電極機
能を有するTiO2の微粉末を10〜70重量%混入し
たことを特徴とする光電極型導電性塗料。
1. A conductive polymer as a binder, the photoelectrode-type conductive paint to a fine powder of TiO 2, characterized in that mixed 10-70 wt% having a photoelectrode function.
【請求項2】 TiO2 にNb等の5価の元素を0.0
1〜0.2重量%添加してn型半導体とした請求項1記
載の光電極型導電性塗料。
2. A pentavalent element such as Nb is added to TiO 2 by 0.0
2. The photoelectrode-type conductive paint according to claim 1, wherein 1 to 0.2% by weight is added to form an n-type semiconductor.
【請求項3】 導電性高分子は、電気の絶縁体であるポ
リエステル、フェノール、アクリル、メラミン、エポキ
シ等の高分子に銀、銅、カーボン等の導電フィラーを重
量比で10〜70%混入して導電率を10-4S/cm以
上としたものである請求項1または請求項2記載の光電
極型導電性塗料。
3. The conductive polymer is a polymer such as polyester, phenol, acrylic, melamine, or epoxy, which is an electric insulator, mixed with a conductive filler such as silver, copper, or carbon in a weight ratio of 10 to 70%. The photoelectrode-type conductive paint according to claim 1 or 2, wherein the conductivity is 10 -4 S / cm or more.
【請求項4】 導電性高分子は高分子中の主鎖の共役2
重結合のπ電子が電気伝導を担い、導電率が10-4〜1
5 S/cmであるポリアセチレン、ポリピロール、ポ
リチオフェン、ポリフラン、ポリイミノベンジル、ポリ
アニリン等である請求項1または請求項2記載の光電極
型導電性塗料。
4. The conductive polymer is a conjugate of a main chain in the polymer.
The π electrons of the heavy bond are responsible for electric conduction and have a conductivity of 10 -4 to 1
0 5 polyacetylene is S / cm, polypyrrole, polythiophene, polyfuran, poly imino benzyl claim 1 or claim 2, wherein the photoelectrode-type conductive paint is polyaniline.
JP35118496A 1996-12-27 1996-12-27 Photoelectrode-type conductive coating material Pending JPH10183029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35118496A JPH10183029A (en) 1996-12-27 1996-12-27 Photoelectrode-type conductive coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35118496A JPH10183029A (en) 1996-12-27 1996-12-27 Photoelectrode-type conductive coating material

Publications (1)

Publication Number Publication Date
JPH10183029A true JPH10183029A (en) 1998-07-07

Family

ID=18415628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35118496A Pending JPH10183029A (en) 1996-12-27 1996-12-27 Photoelectrode-type conductive coating material

Country Status (1)

Country Link
JP (1) JPH10183029A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067010A1 (en) * 1999-05-04 2000-11-09 University Of South Australia pH PROBE
JP2005005023A (en) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd Dye sensitizing solar cell and its manufacturing method
KR100487727B1 (en) * 2002-06-07 2005-05-03 엄원국 Conductive coating composition and coating method thereof
JP2012136737A (en) * 2010-12-27 2012-07-19 Asahi Kogyosha Co Ltd Heat exchanger for temperature control
CN103305101A (en) * 2013-07-09 2013-09-18 湖南太子化工涂料有限公司 Quick-drying anticorrosive and anti-rust primer and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067010A1 (en) * 1999-05-04 2000-11-09 University Of South Australia pH PROBE
KR100487727B1 (en) * 2002-06-07 2005-05-03 엄원국 Conductive coating composition and coating method thereof
JP2005005023A (en) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd Dye sensitizing solar cell and its manufacturing method
JP2012136737A (en) * 2010-12-27 2012-07-19 Asahi Kogyosha Co Ltd Heat exchanger for temperature control
CN103305101A (en) * 2013-07-09 2013-09-18 湖南太子化工涂料有限公司 Quick-drying anticorrosive and anti-rust primer and preparation method thereof
CN103305101B (en) * 2013-07-09 2015-09-30 湖南太子化工涂料有限公司 A kind of quick-dry type is anticorrosion, rust-proofing primer and preparation method thereof

Similar Documents

Publication Publication Date Title
Chaudhary et al. A study on the photoelectrochemical properties of copper oxide thin films
Bae et al. Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution
US7794626B2 (en) Cathodic protection compounds
WO2001084645A1 (en) Photovoltaic cell
Chowdhury et al. Conducting CoMn2O4-PEDOT nanocomposites as catalyst in oxygen reduction reaction
US7422789B2 (en) Cathodic protection coatings containing carbonaceous conductive media
Zia et al. Facile synthesis of polypyrrole encapsulated V2O5 nanohybrids for visible light driven green sonophotocatalytic degradation of antibiotics
DE10335727A1 (en) Transparent electrode for electro-optical assemblies
Brahiti et al. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires
Ito et al. Preparation of highly photocatalytic nanocomposite films consisting of TiO2 particles and Zn electrodeposited on steel
Tsutsumi et al. Electrochemical behavior of a 4-nitrothiophenol modified electrode prepared by the self-assembly method
JPH10183029A (en) Photoelectrode-type conductive coating material
Karpakam et al. Electrosynthesis of PANI-Nano TiO2 composite coating on steel and its anti-corrosion performance
EP1277246A1 (en) Photovoltaic cell
DE1054178B (en) Moisture-protected semiconductor component with pn junctions and a surface covered with chemical compounds
JP3883414B2 (en) Coating composition, coating manufacturing method and building material
JPH10195680A (en) Method for inhibiting corrosion of stainless steel
Biswas et al. Electro-oxidation of methanol on graphite-supported perovskite-modified Pt electrodes in alkaline solution
Shang et al. Preparation and photocatalytic properties of ZnO deposited TiO2 nanotube Arrays by anodization
Ibukun et al. Improved photocatalytic efficiency of titanium dioxide-hematite composite by air plasma
Hussain et al. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications
JP2008192680A (en) Composite nano-rod substrate and photoelectric conversion element using the same
CN108816255B (en) AZO/NaCl composite modified TiO2Photocatalyst and preparation method thereof
CN1631739A (en) Bottle-shaped container with protective film
KR100744635B1 (en) Method for preparing of oxide semiconductive electrode for electrochemical device